1
|
Zhou J, Guo Z, Peng X, Wu B, Meng Q, Lu X, Feng L, Guo T. Chrysotoxine regulates ferroptosis and the PI3K/AKT/mTOR pathway to prevent cervical cancer. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119126. [PMID: 39557107 DOI: 10.1016/j.jep.2024.119126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dendrobium (commonly known as Shihu in China), a traditional Chinese medicinal herb recognized in the Pharmacopoeia of China (2020 edition), boasts a rich history of medicinal application. Extensive research has been conducted on its Chinese medicinal prescription due to its demonstrated anti-tumour effects in clinical settings. Dendrobium is comprised of a diverse range of chemical compounds, notably the Bibenzyls, Erianin, and Gigantol, which have exhibited significant inhibitory and therapeutic effects on cervical cancer, thereby suggesting potential therapeutic value. However, the comprehensive investigation of Chrysotoxine, a naturally occurring active ingredient of Bibenzyls in Dendrobium, remains incomplete in treatment of cervical cancer. AIMS OF THE STUDY This study aimed to conduct a comprehensive investigation of Chrysotoxine and its regulatory impact on ferroptosis in cervical cancer. MATERIALS AND METHODS Initially, the effects of chrysotoxine on the cervical cancer cell line HeLa were assessed using CCK-8, transwell, colony formation, and flow cytometry to evaluate cell proliferation, invasion, migration, and apoptosis. Subsequently, network pharmacology and molecular docking techniques were employed to identify the molecular targets of chrysotoxine in cervical cancer. Finally, confocal microscopy assessed the expression levels of ROS and lipid compounds in response to chrysotoxine treatment, and the influence of chrysotoxine on signaling pathways was investigated using Western blot analysis, guided by KEGG pathway analysis. RESULTS Our cell-based experiments revealed that CTX effectively suppresses the cell proliferation, migration, invasion, and apoptosis in CC. Subsequently, we comprehensively analyzed that HSP90AA1, ESR1, PIK3CA, mTOR and MAPK1 may be the possible targets of CTX in CC by combining network pharmacology with molecular docking techniques. Finally, we observed that CTX enhances the production of intracellular ROS and excessive lipid peroxides. Simultaneously, we detected that CTX promotes ferroptosis-based p53/GPX4/SLC7A11 pathway and inhibits PI3K/AKT/mTOR pathway-induced cell death of CC by Western blot. CONCLUSION Our study indicates that chrysotoxine shows promise as a novel medication for treating CC. The findings provide a scientific foundation for the regulation of cervical cancer by chrysotoxine, presenting new insights into the application of traditional Chinese medicine for fighting CC.
Collapse
Affiliation(s)
- Ji Zhou
- Medical School, Changsha Social Work College, Changsha, China
| | - Zhenyu Guo
- The First Clinical College, Changsha Medical University, Changsha, China
| | - Xiaozhen Peng
- School of Public Health & Laboratory Medicine, Hunan University of Medicine, Huaihua, China
| | - Ben Wu
- The First Clinical College, Changsha Medical University, Changsha, China
| | - Qingxin Meng
- Medical School, Changsha Social Work College, Changsha, China
| | - Xingjun Lu
- School of Public Health & Laboratory Medicine, Hunan University of Medicine, Huaihua, China
| | - Liyuan Feng
- Department of Gynecological Endocrinology, Maternal and Child Health Hospital of Hunan Province, Changsha, China
| | - Tianyao Guo
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
2
|
Chatzikalil E, Arvanitakis K, Kalopitas G, Florentin M, Germanidis G, Koufakis T, Solomou EE. Hepatic Iron Overload and Hepatocellular Carcinoma: New Insights into Pathophysiological Mechanisms and Therapeutic Approaches. Cancers (Basel) 2025; 17:392. [PMID: 39941760 PMCID: PMC11815926 DOI: 10.3390/cancers17030392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Hepatocellular carcinoma (HCC), the most common form of primary liver cancer, is rising in global incidence and mortality. Metabolic dysfunction-associated steatotic liver disease (MASLD), one of the leading causes of chronic liver disease, is strongly linked to metabolic conditions that can progress to liver cirrhosis and HCC. Iron overload (IO), whether inherited or acquired, results in abnormal iron hepatic deposition, significantly impacting MASLD development and progression to HCC. While the pathophysiological connections between hepatic IO, MASLD, and HCC are not fully understood, dysregulation of glucose and lipid metabolism and IO-induced oxidative stress are being investigated as the primary drivers. Genomic analyses of inherited IO conditions reveal inconsistencies in the association of certain mutations with liver malignancies. Moreover, hepatic IO is also associated with hepcidin dysregulation and activation of ferroptosis, representing promising targets for HCC risk assessment and therapeutic intervention. Understanding the relationship between hepatic IO, MASLD, and HCC is essential for advancing clinical strategies against liver disease progression, particularly with recent IO-targeted therapies showing potential at improving liver biochemistry and insulin sensitivity. In this review, we summarize the current evidence on the pathophysiological association between hepatic IO and the progression of MASLD to HCC, underscoring the importance of early diagnosis, risk stratification, and targeted treatment for these interconnected conditions.
