1
|
Nazir N, Waqar A, Zaib Khan A, Ali Khan A, Aziz T, Alasmari AF. Antiangiogenic potential of Elaeagnus umbellata extracts and molecular docking study by targeting VEGFR-2 pathway. Open Med (Wars) 2025; 20:20241083. [PMID: 39831267 PMCID: PMC11742088 DOI: 10.1515/med-2024-1083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/26/2024] [Accepted: 10/15/2024] [Indexed: 01/22/2025] Open
Abstract
Background Anti-angiogenesis or inhibition of blood vessel formation is the best way to prevent the growth and metastasis of tumors. Natural sources like plants are currently being explored for its antiangiogenic activity as they are factories of various phytochemicals. The goal of the current study is to investigate the antiangiogenic potential of Elaeagnus umbellata (E. umbellata) by using chorioallantoic membrane (CAM) assay and molecular docking. Methods Based on our previous research, the antiangiogenic activity was carried out using active fractions including crude methanol (Eu-Met), ethyl acetate (Eu-EtAc), and chloroform (Eu-Chf) extracts using CAM assay. Furthermore, to understand the binding mechanism of identified compounds, molecular docking was performed against vascular endothelial growth factor receptor 2 (VEGFR-2) using AutoDock vina as docking software. VEGFR-2 is overexpressed in pathological angiogenesis. Results In CAM assay, Eu-Met, Eu-EtAc, and Eu-Chf extracts showed antiangiogenic activities but notable antiangiogenic activities were exhibited by Eu-Chf with IC50 value of 65.02 μg/mL. In molecular docking, five compounds, catechin, catechin hydrate, morin, quercetin, and rutin, reported in the extract and active fractions (Eu-Met, Eu-EtAc, and Eu-Chf) of E. umbellata showed strong interactions with VEGFR-2 with binding affinities of -9.4, -9.3, -9.9, -10.2, and -9.4 kcal/mol. Conclusion Based on our results, we can claim that E. umbellata possess antiangiogenic activity which needs to be explored further.
Collapse
Affiliation(s)
- Nausheen Nazir
- Department of Biochemistry, University of Malakand, Chakdara Dir Lower18800, Pakistan
| | - Arbaz Waqar
- Department of Biochemistry, University of Malakand, Chakdara Dir Lower18800, Pakistan
| | - Amir Zaib Khan
- Department of Biochemistry, University of Malakand, Chakdara Dir Lower18800, Pakistan
| | - Ayaz Ali Khan
- Department of Biotechnology, University of Malakand, Chakdara Dir Lower18800, Pakistan
| | - Tariq Aziz
- Laboratory of Animal Health Food Hygiene and Quality, University of Ioannina, Arta, Greece
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Punjab, Pakistan
| | - Abdullah F. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Maharjan S, Lee MG, Lee KS, Nam KS. Morin overcomes doxorubicin resistance in human breast cancer by inducing DNA damage and modulating the LKB1/AMPK/mTORC1 signaling pathway. Biofactors 2025; 51:e2112. [PMID: 39114963 DOI: 10.1002/biof.2112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/23/2024] [Indexed: 12/29/2024]
Abstract
Breast cancer chemoresistance hampers chemotherapy efficacy; researchers investigate the pharmacological activities of natural products for potential solutions. This study aimed to determine the effect of morin, a bioflavonoid isolated from Maclura pomifera, on two Dox-resistant human breast cancer cell lines MDA-MB-231 (MDA-DR) and MCF-7 (MCF-DR). Sulforhodamine B and colony-forming assays demonstrated the cytotoxic effect of morin on both cell lines. Morin induced DNA damage and reduced the DNA repair mechanism, a feature of chemoresistance. In addition, morin reduced the protein expressions of cell cycle regulators, such as cyclin D1, CDK4, cyclin E1, cyclin B1, and p-Rb, thereby halting cell cycle progression. Moreover, morin slightly reduced PARP and Bcl-xL expressions but left LC3-II and RIPK3 expressions unchanged. Annexin-V/7-AAD analysis showed morin increased 7-AAD positive cells and annexin-V positive cells among MDA-DR and MCF-DR cells, respectively. In addition, morin increased p-AMPK and p-LKB1 levels; and, thus, inhibited phosphorylation of the mTOR pathway, but decreased t-AMPK levels by inducing lysosomal degradation, and AICAR, an AMPK activator, reduced Raptor, cyclin D1, CDK4, cyclin E1 and phosphorylated, and total mTOR levels, indicating AMPK is a key player in inducing cell death. Also, morin modulated MAPK phosphorylation and attenuated p-Akt and p-GSK3αβ levels; and thus, inhibited cell survival. In addition, morin suppressed tumor growth in our MDA-DR xenografted mouse model. These findings indicate that morin is a potential treatment for Dox-resistant breast cancer and that it does so by inducing DNA damage and modulating the LKB1/AMPK/mTORC1 pathway, along with regulating the MAPK, and Akt/GSK3αβ signaling pathways.
Collapse
Affiliation(s)
- Sushma Maharjan
- Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Gyeongju, Republic of Korea
| | - Min-Gu Lee
- Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Gyeongju, Republic of Korea
| | - Kyu-Shik Lee
- Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Gyeongju, Republic of Korea
| | - Kyung-Soo Nam
- Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Gyeongju, Republic of Korea
| |
Collapse
|
3
|
Priante-Silva C, Godoi B, Menegon R, da Silva N, Pacheco-Soares C. Antitumor activity of membranes associated with Acmella oleracea extract. Braz J Med Biol Res 2024; 57:e14129. [PMID: 39504069 PMCID: PMC11540258 DOI: 10.1590/1414-431x2024e14129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/27/2024] [Indexed: 11/08/2024] Open
Abstract
Epithelial cancers, such as epidermoid cancer and some adenocarcinomas, affect surface areas that are generally more accessible to various treatments. However, this group of tumor cells has an aggressive behavior, leading to a high annual mortality rate. The development of a biomaterial that is non-invasive, can kill tumor cells, and prevent opportunistic infections is the basis for the treatment for this type of cancer. Therefore, the objective of this study was to develop a biomaterial from chitosan and A. oleracea extracts that exhibits cytotoxic action against the HEp-2 tumor cell line. Dried crude 90% ethanol extracts were obtained through ultrasound-assisted maceration, followed by liquid-liquid extraction to yield the butanol fraction. From these extracts, chitosan membranes were developed and evaluated for their antitumor activity against HEp-2 using viability tests with crystal violet and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, in addition to a wound healing test. The cytotoxic assays indicated a significant reduction in cell density and mitochondrial activity, especially at the concentration of 1000 µg/mL of crude extract. The butanol fraction had minimal effects on mitochondrial activity. The wound healing test demonstrated that the biomaterial and extract prevented closure of the wound created in the cell monolayer within 48 h of incubation and caused changes in cell morphology. In view of this, we concluded that a chitosan membrane associated with a 90% ethanol extract of Acmella oleracea exhibited cytotoxic activity is a potential alternative treatment for superficial cancers.
