1
|
Zhang Y, Yang E, Chen M, Zhang J, Liu Q, Lei Z, Xu T, Cai X, Feng C. Quality diversity of three calcium-rich Primulina vegetables: A comprehensive analysis of calcium content, metabolite profiles, taste characteristics, and medicinal potential. Food Chem 2025; 463:141538. [PMID: 39388873 DOI: 10.1016/j.foodchem.2024.141538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/12/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
Primulina plants native to karst regions are exceptionally rich in calcium and have been developed into high‑calcium leafy vegetables. However, limited knowledge of their metabolites, taste characteristics, and potential medicinal value restricts further genetic improvements. This study conducted a comprehensive analysis on three breeding species of Primulina vegetables. Common garden experiment demonstrated significant calcium enrichment capability, with calcium content ranging from 204.45 to 391.52 mg/100 g. Through widely-targeted metabolomics, 1121 metabolites were identified within these Primulina vegetables. Furthermore, comparative analysis identified 976 differentially accumulated metabolites across nine comparison groups, driven mainly by flavonoids, phenolic acids, and lipids. Integration of electronic tongue analysis and metabolomics revealed taste profiles and identified 17 key candidate compounds related to taste. Based on network pharmacology analysis, 32 active ingredients were found in Primulina vegetables, which highlighted potential medicinal value. These findings provide a data-driven foundation for breeding programs aimed at enhancing nutritional and flavor traits.
Collapse
Affiliation(s)
- Yi Zhang
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; College of Life Science, Nanchang University, Nanchang, China.
| | - Endian Yang
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; College of Life Science, Nanchang University, Nanchang, China.
| | - Mingjie Chen
- College of Life Sciences, Henan Provincial Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang 464000, China.
| | - Jie Zhang
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China.
| | - Qin Liu
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; College of Life Science, Nanchang University, Nanchang, China
| | - Ziyi Lei
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; College of Life Science, Nanchang University, Nanchang, China
| | - Tingting Xu
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Xinxia Cai
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Chen Feng
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China.
| |
Collapse
|
2
|
Liu N, Niu M, Luo S, Lv L, Quan X, Wang C, Meng Z, Yuan J, Xu Q, Liu Y. Rosamultin ameliorates radiation injury via promoting DNA injury repair and suppressing oxidative stress in vitro and in vivo. Chem Biol Interact 2024; 393:110938. [PMID: 38484825 DOI: 10.1016/j.cbi.2024.110938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/23/2024]
Abstract
Radiotherapy remains the preferred treatment option for cancer patients with the advantages of broad indications and significant therapeutic effects. However, ionizing radiation can also damage normal tissues. Unfortunately, there are few anti-radiation damage drugs available on the market for radiotherapy patients. Our previous study showed that rosamultin had antioxidant and hepatoprotective activities. However, its anti-radiation activity has not been evaluated. Irradiating small intestinal epithelial cells and mice with whole-body X-rays radiation were used to evaluate the in vitro and in vivo effects of rosamultin, respectively. Intragastric administration of rosamultin improved survival, limited leukocyte depletion, and reduced damage to the spleen and small intestine in irradiated mice. Rosamultin reversed the downregulation of the apoptotic protein BCL-2 and the upregulation of BAX in irradiated mouse small intestine tissue and in irradiation-induced small intestinal epithelial cells. DNA-PKcs antagonists reversed the promoting DNA repair effects of rosamulin. Detailed mechanistic studies revealed that rosamultin promoted Translin-associated protein X (TRAX) into the nucleus. Knockdown of TRAX reduced the protective effect of rosamultin against DNA damage. In addition, rosamultin reduced irradiation-induced oxidative stress through promoting Nrf2/HO-1 signaling pathway. To sum up, in vitro and in vivo experiments using genetic knockdown and pharmacological activation demonstrated that rosamultin exerts radioprotection via the TRAX/NHEJ and Nrf2/HO pathways.