Collapse
Affiliation(s)
- Elena Chatzikalil
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Konstantinos Arvanitakis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (K.A.); (G.K.); (G.G.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Georgios Kalopitas
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (K.A.); (G.K.); (G.G.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Matilda Florentin
- Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Georgios Germanidis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (K.A.); (G.K.); (G.G.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Theocharis Koufakis
- Second Propaedeutic Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Elena E. Solomou
- Department of Internal Medicine, University of Patras Medical School, 26500 Rion, Greece
| |
Collapse
|
3
|
Khalaf Mahmoud B, Abdelwahab MF, Alzahraa Mokhtar F, Sayed AM, Zhang J, Alsenani F, Elsherief HAM, Altemani FH, Algehainy NA, Lehmann L, Ramadan Abdelmohsen U, Abd El-Kader AM. Phosphoinositide 3-Kinase Inhibitors from Gladiolus Segetum Ker-Gawl Corms Supported by Network Pharmacology. Chem Biodivers 2025; 22:e202401457. [PMID: 39269195 DOI: 10.1002/cbdv.202401457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Gladiolus segetum Ker-Gawl corms total extract exhibited remarkable in vitro anti-proliferative effects against panel of cancer cell lines; including human colon carcinoma (Caco-2), human breast cancer (MCF7) and hepatocellular carcinoma (HepG2) cell lines with IC50 values of 7.4, 9.1 and 11.2 μg/ml, respectively. The total ethanolic extract of G. segetum Ker-Gawl corms was subjected to untargeted metabolomics profiling using LC-HR-ESI-MS, which revealed the presence of various clusters of phytoconstituents as triterpenes, anthraquinones, flavonoids and phenolic derivatives. Network pharmacology study was performed for all identified compounds, the formed networks identified 73 intersected genes. The diagrammatic illustration of the top pathways revealed that phosphoinositide 3-kinase (PI3 K) gene is the effective dominant gene in the top four KEGG pathways. Upon molecular docking and molecular dynamics investigation, kaempferol-3-O-glucopyranoside was suggested to be key anticancer metabolite. Interestingly, cytotoxic investigation of this compound revealed potential activity against the tested cancer cell lines (Caco-2, MCF7 and HepG2) with IC50 values of 6.2, 8.5 and 9.3 μg/ml, respectively. The present study highlighted the potential of G. segetum Ker-Gawl as a promising source of interesting anticancer scaffolds.
Collapse
Affiliation(s)
- Basma Khalaf Mahmoud
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519, Minia, Egypt
| | - Miada F Abdelwahab
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519, Minia, Egypt
| | - Fatma Alzahraa Mokhtar
- Department of Pharmacognosy, Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida, Sharkia, Egypt
- Fujairah Research Centre, /Sakamkam Road, Sakamkam, Fujairah, United Arab Emirates
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, 62513, Beni-Suef, Egypt
| | - Jianye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Faisal Alsenani
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Hany A M Elsherief
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, 61111, New Minia, Egypt
| | - Faisal H Altemani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Naseh A Algehainy
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Leane Lehmann
- Chair of Food Chemistry, Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519, Minia, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, 61111, New Minia, Egypt
| | - Adel M Abd El-Kader
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, 61111, New Minia, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| |
Collapse
|
4
|
Li W, Yan S, Fu X, Tang J, Yang H. Adsorption and desorption behaviors on microporous resins of antioxidant and anti-proliferation polyphenols from European plum. Food Res Int 2025; 199:115348. [PMID: 39658152 DOI: 10.1016/j.foodres.2024.115348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/26/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
Six macroporous resins (MRs) were employed for the adsorption and desorption of neochlorogenic acid-enriched polyphenols from the European plum (NAPEP). X-5 exhibited the most significant neochlorogenic acid adsorption (99.62 %), desorption (44.80 %), and recovery (44.29 %) rates. The adsorption kinetics were described using a pseudo-second-order model while the Freundlich model indicated that X-5-adsorbing NAPEP was a spontaneous, exothermic process. NAPEP was effectively eluted from X-5 using a 60 % ethanol solution. Ultra-high performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC-QqQ-MS/MS) revealed the presence of 21 polyphenol compounds in NAPEP, with chlorogenic acids accounting for 93 % of the overall composition. NAPEP demonstrated antioxidant efficacy comparable to chlorogenic acid. Furthermore, NAPEP administration effectively triggered apoptosis in A549 cells by producing reactive oxygen species, which regulated the AKT pathway. These results indicated that NAPEP could be utilized as an antioxidant and anti-cancer agent in functional foods.