Collapse
Affiliation(s)
- C.A. Priante-Silva
- Instituto de Pesquisa e Desenvolvimento, Laboratório de Dinâmica de Compartimentos Celulares, Universidade do Vale do Paraíba, São José dos Campos, SP, Brasil
| | - B.H. Godoi
- Instituto de Pesquisa e Desenvolvimento, Laboratório de Fotobiologia Aplicada è Saúde, Universidade do Vale do Paraíba, São José dos Campos, SP, Brasil
| | - R.F. Menegon
- Laboratório de Insumos Naturais e Sintéticos, Universidade Federal de São Paulo, Diadema, SP, Brasil
| | - N.S. da Silva
- Universidade Estadual de São Paulo Júlio de Mesquita Filho, São José dos Campos, SP, Brasil
| | - C. Pacheco-Soares
- Instituto de Pesquisa e Desenvolvimento, Laboratório de Dinâmica de Compartimentos Celulares, Universidade do Vale do Paraíba, São José dos Campos, SP, Brasil
| |
Collapse
|
4
|
Khan AN, Jawarkar RD, Zaki MEA, Al Mutairi AA. Natural compounds for oxidative stress and neuroprotection in schizophrenia: composition, mechanisms, and therapeutic potential. Nutr Neurosci 2024; 27:1306-1320. [PMID: 38462971 DOI: 10.1080/1028415x.2024.2325233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
OBJECTIVE An imbalance between the generation of reactive oxygen species (ROS) and the body's antioxidant defense mechanisms is believed to be a critical factor in the development of schizophrenia (SCZ) like neurological illnesses. Understanding the roles of ROS in the development of SCZ and the potential activity of natural antioxidants against SCZ could lead to more effective therapeutic options for the prevention and treatment of the illness. METHODS SCZ is a mental disorder characterised by progressive impairments in working memory, attention, and executive functioning. In present investigation, we summarized the experimental findings for understanding the role of oxidative stress (OS) in the development of SCZ and the potential neuroprotective effects of natural antioxidants in the treatment of SCZ. RESULTS Current study supports the use of the mentioned antioxidant natural compounds as a potential therapeutic candidates for the treatment of OS mediated neurodegeneration in SCZ. DISCUSSION Elevated levels of harmful ROS and reduced antioxidant defense mechanisms are indicative of increased oxidative stress (OS), which is associated with SCZ. Previous research has shown that individuals with SCZ, including non-medicated, medicated, first-episode, and chronic patients, exhibit decreased levels of total antioxidants and GSH. Additionally, they have reduced antioxidant enzyme levels such as catalase (CAT), glutathione (GPx), and, superoxide dismutase (SOD) and lower serum levels of brain-derived neurotrophic factor (BDNF) in their brain tissue. The mentioned natural antioxidants may assist in reducing oxidative damage in individuals with SCZ and increasing BDNF expression in the brain, potentially improving cognitive function and learning ability.
Collapse
Affiliation(s)
- Anam N Khan
- Department of Pharamacognosy, Dr. Rajendra Gode Institute of Pharmacy, Amravati, India
| | - Rahul D Jawarkar
- Department of Medicinal Chemistry, Dr. Rajendra Gode Institute of Pharmacy, Amravati, India
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Aamal A Al Mutairi
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Sajjad M, Xue S, Zhou M, Li G, Xu Y, Liu L, Zhu J, Meng Q, Jin Q, Du H, Yao C, Zhong Y. Decoding comparative taste and nutrition regulation in Chinese cabbage via integrated metabolome and transcriptome analysis. Food Res Int 2024; 195:114943. [PMID: 39277221 DOI: 10.1016/j.foodres.2024.114943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
Chinese cabbage (Brassica rapa L. ssp. pekinensis) is a widely consumed leafy vegetable known for its various health-beneficial nutrients. Caixin (ET and JY) represent distinct cultivars of Chinese cabbage that exhibit differential consumer preference attributed to variations in taste and nutritional content, with ET being characterized as sweeter and more nutritionally superior compared to JY. However, limited research has been conducted to explore regulation of flavor and nutrition-related quality traits in Chinese cabbage. In this pioneer study, comprehensive trans-meta-analysis was used to compare the metabolic and molecular underpinnings behind unique taste and nutritional profiles of ET and JY. 8-Methylsulfonyloctyl glucosinolates and Uridine 5'-diphospho-D-glucose exhibited the highest correlation coefficient in Pearson meta-meta-association, which modulate flavor and nutrition processes. While DAMs primarily featured L-Homomethionine, saccharic acid, 1,6-Di-O-caffeoyl-β-D-glucose, and Rutin, with notable variations in expression between ET and JY. Conspicuously, DEGs encoding structural enzymes i.e. Glucosinolates (MAM, CYP, UGT), flavonoids (CHS, CHI, F3H) and sucrose (SPS, SPP, SUS) synthases were identified as key players in nutrient and flavor production. Multi-omics conjoint analysis revealed that saccharides, amino acids, ascorbates, flavonoids, organic acids and vitamins were positively correlated with taste and nutrition, and were found to be overexpressed in ET. While aliphatic glucosinolates were abundant in JY compared to ET, they might play a critical role in regulating quality traits. Besides, HPLC and RT-qPCR corroborated multi-omics data reliability. These findings offer novel insights into the mechanisms governing the regulation of taste and nutritional levels in Chinese cabbage.
Collapse
Affiliation(s)
- Muhammad Sajjad
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China
| | - Shudan Xue
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China
| | - Meijiang Zhou
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China
| | - Guihua Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China
| | - Yingchao Xu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China
| | - Ling Liu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China
| | - Jitong Zhu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China
| | - Qitao Meng
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China
| | - Qingmin Jin
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China
| | - Hu Du
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China
| | - Chunpeng Yao
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China
| | - Yujuan Zhong
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China.
| |
Collapse
|
6
|
Qiu L, Yan C, Yang Y, Liu K, Yin Y, Zhang Y, Lei Y, Jia X, Li G. Morin alleviates DSS-induced ulcerative colitis in mice via inhibition of inflammation and modulation of intestinal microbiota. Int Immunopharmacol 2024; 140:112846. [PMID: 39121607 DOI: 10.1016/j.intimp.2024.112846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory condition with recurrent and challenging symptoms. Effective treatments are lacking, making UC management a critical research area. Morin (MO), a flavonoid from the Moraceae family, shows potential as an anti-UC agent, but its mechanisms are not fully understood. Using a dextran sulfate sodium (DSS)-induced UC mouse model, we employed network pharmacology to predict MO's therapeutic effects. Assessments included changes in body weight, disease activity index (DAI), and colon length. Immunofluorescence, hematoxylin and eosin (H&E), and PAS staining evaluated colon damage. ELISA and western blot analyzed inflammatory factors, tight junction (TJ)-associated proteins (Claudin-3, Occludin, ZO-1), and Mitogen-Activated Protein Kinase (MAPK)/ Nuclear Factor kappa B (NF-κB) pathways. 16S rRNA sequencing assessed gut microbiota diversity, confirmed by MO's modulation via Fecal Microbial Transplantation (FMT). Early MO intervention reduced UC severity by improving weight, DAI scores, and colon length, increasing goblet cells, enhancing barrier function, and inhibiting MAPK/NF-κB pathways. MO enriched gut microbiota, favoring beneficial bacteria like Muribaculaceae and Erysipelotrichaceae while reducing harmful Erysipelotrichaceae and Muribaculaceae. This study highlights MO's potential in UC management through inflammation control, mucosal integrity maintenance, and gut flora modulation.