Collapse
Affiliation(s)
- Ning Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; Institute of Chinese Medicine Innovation and Translation, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Mengxin Niu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; Institute of Chinese Medicine Innovation and Translation, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Saiyan Luo
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; Institute of Chinese Medicine Innovation and Translation, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Lijuan Lv
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; Institute of Chinese Medicine Innovation and Translation, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xiaoxiao Quan
- Scientific Experimental Center of Guangxi University of Chinese Medicine, Nanning, China
| | - Chang Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhiyun Meng
- Beijing Institute of Radiation Medicine, 100850, China
| | - Jingquan Yuan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Qiongming Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; Institute of Chinese Medicine Innovation and Translation, Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Yanli Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; Institute of Chinese Medicine Innovation and Translation, Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
3
|
Liang QH, Li QR, Chen Z, Lv LJ, Lin Y, Jiang HL, Wang KX, Xiao MY, Kang NX, Tu PF, Ji SL, Deng KJ, Gao HW, Zhang L, Li K, Ge F, Xu GQ, Yang SL, Liu YL, Xu QM. Anemoside B4, a new pyruvate carboxylase inhibitor, alleviates colitis by reprogramming macrophage function. Inflamm Res 2024; 73:345-362. [PMID: 38157008 DOI: 10.1007/s00011-023-01840-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
OBJECTIVES Colitis is a global disease usually accompanied by intestinal epithelial damage and intestinal inflammation, and an increasing number of studies have found natural products to be highly effective in treating colitis. Anemoside B4 (AB4), an abundant saponin isolated from Pulsatilla chinensis (Bunge), which was found to have strong anti-inflammatory activity. However, the exact molecular mechanisms and direct targets of AB4 in the treatment of colitis remain to be discovered. METHODS The anti-inflammatory activities of AB4 were verified in LPS-induced cell models and 2, 4, 6-trinitrobenzene sulfonic (TNBS) or dextran sulfate sodium (DSS)-induced colitis mice and rat models. The molecular target of AB4 was identified by affinity chromatography analysis using chemical probes derived from AB4. Experiments including proteomics, molecular docking, biotin pull-down, surface plasmon resonance (SPR), and cellular thermal shift assay (CETSA) were used to confirm the binding of AB4 to its molecular target. Overexpression of pyruvate carboxylase (PC) and PC agonist were used to study the effects of PC on the anti-inflammatory and metabolic regulation of AB4 in vitro and in vivo. RESULTS AB4 not only significantly inhibited LPS-induced NF-κB activation and increased ROS levels in THP-1 cells, but also suppressed TNBS/DSS-induced colonic inflammation in mice and rats. The molecular target of AB4 was identified as PC, a key enzyme related to fatty acid, amino acid and tricarboxylic acid (TCA) cycle. We next demonstrated that AB4 specifically bound to the His879 site of PC and altered the protein's spatial conformation, thereby affecting the enzymatic activity of PC. LPS activated NF-κB pathway and increased PC activity, which caused metabolic reprogramming, while AB4 reversed this phenomenon by inhibiting the PC activity. In vivo studies showed that diisopropylamine dichloroacetate (DADA), a PC agonist, eliminated the therapeutic effects of AB4 by changing the metabolic rearrangement of intestinal tissues in colitis mice. CONCLUSION We identified PC as a direct cellular target of AB4 in the modulation of inflammation, especially colitis. Moreover, PC/pyruvate metabolism/NF-κB is crucial for LPS-driven inflammation and oxidative stress. These findings shed more light on the possibilities of PC as a potential new target for treating colitis.
Collapse
Affiliation(s)
- Qing-Hua Liang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Qiu-Rong Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Zhong Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Li-Juan Lv
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yu Lin
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Hong-Lv Jiang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Ke-Xin Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Ming-Yue Xiao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Nai-Xin Kang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Shi-Liang Ji
- Department of Pharmacy, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, 215163, Jiangsu, China
| | - Ke-Jun Deng
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Hong-Wei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, Guangxi, China
- Guangxi Xinhai Pharmaceutical Technology Co.,Ltd, , Liuzhou, 545025, Guangxi, China
| | - Li Zhang
- Instrumental Analysis Center, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Kun Li
- Hai'an Traditional Chinese Medicine Hospital, Nantong, 226600, Jiangsu, China
| | - Fei Ge
- Hai'an Traditional Chinese Medicine Hospital, Nantong, 226600, Jiangsu, China
| | - Guo-Qiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Shi-Lin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, Guangxi, China
- Guangxi Xinhai Pharmaceutical Technology Co.,Ltd, , Liuzhou, 545025, Guangxi, China
| | - Yan-Li Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Qiong-Ming Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.
- Guangxi Xinhai Pharmaceutical Technology Co.,Ltd, , Liuzhou, 545025, Guangxi, China.
| |
Collapse
|
4
|
Cabała S, Ożgo M, Herosimczyk A. The Kidney-Gut Axis as a Novel Target for Nutritional Intervention to Counteract Chronic Kidney Disease Progression. Metabolites 2024; 14:78. [PMID: 38276313 PMCID: PMC10819792 DOI: 10.3390/metabo14010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
A well-balanced diet is integral for overall health, aiding in managing key risk factors for kidney damage like hypertension while supplying necessary precursors for metabolite production. Dietary choices directly influence the composition and metabolic patterns of the gut microbiota, showing promise as therapeutic tools for addressing various health conditions, including chronic kidney diseases (CKD). CKD pathogenesis involves a decline in the glomerular filtration rate and the retention of nitrogen waste, fostering gut dysbiosis and the excessive production of bacterial metabolites. These metabolites act as uremic toxins, contributing to inflammation, oxidative stress, and tissue remodeling in the kidneys. Dietary interventions hold significance in reducing oxidative stress and inflammation, potentially slowing CKD progression. Functional ingredients, nutrients, and nephroprotective phytoconstituents could modulate inflammatory pathways or impact the gut mucosa. The "gut-kidney axis" underscores the impact of gut microbes and their metabolites on health and disease, with dysbiosis serving as a triggering event in several diseases, including CKD. This review provides a comprehensive overview, focusing on the gut-liver axis, and explores well-established bioactive substances as well as specific, less-known nutraceuticals showing promise in supporting kidney health and positively influencing CKD progression.
Collapse
Affiliation(s)
| | | | - Agnieszka Herosimczyk
- Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland; (S.C.); (M.O.)
| |
Collapse
|
5
|
Chen M, Luo J, Ji H, Song W, Zhang D, Su W, Liu S. The Preventive Mechanism of Anserine on Tert-Butyl Hydroperoxide-Induced Liver Injury in L-02 Cells via Regulating the Keap1-Nrf2 and JNK-Caspase-3 Signaling Pathways. Mar Drugs 2023; 21:477. [PMID: 37755089 PMCID: PMC10532766 DOI: 10.3390/md21090477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Anserine is a naturally occurring histidine dipeptide with significant antioxidant activities. This study aimed to investigate the preventive mechanism of anserine on tert-butyl hydroperoxide (TBHP)-induced liver damage in a normal human liver cell line (L-02 cells). The L-02 cells were pretreated with anserine (10, 20, and 40 mmol/L) and then induced with 400 μmol/L of TBHP for 4 h. The results showed that the survival rates of L-02 cells and the contents of GSH were significantly increased with the pretreatment of anserine; the activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the extracellular fluid were sharply decreased; and the formation of reactive oxygen species (ROS), nuclear fragmentation, and apoptosis were significantly inhibited. In addition, anserine could bind to the Kelch domain of Kelch-like ECH-associated protein 1 (Keap1) with a binding force of -7.2 kcal/mol; the protein expressions of nuclear factor-erythroid 2-related factor-2 (Nrf2), quinone oxidoreductase 1 (NQO1), heme oxygenase-1 (HO-1), and Bcl-2 were upregulated by anserine in TBHP-induced L-02 cells, with the downregulation of p-JNK and caspase-3. In conclusion, anserine might alleviated liver injury in L-02 cells via regulating related proteins in the Keap1-Nrf2 and JNK-Caspase-3 signaling pathways.