Collapse
Affiliation(s)
- Li Qiu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Chengqiu Yan
- Anorectal Department, First Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130021, China
| | - Yue Yang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Kunjian Liu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yu Yin
- Anorectal Department, First Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130021, China
| | - Yiwen Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yuting Lei
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiangwen Jia
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Guofeng Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; Anorectal Department, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen 518100, China.
| |
Collapse
|
7
|
Doğan Y, Öziç C, Ertaş E, Baran A, Rosic G, Selakovic D, Eftekhari A. Activated carbon-coated iron oxide magnetic nanocomposite (IONPs@CtAC) loaded with morin hydrate for drug-delivery applications. Front Chem 2024; 12:1477724. [PMID: 39498376 PMCID: PMC11532056 DOI: 10.3389/fchem.2024.1477724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/30/2024] [Indexed: 11/07/2024] Open
Abstract
Cancer is a major disease that affects millions of people around the world every year. It affects individuals of all ages, races, and backgrounds. Since drugs used to treat cancer cannot distinguish between cancerous and healthy cells, they cause systemic toxicity along with serious side effects. Recently, controlled drug-release systems have been developed to reduce the side effects caused by anticancer drugs used for treatment. Morin is an anticancer drug with a flavonol structure. It has been extensively researched for its antioxidant, anti-inflammatory, antitumoral, and antibacterial properties, especially found in Chinese herbs and fruits, and its multiple positive effects on different diseases. In this study, a nanocomposite with magnetic properties was synthesized by coating biocompatible activated carbon obtained using the fruits of the Celtis tournefortii plant on the surface of iron oxide magnetic nanoparticles. Characterization of the synthesized activated carbon-coated iron oxide magnetic nanocomposite was confirmed by Fourier transform infrared, scanning electron microscopy, energy-dispersive X-ray spectrometry, X-ray diffraction, dynamic light scattering, zeta potential, and vibrating sample magnetometry. The cytotoxic effects of the drug-loaded magnetic nanocomposite were examined in HT-29 (colorectal), T98-G (glioblastoma) cancer cell lines, and human umbilical vein endothelial cell (HUVEC) healthy cell line. The morin loading and release behavior of the activated carbon-coated iron oxide magnetic nanocomposite were studied, and the results showed that up to 60% of the adsorbed morin was released within 4 h. In summary, activated carbon-coated iron oxide magnetic nanocomposite carriers have shown promising results for the delivery of the morin drug.
Collapse
Affiliation(s)
- Yusuf Doğan
- Kızıltepe Vocational School, Mardin Artuklu University, Mardin, Türkiye
| | - Cem Öziç
- Department of Basic Medical Sciences, Department of Medical Biology, Faculty of Medicine, Kafkas University, Kars, Türkiye
| | - Erdal Ertaş
- Department of Food Technology, Vocational School of Technical Sciences, Batman University, Batman, Türkiye
| | - Ayşe Baran
- Department of Biology, Graduate Education Institute, Mardin Artuklu University, Mardin, Türkiye
| | - Gvozden Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragica Selakovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Aziz Eftekhari
- Department of Biochemistry, Faculty of Science, Ege University, Izmir, Türkiye
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
| |
Collapse
|
8
|
Öziç C, Ertaş E, Baran MF, Baran A, Ahmadian E, Eftekhari A, Khalilov R, Aliyev E, Yıldıztekin M. Synthesis and characterization of activated carbon-supported magnetic nanocomposite (MNPs-OLAC) obtained from okra leaves as a nanocarrier for targeted delivery of morin hydrate. Front Pharmacol 2024; 15:1482130. [PMID: 39444608 PMCID: PMC11496157 DOI: 10.3389/fphar.2024.1482130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction The method of encapsulating the drug molecule in a carrier, such as a magnetic nanoparticle, is a promising development that has the potential to deliver the medicine to the site where it is intended to be administered. Morin is a pentahydroxyflavone obtained from the leaves, stems, and fruits of various plantsmainly from the Moraceae family exhibiting diverse pharmacological activities such as anti-inflammatory, anti-oxidant, and free radical scavenging and helps treat diseases such as diabetes, myocardial infarction and cancer. Methods In this study, we conducted the synthesis of a nanocomposite with magnetic properties by coating biocompatible activated carbon obtained from okra plant leaves with magnetic nanoparticles. Results Characterization of the synthesized activated carbon-coated magnetic nanocomposite was confirmed by Fourier transform infrared, scanning electron microscopy, dynamic light scattering, and zeta potential. The cytotoxic effects of the drug-loaded magnetic nanocomposite were examined in HT-29 (Colorectal), MCF-7 (breast), U373 (brain), T98-G (Glioblastoma) cancer cell lines, and human umbilical vein endothelial cells healthy cell line. Discussion We studied the loading and release behavior of morin hydrate in the activated carbon-coated magnetic nanocomposite. Activated carbon-coated magnetic nanocomposite carriers can show promising results for the delivery of Morin hydrate drugs to the targeted site.
Collapse
Affiliation(s)
- Cem Öziç
- Department of Basic Medical Sciences, Department of Medical Biology, Kafkas University, Faculty of Medicine, Kars, Türkiye
| | - Erdal Ertaş
- Department of Food Technology, Vocational School of Technical Sciences, Batman University, Batman, Türkiye
| | - Mehmet Fırat Baran
- Department of Food Technology, Vocational School of Technical Sciences, Batman University, Batman, Türkiye
| | - Ayşe Baran
- Department of Biology, Graduate Education Institute, Mardin Artuklu University, Mardin, Türkiye
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aziz Eftekhari
- Department of Biochemistry, Faculty of Science, Ege University, Izmir, Türkiye
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
| | - Rovshan Khalilov
- Department of Biophysics and Biochemistry, Baku State University, Baku, Azerbaijan
| | - Elvin Aliyev
- Department of Biology and Ecology, Lankaran State University, Lankaran, Azerbaijan
| | - Mahmut Yıldıztekin
- Department of Herbal and Animal Production, Koycegiz Vocational School, Mugla Sıtkı Kocman University, Mugla, Türkiye
| |
Collapse
|
9
|
Yang Y, Du Y, Cui B. Polyphenols targeting multiple molecular targets and pathways for the treatment of vitiligo. Front Immunol 2024; 15:1387329. [PMID: 39119340 PMCID: PMC11306171 DOI: 10.3389/fimmu.2024.1387329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Vitiligo, a pigmentary autoimmune disorder, is marked by the selective loss of melanocytes in the skin, leading to the appearance of depigmented patches. The principal pathological mechanism is the melanocyte destruction mediated by CD8+ T cells, modulated by oxidative stress and immune dysregulation. Vitiligo affects both physical health and psychological well-being, diminishing the quality of life. Polyphenols, naturally occurring compounds with diverse pharmacological properties, including antioxidant and anti-inflammatory activities, have demonstrated efficacy in managing various dermatological conditions through multiple pathways. This review provides a comprehensive analysis of vitiligo and the therapeutic potential of natural polyphenolic compounds. We examine the roles of various polyphenols in vitiligo management through antioxidant and immunomodulatory effects, melanogenesis promotion, and apoptosis reduction. The review underscores the need for further investigation into the precise molecular mechanisms of these compounds in vitiligo treatment and the exploration of their combination with current therapies to augment therapeutic outcomes.
Collapse
Affiliation(s)
| | | | - Bingnan Cui
- Department of Dermatology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Papanikolaou A, Chatzikonstantinou AV, Fotiadou R, Tsakni A, Houhoula D, Polydera AC, Pavlidis IV, Stamatis H. A Study on the Regioselective Acetylation of Flavonoid Aglycons Catalyzed by Immobilized Lipases. Biomolecules 2024; 14:897. [PMID: 39199285 PMCID: PMC11352720 DOI: 10.3390/biom14080897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
This study aimed to explore the capacity of immobilized lipases on the acetylation of six aglycon flavonoids, namely myricetin, quercetin, luteolin, naringenin, fisetin and morin. For this purpose, lipase B from Candida antarctica (CaLB) and lipase from Thermomyces lanuginosus (TLL) were immobilized onto the surface of ZnOFe nanoparticles derived from an aqueous olive leaf extract. Various factors affecting the conversion of substrates and the formation of monoesterified and diesterified products, such as the amount of biocatalyst and the molar ratio of the substrates and reaction solvents were investigated. Both CaLB and TLL-ZnOFe achieved 100% conversion yield of naringenin to naringenin acetate after 72 h of reaction time, while TLL-ZnOFe achieved higher conversion yields of quercetin, morin and fisetin (73, 85 and 72% respectively). Notably, CaLB-ZnOFe displayed significantly lower conversion yields for morin compared with TLL-ZnOFe. Molecular docking analysis was used to elucidate this discrepancy, and it was revealed that the position of the hydroxyl groups of the B ring on morin introduced hindrances on the active site of CaLB. Finally, selected flavonoid esters showed significantly higher antimicrobial activity compared with the original compound. This work indicated that these lipase-based nanobiocatalysts can be successfully applied to produce lipophilic derivatives of aglycon flavonoids with improved antimicrobial activity.
Collapse
Affiliation(s)
- Angelos Papanikolaou
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece; (A.P.); (R.F.); (A.C.P.)
| | - Alexandra V. Chatzikonstantinou
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece; (A.P.); (R.F.); (A.C.P.)
| | - Renia Fotiadou
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece; (A.P.); (R.F.); (A.C.P.)
| | - Aliki Tsakni
- Department of Food Science and Technology, University of West Attica, 12243 Athens, Greece; (A.T.); (D.H.)
| | - Dimitra Houhoula
- Department of Food Science and Technology, University of West Attica, 12243 Athens, Greece; (A.T.); (D.H.)
| | - Angeliki C. Polydera
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece; (A.P.); (R.F.); (A.C.P.)
| | - Ioannis V. Pavlidis
- Department of Chemistry, University of Crete, Voutes University Campus, 70013 Heraklion, Greece;
| | - Haralambos Stamatis
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece; (A.P.); (R.F.); (A.C.P.)
| |
Collapse
|
11
|
Rode K, Maji I, Mahajan S, Singh PK. Unlocking the potential of flavonoid-based co-crystal and co-amorphous systems. Drug Discov Today 2024; 29:104050. [PMID: 38830502 DOI: 10.1016/j.drudis.2024.104050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
Flavonoids are polyphenolic compounds that have multiple benefits in treating various life-threatening diseases. Despite their diverse pharmacological activities, the market potential of flavonoids is hampered due to their poor solubility and low bioavailability after oral administration. The current review highlights the role of co-crystals and co-amorphous systems (CAMs) in enhancing the solubility, permeability, bioavailability, and therapeutic efficacy of flavonoids. It also explains the significance of flavonoid-based co-formers in the formation of co-crystals and CAMs with other APIs to improve their efficacy. Future perspectives, patented formulations, commercial medications (including their phases of clinical trials), and challenges associated with the use of flavonoid-based co-crystals and CAMs are also mentioned in the review.
Collapse
Affiliation(s)
- Khushi Rode
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India.
| |
Collapse
|
12
|
Chen T, Xiao Z, Liu X, Wang T, Wang Y, Ye F, Su J, Yao X, Xiong L, Yang DH. Natural products for combating multidrug resistance in cancer. Pharmacol Res 2024; 202:107099. [PMID: 38342327 DOI: 10.1016/j.phrs.2024.107099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/22/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Cancer cells frequently develop resistance to chemotherapeutic therapies and targeted drugs, which has been a significant challenge in cancer management. With the growing advances in technologies in isolation and identification of natural products, the potential of natural products in combating cancer multidrug resistance has received substantial attention. Importantly, natural products can impact multiple targets, which can be valuable in overcoming drug resistance from different perspectives. In the current review, we will describe the well-established mechanisms underlying multidrug resistance, and introduce natural products that could target these multidrug resistant mechanisms. Specifically, we will discuss natural compounds such as curcumin, resveratrol, baicalein, chrysin and more, and their potential roles in combating multidrug resistance. This review article aims to provide a systematic summary of recent advances of natural products in combating cancer drug resistance, and will provide rationales for novel drug discovery.
Collapse
Affiliation(s)
- Ting Chen
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Zhicheng Xiao
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Xiaoyan Liu
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Tingfang Wang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yun Wang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Fei Ye
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Juan Su
- School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Xuan Yao
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Liyan Xiong
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, NY 11501, USA.
| |
Collapse
|
13
|
Caglayan C, Temel Y, Türkeş C, Ayna A, Ece A, Beydemir Ş. The effects of morin and methotrexate on pentose phosphate pathway enzymes and GR/GST/TrxR enzyme activities: An in vivo and in silico study. Arch Pharm (Weinheim) 2024; 357:e2300497. [PMID: 37972283 DOI: 10.1002/ardp.202300497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
In this study, the mechanisms by which the enzymes glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), glutathione reductase (GR), glutathione-S-transferase (GST), and thioredoxin reductase (TrxR) are inhibited by methotrexate (MTX) were investigated, as well as whether the antioxidant morin can mitigate or prevent these adverse effects in vivo and in silico. For 10 days, rats received oral doses of morin (50 and 100 mg/kg body weight). On the fifth day, a single intraperitoneal injection of MTX (20 mg/kg body weight) was administered to generate toxicity. Decreased activities of G6PD, 6PGD, GR, GST, and TrxR were associated with MTX-related toxicity while morin treatment increased the activity of the enzymes. The docking analysis indicated that H-bonds, pi-pi stacking, and pi-cation interactions were the dominant interactions in these enzyme-binding pockets. Furthermore, the docked poses of morin and MTX against GST were subjected to molecular dynamic simulations for 200 ns, to assess the stability of both complexes and also to predict key amino acid residues in the binding pockets throughout the simulation. The results of this study suggest that morin may be a viable means of alleviating the enzyme activities of important regulatory enzymes against MTX-induced toxicity.
Collapse
Affiliation(s)
- Cuneyt Caglayan
- Department of Medical Biochemistry, Faculty of Medicine, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Yusuf Temel
- Department of Solhan School of Health Services, Bingol University, Bingol, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Adnan Ayna
- Department of Chemistry, Faculty of Sciences and Arts, Bingol University, Bingol, Turkey
| | - Abdulilah Ece
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, İstanbul, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
14
|
Bahramzadeh A, Samavarchi Tehrani S, Goodarzi G, Seyyedebrahimi S, Meshkani R. Combination therapy of metformin and morin attenuates insulin resistance, inflammation, and oxidative stress in skeletal muscle of high-fat diet-fed mice. Phytother Res 2024; 38:912-924. [PMID: 38091524 DOI: 10.1002/ptr.8086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/25/2023] [Accepted: 11/26/2023] [Indexed: 02/15/2024]
Abstract
Lipid accumulation, inflammation, and oxidative stress are the most important causes of muscle insulin resistance. The aim of this study was to investigate the single and combined treatment effects of metformin (MET) and morin (MOR) on lipid accumulation, inflammation, and oxidative stress in the skeletal muscle of mice fed a high-fat diet. The mice were supplemented with MET (230 mg/kg diet), MOR (100 mg/kg diet), and MET + MOR for 9 weeks. Our results revealed that single treatment with MET or MOR, and with a stronger effect of MET + MOR combined treatment, reduced body weight gain, improved glucose intolerance and enhanced Akt phosphorylation in the muscle tissue. In addition, plasma and muscle triglyceride levels were decreased after treatment with MET and MOR. The expression of genes involved in macrophage infiltration and polarization and pro-inflammatory cytokines showed that MET + MOR combined treatment, significantly reduced inflammation in the muscle. Furthermore, combined treatment of MET + MOR with greater efficacy than the single treatment improved several oxidative stress markers in the muscle. Importantly, combined treatment of MET and MOR could increase the expression of nuclear factor erythroid 2-related factor 2, the master regulator of the antioxidant response. These findings suggest that combination of MET with MOR might ameliorate insulin resistance, inflammation, and oxidative stress in the skeletal muscle of mice fed high-fat diet.