Collapse
Affiliation(s)
- Ming Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (M.C.); (J.L.); (W.S.); (D.Z.); (W.S.); (S.L.)
| | - Jing Luo
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (M.C.); (J.L.); (W.S.); (D.Z.); (W.S.); (S.L.)
| | - Hongwu Ji
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (M.C.); (J.L.); (W.S.); (D.Z.); (W.S.); (S.L.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Wenkui Song
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (M.C.); (J.L.); (W.S.); (D.Z.); (W.S.); (S.L.)
| | - Di Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (M.C.); (J.L.); (W.S.); (D.Z.); (W.S.); (S.L.)
| | - Weiming Su
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (M.C.); (J.L.); (W.S.); (D.Z.); (W.S.); (S.L.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (M.C.); (J.L.); (W.S.); (D.Z.); (W.S.); (S.L.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
6
|
Liu C, Zhou S, Lai H, Shi L, Bai W, Li X. Protective effect of spore oil-functionalized nano-selenium system on cisplatin-induced nephrotoxicity by regulating oxidative stress-mediated pathways and activating immune response. J Nanobiotechnology 2023; 21:47. [PMID: 36759859 PMCID: PMC9912657 DOI: 10.1186/s12951-022-01754-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/21/2022] [Indexed: 02/11/2023] Open
Abstract
In clinical practice, cisplatin is the most commonly used chemotherapy drug to treat a range of malignancies. Severe ROS-regulated nephrotoxicity, however, restricts its applicability. Currently, the main mechanisms leading to cisplatin-induced nephrotoxicity in clinical settings involve hydration or diuresis. However, not all patients can be treated with massive hydration or diuretics. Therefore, it is crucial to develop a treatment modality that can effectively reduce nephrotoxicity through a foodborne route. Selenium has been reported to have strong antioxidant as well as anticancer effects when administered as spore oil. Herein, we established cellular and animal models of cisplatin-induced nephrotoxicity and synthesized spore oil-functionalized nano-selenium (GLSO@SeNPs). We found that GLSO@SeNPs inhibit the mitochondrial apoptotic pathway by maintaining oxidative homeostasis and regulating related signaling pathways (the MAPK, caspase, and AKT signaling pathways). In vivo, GLSO@SeNPs could effectively improve cisplatin-induced renal impairment, effectively maintaining oxidative homeostasis in renal tissues and thus inhibiting the process of renal injury. In addition, GLSO@SeNPs were converted into selenocysteine (SeCys2), which may exert protective effects. Furthermore, GLSO@SeNPs could effectively modulate the ratio of immune cells in kidneys and spleen, reducing the proportions of CD3+CD4+ T cells, CD3+CD8+ T cells, and M1 phenotype macrophages and increasing the proportion of anti-inflammatory regulatory T cells. In summary, in this study, we synthesized food-derived spore oil-functionalized nanomaterials, and we explored the mechanisms by which GLSO@SeNPs inhibit cisplatin-induced nephrotoxicity. Our study provides a basis and rationale for the inhibition of cisplatin-induced nephrotoxicity by food-derived nutrients.
Collapse
Affiliation(s)
- Chaofan Liu
- grid.258164.c0000 0004 1790 3548Institute of Food Safety and Nutrition, Jinan University, Guangzhou, 510632 People’s Republic of China ,grid.258164.c0000 0004 1790 3548Guangdong Engineering Technology Center of Molecular Rapid Detection for Food Safety, Jinan University, Guangzhou, 510632 People’s Republic of China
| | - Sajin Zhou
- grid.258164.c0000 0004 1790 3548Institute of Food Safety and Nutrition, Jinan University, Guangzhou, 510632 People’s Republic of China ,grid.258164.c0000 0004 1790 3548Guangdong Engineering Technology Center of Molecular Rapid Detection for Food Safety, Jinan University, Guangzhou, 510632 People’s Republic of China
| | - Haoqiang Lai
- grid.412601.00000 0004 1760 3828The First Affiliated Hospital of Jinan University, Guangzhou, 510632 People’s Republic of China ,grid.258164.c0000 0004 1790 3548Department of Chemistry, Jinan University, Guangzhou, 510632 People’s Republic of China
| | - Lei Shi
- grid.258164.c0000 0004 1790 3548Institute of Food Safety and Nutrition, Jinan University, Guangzhou, 510632 People’s Republic of China ,grid.258164.c0000 0004 1790 3548Guangdong Engineering Technology Center of Molecular Rapid Detection for Food Safety, Jinan University, Guangzhou, 510632 People’s Republic of China
| | - Weibin Bai
- grid.258164.c0000 0004 1790 3548Institute of Food Safety and Nutrition, Jinan University, Guangzhou, 510632 People’s Republic of China ,grid.258164.c0000 0004 1790 3548Guangdong Engineering Technology Center of Molecular Rapid Detection for Food Safety, Jinan University, Guangzhou, 510632 People’s Republic of China
| | - Xiaoling Li
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, 510632, People's Republic of China. .,Guangdong Engineering Technology Center of Molecular Rapid Detection for Food Safety, Jinan University, Guangzhou, 510632, People's Republic of China.
| |
Collapse
|
7
|
Zhang X, Feng Q, Cao J, Biswas A, Su H, Liu W, Qin Y, Zhu M. Response of leaf stoichiometry of Potentilla anserina to elevation in China's Qilian Mountains. FRONTIERS IN PLANT SCIENCE 2022; 13:941357. [PMID: 36226296 PMCID: PMC9549292 DOI: 10.3389/fpls.2022.941357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/25/2022] [Indexed: 05/05/2023]
Abstract
Plants adapt to changes in elevation by regulating their leaf ecological stoichiometry. Potentilla anserina L. that grows rapidly under poor or even bare soil conditions has become an important ground cover plant for ecological restoration. However, its leaf ecological stoichiometry has been given little attention, resulting in an insufficient understanding of its environmental adaptability and growth strategies. The objective of this study was to compare the leaf stoichiometry of P. anserina at different elevations (2,400, 2,600, 2,800, 3,000, 3,200, 3,500, and 3,800 m) in the middle eastern part of Qilian Mountains. With an increase in elevation, leaf carbon concentration [(C)leaf] significantly decreased, with the maximum value of 446.04 g·kg-1 (2,400 m) and the minimum value of 396.78 g·kg-1 (3,500 m). Leaf nitrogen concentration [(N)leaf] also increased with an increase in elevation, and its maximum and minimum values were 37.57 g·kg-1 (3,500 m) and 23.71 g·kg-1 (2,800 m), respectively. Leaf phosphorus concentration [(P)leaf] was the highest (2.79 g·kg-1) at 2,400 m and the lowest (0.91 g·kg-1) at 2,800 m. The [C]leaf/[N]leaf decreased with an increase in elevation, while [N]leaf/[P]leaf showed an opposite trend. The mean annual temperature, mean annual precipitation, soil pH, organic carbon, nitrogen, and phosphorus at different elevations mainly affected [C]leaf, [N]leaf, and [P]leaf. The growth of P. anserina in the study area was mainly limited by P, and this limitation was stronger with increased elevation. Progressively reducing P loss at high elevation is of great significance to the survival of P. anserina in this specific region.
Collapse
Affiliation(s)
- Xiaofang Zhang
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qi Feng
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- *Correspondence: Qi Feng
| | - Jianjun Cao
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, China
| | - Asim Biswas
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Haohai Su
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, China
| | - Wei Liu
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Qilian Mountains Eco-Environment Research Center in Gansu Province, Lanzhou, China
| | - Yanyan Qin
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Qilian Mountains Eco-Environment Research Center in Gansu Province, Lanzhou, China
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Meng Zhu
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|