Collapse
Affiliation(s)
- Arash Bahramzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadra Samavarchi Tehrani
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Science, Tehran, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pathobiology and Laboratory Science, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - ShadiSadat Seyyedebrahimi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Guo Q, Wang L, Qu Q, Cheang I, Li X, Pang H, Liao S. Association of flavonoid intake with coronary artery disease risk in the older population based on the National Health and Nutrition Examination Survey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3815-3827. [PMID: 38095791 DOI: 10.1007/s11356-023-31347-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024]
Abstract
We investigated the association between flavonoid intake and coronary artery disease (CAD) risk in older adults. Data were extracted from the National Health and Nutrition Examination Survey (age ≥ 70 years; 2007-2010 and 2017-2018; n = 2 417). The total flavonoid and flavonoid subclass intake was calculated using validated food frequency questionnaires. The association between flavonoid intake and CAD risk was examined using generalized linear models with restricted cubic spline models. After multivariate adjustment, anthocyanin intake was positively associated with CAD risk; no significant associations were observed between other flavonoid subcategories and endpoint outcomes. Anthocyanins exhibited a non-linear association with CAD risk, and threshold effect analysis showed an inflection point of 15.8 mg/day for anthocyanins. Per unit increase in anthocyanins, the odds of CAD on the left of the inflection point decreased by 2%, while the odds on the right increased by 35.8%. Excessive flavonoid intake may increase CAD risk in the older population.
Collapse
Affiliation(s)
- Qixin Guo
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Luyang Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang Qu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Iokfai Cheang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Pang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shengen Liao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
16
|
Mottaghi S, Abbaszadeh H. Grape seed extract in combination with deferasirox ameliorates iron overload, oxidative stress, inflammation, and liver dysfunction in beta thalassemia children. Complement Ther Clin Pract 2023; 53:101804. [PMID: 37832335 DOI: 10.1016/j.ctcp.2023.101804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/28/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND AND PURPOSE Iron overload in the body is associated with serious and irreversible tissue damage. This study aimed to investigate the iron-chelating, antioxidant, anti-inflammatory, and hepatoprotective activities of grape seed extract (GSE) supplement as well as its safety in β-thalassemia major (β-TM) pediatric patients receiving deferasirox as a standard iron-chelation therapy. MATERIALS AND METHODS The children were randomly allocated to either GSE group (n = 30) or control group (n = 30) to receive GSE (100 mg/day) or placebo capsules, respectively, for 4 weeks. The serum levels of iron, ferritin, total iron-binding capacity (TIBC), alanine transaminase (ALT), aspartate aminotransferase (AST), tumor necrosis factor alpha (TNF-α), high-sensitivity C-reactive protein (hs-CRP), malondialdehyde (MDA), and glutathione (GSH) as well as superoxide dismutase (SOD) activity and hemoglobin (Hb) concentration were measured pre-and post-intervention. RESULTS GSE supplement significantly attenuated the serum levels of iron (p = 0.030), ferritin (p = 0.017), ALT (p = 0.000), AST (p = 0.000), TNF-α (p = 0.000), and hs-CRP (p = 0.001). The TIBC level (p = 0.020) significantly enhanced in the GSE group compared with the placebo group. Moreover, GSE supplement remarkably improved the oxidative stress markers, MDA (p = 0.000) and GSH (p = 0.001). The changes in the SOD activity (p = 0.590) and Hb concentration (p = 0.670) were not statistically different between the groups. CONCLUSION GSE supplement possesses several health beneficial influences on children with β-TM by alleviating iron burden, oxidative stress, inflammation, and liver dysfunction.
Collapse
Affiliation(s)
- Sayeh Mottaghi
- Department of Pediatrics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hassan Abbaszadeh
- Department of Pharmacology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
17
|
Asnaashari S, Amjad E, Sokouti B. Synergistic effects of flavonoids and paclitaxel in cancer treatment: a systematic review. Cancer Cell Int 2023; 23:211. [PMID: 37743502 PMCID: PMC10518113 DOI: 10.1186/s12935-023-03052-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/03/2023] [Indexed: 09/26/2023] Open
Abstract
Paclitaxel is a natural anticancer compound with minimal toxicity, the capacity to stabilize microtubules, and high efficiency that has remained the standard of treatment alongside platinum-based therapy as a remedy for a variety of different malignancies. In contrast, polyphenols such as flavonoids are also efficient antioxidant and anti-inflammatory and have now been shown to possess potent anticancer properties. Therefore, the synergistic effects of paclitaxel and flavonoids against cancer will be of interest. In this review, we use a Boolean query to comprehensively search the well-known Scopus database for literature research taking the advantage of paclitaxel and flavonoids simultaneously while treating various types of cancer. After retrieving and reviewing the intended investigations based on the input keywords, the anticancer mechanisms of flavonoids and paclitaxel and their synergistic effects on different targets raging from cell lines to animal models are discussed in terms of the corresponding involved signaling transduction. Most studies demonstrated that these signaling pathways will induce apoptotic / pro-apoptotic proteins, which in turn may activate several caspases leading to apoptosis. Finally, it can be concluded that the results of this review may be beneficial in serving as a theoretical foundation and reference for future studies of paclitaxel synthesis, anticancer processes, and clinical applications involving different clinical trials.
Collapse
Affiliation(s)
- Solmaz Asnaashari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Amjad
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Babak Sokouti
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Li J, Xu S, Mei Y, Gu Y, Sun M, Zhang W, Wang J. Genomic-wide identification and expression analysis of R2R3-MYB transcription factors related to flavonol biosynthesis in Morinda officinalis. BMC PLANT BIOLOGY 2023; 23:381. [PMID: 37550611 PMCID: PMC10405574 DOI: 10.1186/s12870-023-04394-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND The R2R3-MYB transcription factors are a crucial and extensive gene family in plants, which participate in diverse processes, including development, metabolism, defense, differentiation, and stress response. In the Lingnan region of China, Morinda officinalis is extensively grown and is renowned for its use as both a medicinal herb and food source. However, there are relatively few reports on the R2R3-MYB transcription factor family in M.officinalis. RESULTS In this study, we identified 97 R2R3-MYB genes in the genome of Morinda officinalis and classified them into 32 subgroups based on phylogenetic comparison with Arabidopsis thaliana. The lack of recent whole-genome duplication events in M.officinalis may be the reason for the relatively few members of the R2R3-MYB family. We also further analyzed the physical and chemical characteristics, conserved motifs, gene structure, and chromosomal location. Gene duplication events found 21 fragment duplication pairs and five tandem duplication event R2R3-MYB genes in M.officinalis may also affect gene family expansion. Based on phylogenetic analysis, cis-element analysis, co-expression analysis and RT-qPCR, we concluded that MoMYB33 might modulate flavonol levels by regulating the expression of 4-coumarate-CoA ligase Mo4CL2, chalcone isomerase MoCHI3, and flavonol synthase MoFLS4/11/12. MoMYB33 and AtMYB111 showed the highest similarity of 79% and may be involved in flavonol synthase networks by the STRING database. Moreover, we also identified MoMYB genes that respond to methyl Jasmonate (MeJA) and abscisic acid (ABA) stress by RT-qPCR. CONCLUSIONS This study offers a thorough comprehension of R2R3-MYB in M.officinalis, which lays the foundation for the regulation of flavonol synthesis and the response of MoMYB genes to phytohormones in M.officinalis.
Collapse
Affiliation(s)
- Jingyu Li
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
- Guangdong Provincial Engineering and Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, 510640, China
| | - Shiqiang Xu
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
- Guangdong Provincial Engineering and Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, 510640, China
| | - Yu Mei
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
- Guangdong Provincial Engineering and Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, 510640, China
| | - Yan Gu
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
- Guangdong Provincial Engineering and Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, 510640, China
| | - Mingyang Sun
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
- Guangdong Provincial Engineering and Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, 510640, China
| | - Wenting Zhang
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
- Guangdong Provincial Engineering and Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, 510640, China
| | - Jihua Wang
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China.
- Guangdong Provincial Engineering and Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, 510640, China.
| |
Collapse
|
19
|
Cunha C, Marinheiro D, Ferreira BJML, Oliveira H, Daniel-da-Silva AL. Morin Hydrate Encapsulation and Release from Mesoporous Silica Nanoparticles for Melanoma Therapy. Molecules 2023; 28:4776. [PMID: 37375331 DOI: 10.3390/molecules28124776] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Melanoma incidence, a type of skin cancer, has been increasing worldwide. There is a strong need to develop new therapeutic strategies to improve melanoma treatment. Morin is a bioflavonoid with the potential for use in the treatment of cancer, including melanoma. However, therapeutic applications of morin are restrained owing to its low aqueous solubility and limited bioavailability. This work investigates morin hydrate (MH) encapsulation in mesoporous silica nanoparticles (MSNs) to enhance morin bioavailability and consequently increase the antitumor effects in melanoma cells. Spheroidal MSNs with a mean size of 56.3 ± 6.5 nm and a specific surface area of 816 m2/g were synthesized. MH was successfully loaded (MH-MSN) using the evaporation method, with a loading capacity of 28.3% and loading efficiency of 99.1%. In vitro release studies showed that morin release from MH-MSNs was enhanced at pH 5.2, indicating increased flavonoid solubility. The in vitro cytotoxicity of MH and MH-MSNs on human A375, MNT-1 and SK-MEL-28 melanoma cell lines was investigated. Exposure to MSNs did not affect the cell viability of any of the cell lines tested, suggesting that the nanoparticles are biocompatible. The effect of MH and MH-MSNs on reducing cell viability was time- and concentration-dependent in all melanoma cell lines. The A375 and SK-MEL-28 cell lines were slightly more sensitive than MNT-1 cells in both the MH and MH-MSN treatments. Our findings suggest that MH-MSNs are a promising delivery system for the treatment of melanoma.
Collapse
Affiliation(s)
- Catarina Cunha
- Department of Biology, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diogo Marinheiro
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bárbara J M L Ferreira
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Helena Oliveira
- Department of Biology, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana L Daniel-da-Silva
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
20
|
Sunoqrot S, Alkurdi M, Al Bawab AQ, Hammad AM, Tayyem R, Abu Obeed A, Abufara M. Encapsulation of morin in lipid core/PLGA shell nanoparticles significantly enhances its anti-inflammatory activity and oral bioavailability. Saudi Pharm J 2023; 31:845-853. [PMID: 37228320 PMCID: PMC10203777 DOI: 10.1016/j.jsps.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/07/2023] [Indexed: 05/27/2023] Open
Abstract
Morin (3,5,7,2',4'-pentahydroxyflavone; MR) is a bioactive plant polyphenol whose therapeutic efficacy is hindered by its poor biopharmaceutical properties. The purpose of this study was to develop a nanoparticle (NP) formulation to enhance the bioactivity and oral bioavailability of MR. The nanoprecipitation technique was employed to encapsulate MR in lipid-cored poly(lactide-co-glycolide) (PLGA) NPs. The optimal NPs were about 200 nm in size with an almost neutral surface charge and a loading efficiency of 82%. The NPs exhibited sustained release of MR within 24 h. In vitro antioxidant assays showed that MR encapsulation did not affect its antioxidant activity. On the other hand, anti-inflammatory assays in lipopolysaccharide-stimulated macrophages revealed a superior anti-inflammatory activity of MR NPs compared to free MR. Furthermore, oral administration of MR NPs to mice at a single dose of 20 mg/kg MR achieved a 5.6-fold enhancement in bioavailability and a prolongation of plasma half-life from 0.13 to 0.98 h. The results of this study present a promising NP formulation for MR which can enhance its oral bioavailability and bioactivity for the treatment of different diseases such as inflammation.
Collapse
Affiliation(s)
- Suhair Sunoqrot
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Malak Alkurdi
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Abdel Qader Al Bawab
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Alaa M. Hammad
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | | | | | | |
Collapse
|
21
|
Tehrani SS, Goodarzi G, Panahi G, Zamani-Garmsiri F, Meshkani R. The combination of metformin with morin alleviates hepatic steatosis via modulating hepatic lipid metabolism, hepatic inflammation, brown adipose tissue thermogenesis, and white adipose tissue browning in high-fat diet-fed mice. Life Sci 2023; 323:121706. [PMID: 37075944 DOI: 10.1016/j.lfs.2023.121706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/21/2023]
Abstract
AIM The valuable effects of metformin (MET) and morin (MOR) in the improvement of NAFLD have been proposed, nevertheless, their combination impacts were not investigated so far. We determined the therapeutic effects of combined MET and MOR treatment in high-fat diet (HFD)-induced Non-alcoholic fatty liver disease (NAFLD) mice. METHODS C57BL/6 mice were fed on an HFD for 15 weeks. Animals were allotted into various groups and supplemented with MET (230 mg/kg), MOR (100 mg/kg), and MET + MOR (230 mg/kg + 100 mg/kg). KEY FINDINGS MET in combination with MOR reduced body and liver weight in HFD-fed mice. A significant decrease in fasting blood glucose and improvement in glucose tolerance was observed in HFD mice treated with MET + MOR. Supplementation with MET + MOR led to a decline in hepatic triglyceride levels and this impact was associated with diminished expression of fatty-acid synthase (FAS) and elevated expression of carnitine palmitoyl transferase 1 (CPT1) and phospho-Acetyl-CoA Carboxylase (p-ACC). Moreover, MET combined with MOR alleviates hepatic inflammation through the polarization of macrophages to the M2 phenotype, decreasing the infiltration of macrophages and lowering the protein level of NF-kB. MET and MOR in combination reduce the size and weight of epididymal white adipose tissue (eWAT), and subcutaneous WAT (sWAT), whereas improves cold tolerance, BAT activity, and mitochondrial biogenesis. Combination therapy results in stimulating brown-like adipocyte (beige) formation in the sWAT of HFD mice. SIGNIFICANCE These results suggest that the combination of MET and MOR has a protective effect on hepatic steatosis, which may use as a candidate therapeutic for the improvement of NAFLD.
Collapse
Affiliation(s)
- Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghodratollah Panahi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Zamani-Garmsiri
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Poormolaie N, Mohammadi M, Mir A, Asadi M, Kararoudi AN, Vahedian V, Maroufi NF, Rashidi M. Xanthomicrol: Effective therapy for cancer treatment. Toxicol Rep 2023; 10:436-440. [PMID: 37102154 PMCID: PMC10123071 DOI: 10.1016/j.toxrep.2023.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Cancer treatment is one of the main challenges of global health. For decades, researchers have been trying to find anti-cancer compounds with minimal side effects. In recent years, flavonoids, as a group of polyphenolic compounds, have attracted the attention of researchers due to their beneficial effects on health. Xanthomicrol is one of the flavonoids that has the ability to inhibit growth, proliferation, survival and cell invasion and ultimately tumor progression. Xanthomicrol, as active anti-cancer compounds, can be effective in the prevention and treatment of cancer. Therefore, the use of flavonoids can be suggested as a treatment along with other medicinal agents. It is obvious that additional investigations in cellular levels and animal models are still needed. In this review article, the effects of xanthomicrol on various cancers have been reviewed.
Collapse
|
23
|
Carullo G, Falbo F, Ahmed A, Trezza A, Gianibbi B, Nicolotti O, Campiani G, Aiello F, Saponara S, Fusi F. Artificial intelligence-driven identification of morin analogues acting as Ca V1.2 channel blockers: Synthesis and biological evaluation. Bioorg Chem 2023; 131:106326. [PMID: 36563413 DOI: 10.1016/j.bioorg.2022.106326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Morin is a vasorelaxant flavonoid, whose activity is ascribable to CaV1.2 channel blockade that, however, is weak as compared to that of clinically used therapeutic agents. A conventional strategy to circumvent this drawback is to synthesize new derivatives differently decorated and, in this context, morin-derivatives able to interact with CaV1.2 channels were found by employing the potential of PLATO in target fishing and reverse screening. Three different derivatives (5a-c) were selected as promising tools, synthesized, and investigated in in vitro functional studies using rat aorta rings and rat tail artery myocytes. 5a-c were found more effective vasorelaxant agents than the naturally occurring parent compound and antagonized both electro- and pharmaco-mechanical coupling in an endothelium-independent manner. 5a, the series' most potent, reduced also Ca2+ mobilization from intracellular store sites. Furthermore, 5a≈5c > 5b inhibited Ba2+ current through CaV1.2 channels. However, compound 5a caused also a concentration-dependent inhibition of KCa1.1 channel currents.
Collapse
Affiliation(s)
- Gabriele Carullo
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Federica Falbo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Ed. Polifunzionale, 87036, Rende (CS), Italy
| | - Amer Ahmed
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Alfonso Trezza
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Beatrice Gianibbi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Orazio Nicolotti
- Department of Pharmacy- Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Ed. Polifunzionale, 87036, Rende (CS), Italy.
| | - Simona Saponara
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Fabio Fusi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| |
Collapse
|
24
|
Ling J, Zhang L, Wang Y, Chang A, Huang Y, Zhao H, Zhuo X. Fisetin, a dietary flavonoid, increases the sensitivity of chemoresistant head and neck carcinoma cells to cisplatin possibly through HSP90AA1/IL-17 pathway. Phytother Res 2023; 37:1997-2011. [PMID: 36631292 DOI: 10.1002/ptr.7723] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/05/2022] [Accepted: 12/18/2022] [Indexed: 01/13/2023]
Abstract
Cisplatin (DDP) resistance is a bottleneck in the treatment of head and neck cancer (HNC), leading to poor prognosis. Fisetin, a dietary flavonoid, has low toxicity and high antitumor activity with unclear mechanisms. We intended to predict the targets of fisetin for reversing DDP-resistance and further verify their expressions and roles. A network pharmacology approach was applied to explore the target genes. The hub genes were screened out and subjected to molecular docking and experimental verification (in vivo and in vitro). Thirty-two genes common to fisetin and DDP-resistance were screened, including three hub genes, namely HSP90AA1, PPIA, and PTPRS. Molecular docking suggested that fisetin and the candidate proteins could bind tightly. HSP90AA1 was identified as the key gene. Administration of fisetin increased the sensitivity of chemoresistant cells (Cal27/DDP and FaDu/DDP) to DDP, accompanied by the downregulation of HSP90AA1 and IL-17. HSP90AA1 silencing increases the sensitivity of DDP-resistant cells to DDP, which was mediated by IL-17. In summary, fisetin might inhibit the chemoresistance of HNC cells to DDP by targeting the HSP90AA1/IL-17 pathway. Several hub genes might be the targets of fisetin for reversing DDP-resistance in HNC cells and might also serve as prognostic factors and therapeutic targets for HNC.
Collapse
Affiliation(s)
- Junjun Ling
- Department of Otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Liang Zhang
- Department of Otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Department of Respiratory Medicine, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yan Wang
- Department of Internal Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Aoshuang Chang
- Department of Otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yi Huang
- Department of Respiratory Medicine, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Houyu Zhao
- Department of Otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xianlu Zhuo
- Department of Otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
25
|
Li C, Tang Y, Ye Y, Zuo M, Lu Q. Potential of natural flavonols and flavanones in the treatment of ulcerative colitis. Front Pharmacol 2023; 14:1120616. [PMID: 36937890 PMCID: PMC10020211 DOI: 10.3389/fphar.2023.1120616] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease generally characterized by chronic, persistent, recurrent, and non-specific ulcers of the intestine. Its main clinical manifestations include abdominal pain, diarrhea, and bloody stools. This disease is difficult to cure and even carries the risk of canceration. It has been listed as a modern refractory disease by the World Health Organization. Though a large amount of drugs are available for the inhibition of UC, the conventional treatment such as aminosalicylic acids, glucocorticoids, immunosuppressors, and biological agents possess certain limitations and serious side effects. Therefore, it is urgently needed for safe and effective drugs of UC, and natural-derived flavonols and flavanones showed tremendous potential. The present study concentrated on the progress of natural-derived flavonols and flavanones from edible and pharmaceutical plants for the remedy of UC over the last two decades. The potential pharmaceutical of natural-derived flavonols and flavanones against UC were closely connected with the modulation of gut microflora, gut barrier function, inflammatory reactions, oxidative stress, and apoptosis. The excellent efficacy and safety of natural flavonols and flavanones make them prospective drug candidates for UC suppression.
Collapse
Affiliation(s)
- Cailan Li
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Ying Tang
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yonghao Ye
- Zhuhai Resproly Pharmaceutical Technology Company Limited, Zhuhai, China
| | - Manhua Zuo
- Department of Nursing, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
| | - Qiang Lu
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
- *Correspondence: Qiang Lu,
| |
Collapse
|
26
|
Molecular Mechanistic Pathways Targeted by Natural Compounds in the Prevention and Treatment of Diabetic Kidney Disease. Molecules 2022; 27:molecules27196221. [PMID: 36234757 PMCID: PMC9571643 DOI: 10.3390/molecules27196221] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 12/03/2022] Open
Abstract
Diabetic kidney disease (DKD) is one of the most common complications of diabetes, and its prevalence is still growing rapidly. However, the efficient therapies for this kidney disease are still limited. The pathogenesis of DKD involves glucotoxicity, lipotoxicity, inflammation, oxidative stress, and renal fibrosis. Glucotoxicity and lipotoxicity can cause oxidative stress, which can lead to inflammation and aggravate renal fibrosis. In this review, we have focused on in vitro and in vivo experiments to investigate the mechanistic pathways by which natural compounds exert their effects against the progression of DKD. The accumulated and collected data revealed that some natural compounds could regulate inflammation, oxidative stress, renal fibrosis, and activate autophagy, thereby protecting the kidney. The main pathways targeted by these reviewed compounds include the Nrf2 signaling pathway, NF-κB signaling pathway, TGF-β signaling pathway, NLRP3 inflammasome, autophagy, glycolipid metabolism and ER stress. This review presented an updated overview of the potential benefits of these natural compounds for the prevention and treatment of DKD progression, aimed to provide new potential therapeutic lead compounds and references for the innovative drug development and clinical treatment of DKD.
Collapse
|
27
|
Zhang R, Li S, Lan J, Li C, Du X, Dong W, Yu Q, Wang D. CNTN-1 Upregulation Induced by Low-Dose Cisplatin Promotes Malignant Progression of Lung Adenocarcinoma Cells via Activation of Epithelial-Mesenchymal Transition. Front Genet 2022; 13:891665. [PMID: 35711928 PMCID: PMC9196332 DOI: 10.3389/fgene.2022.891665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor metastasis and invasion are the main impediments to lung adenocarcinoma successful treatment. Previous studies demonstrate that chemotherapeutic agents can elevate the malignancy of cancer cells other than their therapeutic effects. In this study, the effects of transient low-dose cisplatin treatment on the malignant development of lung adenocarcinoma cells (A549) were detected, and the underlying epigenetic mechanisms were investigated. The findings showed that A549 cells exhibited epithelial-mesenchymal transition (EMT)-like phenotype along with malignant progression under the transient low-dose cisplatin treatment. Meanwhile, low-dose cisplatin was found to induce contactin-1 (CNTN-1) upregulation in A549 cells. Subsequently, we found that further overexpressing CNTN-1 in A549 cells obviously activated the EMT process in vitro and in vivo, and caused malignant development of A549 cells in vitro. Taken together, we conclude that low-dose cisplatin can activate the EMT process and resulting malignant progression through upregulating CNTN-1 in A549 cells. The findings provided new evidence that a low concentration of chemotherapeutic agents could facilitate the malignancy of carcinoma cells via activating the EMT process other than their therapeutic effects.
Collapse
Affiliation(s)
- Ruijie Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shengjin Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Lan
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Changyi Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xianzhi Du
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weijie Dong
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Yu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Daoxin Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
28
|
A comprehensive insight into the antineoplastic activities and molecular mechanisms of deoxypodophyllotoxin: Recent trends, challenges, and future outlook. Eur J Pharmacol 2022; 928:175089. [PMID: 35688183 DOI: 10.1016/j.ejphar.2022.175089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 11/20/2022]
Abstract
Lignans constitute an important group of polyphenols, which have been demonstrated to potently suppress cancer cell proliferation. Numerous in vitro and in vivo studies indicate that deoxypodophyllotoxin as a natural lignan possesses potent anticancer activities against various types of human cancer. The purpose of current review is to provide the reader with the latest findings in understanding the anticancer effects and molecular mechanisms of deoxypodophyllotoxin. This review comprehensively describes the influence of deoxypodophyllotoxin on signaling cascades and molecular targets implicated in cancer cell proliferation and invasion. A number of various signaling molecules and pathways, including apoptosis, necroptosis, cell cycle, angiogenesis, vascular disruption, ROS, MMPs, glycolysis, and microtubules as well as NF-κB, PI3K/Akt/mTOR, and MAPK cascades have been reported to be responsible for the anticancer activities of deoxypodophyllotoxin. The results of present review suggest that the cyclolignan deoxypodophyllotoxin can be developed as a novel and potent anticancer agent, especially as an alternative option for treatment of resistant tumors to chemotherapy.
Collapse
|
29
|
Halevas E, Mavroidi B, Kaplanis M, Hatzidimitriou AG, Moschona A, Litsardakis G, Pelecanou M. Hydrophilic bis-MPA hyperbranched dendritic scaffolds as nanocarriers of a fully characterized flavonoid morin-Zn(II) complex for anticancer applications. J Inorg Biochem 2022; 232:111832. [DOI: 10.1016/j.jinorgbio.2022.111832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/19/2022] [Accepted: 04/12/2022] [Indexed: 12/17/2022]
|
30
|
Yesildag K, Eroz R, Genc A, Dogan T, Satici E. Evaluation of the protective effects of morin against acrylamide‐induced lung toxicity by biomarkers of oxidative stress, inflammation, apoptosis, and autophagy. J Food Biochem 2022; 46:e14111. [DOI: 10.1111/jfbc.14111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Kerim Yesildag
- Department of Chest Diseases Konya Numune Hospital Konya Turkey
| | - Recep Eroz
- Medical Faculty, Department of Medical Genetic Aksaray University Aksaray Turkey
| | - Aydin Genc
- Faculty of Veterinary Medicine, Department of Biochemistry Atatürk University Erzurum Turkey
| | - Tuba Dogan
- Faculty of Veterinary Medicine, Department of Biochemistry Atatürk University Erzurum Turkey
| | - Emine Satici
- Faculty of Veterinary Medicine, Department of Biochemistry Atatürk University Erzurum Turkey
| |
Collapse
|
31
|
Ullah MF, Ahmad A, Bhat SH, Abuduhier FM, Mustafa SK, Usmani S. Diet-derived small molecules (nutraceuticals) inhibit cellular proliferation by interfering with key oncogenic pathways: an overview of experimental evidence in cancer chemoprevention. Biol Futur 2022; 73:55-69. [PMID: 35040098 DOI: 10.1007/s42977-022-00110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 01/07/2022] [Indexed: 10/19/2022]
Abstract
Discouraging statistics of cancer disease has projected an increase in the global cancer burden from 19.3 to 28.4 million incidences annually within the next two decades. Currently, there has been a revival of interest in nutraceuticals with evidence of pharmacological properties against human diseases including cancer. Diet is an integral part of lifestyle, and it has been proposed that an estimated one-third of human cancers can be prevented through appropriate lifestyle modification including dietary habits; hence, it is considered significant to explore the pharmacological benefits of these agents, which are easily accessible and have higher safety index. Accordingly, an impressive embodiment of evidence supports the concept that the dietary factors are critical modulators to prevent, retard, block, or reverse carcinogenesis. Such an action reflects the ability of these molecules to interfere with multitude of pathways to subdue and neutralize several oncogenic factors and thereby keep a restraint on neoplastic transformations. This review provides a series of experimental evidence based on the current literature to highlight the translational potential of nutraceuticals for the prevention of the disease through consumption of enriched diets and its efficacious management by means of novel interventions. Specifically, this review provides the current understanding of the chemopreventive pharmacology of nutraceuticals such as cucurbitacins, morin, fisetin, curcumin, luteolin and garcinol toward their potential as anticancer agents.
Collapse
Affiliation(s)
- Mohammad Fahad Ullah
- Prince Fahd Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Science, University of Tabuk, Tabuk, Saudi Arabia.
| | - Aamir Ahmad
- University of Alabama at Birmingham, Birmingham, AL, USA
- Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Showket H Bhat
- Prince Fahd Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Science, University of Tabuk, Tabuk, Saudi Arabia
- Department of Medical Laboratory Technology and Molecular Diagnostics, Center for Vocational Studies, Islamic University of Science and Technology, Awantipora, Jammu & Kashmir, India
| | - Faisel M Abuduhier
- Prince Fahd Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Syed Khalid Mustafa
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Shazia Usmani
- Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|