Collapse
Affiliation(s)
- Wenfeng Li
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China
| | - Shengkun Yan
- Agricultural Mechanization Institute, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Xueqin Fu
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China
| | - Jingran Tang
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China
| | - Hongyan Yang
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
5
|
Chen G, Zhang Y, Zhou Y, Luo H, Guan H, An B. Targeting the mTOR Pathway in Hepatocellular Carcinoma: The Therapeutic Potential of Natural Products. J Inflamm Res 2024; 17:10421-10440. [PMID: 39659752 PMCID: PMC11630751 DOI: 10.2147/jir.s501270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/24/2024] [Indexed: 12/12/2024] Open
Abstract
Despite advancements in cancer treatment through surgery and drugs, hepatocellular carcinoma (HCC) remains a significant challenge, as reflected by its low survival rates. The mammalian target of rapamycin (mTOR) signaling pathway plays a crucial role in regulating the cell cycle, proliferation, apoptosis, and metabolism. Notably, dysregulation leading to the activation of the mTOR signaling pathway is common in HCC, making it a key focus for in-depth research and a target for current therapeutic strategies. This review focuses on the role of the mTOR signaling pathway and its downstream effectors in regulating HCC cell proliferation, apoptosis, autophagy, cell cycle, and metabolic reprogramming. Moreover, it emphasizes the potential of natural products as modulators of the mTOR signaling pathway. When incorporated into combination therapies, these natural products have been demonstrated to augment therapeutic efficacy and surmount drug resistance. These products target key signaling pathways such as mTOR signaling pathways. Examples include 11-epi-sinulariolide acetate, matrine, and asparagus polysaccharide. Their inhibitory effects on these processes suggest valuable directions for the development of more effective HCC therapeutic strategies. Various natural products have demonstrated the ability to inhibit mTOR signaling pathway and suppress HCC progression. These phytochemicals, functioning as mTOR signaling pathway inhibitors, hold great promise as potential anti-HCC agents, especially in the context of overcoming chemoresistance and enhancing the outcomes of combination therapies.
Collapse
Affiliation(s)
- Guo Chen
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Ya Zhang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Yaqiao Zhou
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Hao Luo
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Hongzhi Guan
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Baiping An
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
6
|
Li Q, Shan X, Yuan Y, Ye W, Fang X. Shegan-Mahuang decoction ameliorates cold-induced asthma via regulating the proliferation and apoptosis of airway smooth muscle cells through TAS2R10: An in vivo and in vitro study. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118504. [PMID: 38950796 DOI: 10.1016/j.jep.2024.118504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shegan-Mahuang Decoction (SMD) is a classical formula that has been used to effectively treat cold-induced asthma (CA) for 1800 years. Airway smooth muscle cells (ASMCs) play a crucial role in airway remodeling of CA and can be modulated through bitter taste-sensing type 2 receptors (TAS2Rs). Given that SMD contains numerous bitter herbs and TAS2R10 expression in ASMCs remains consistently high, it is pertinent to explore whether SMD regulates ASMCs via TAS2R10 to exert its CA mechanism. AIM OF THE STUDY This study investigated the efficacy as well as the potential mechanism of SMD in CA. MATERIALS AND METHODS In this study, experiments in vivo were conducted using the CA rat model induced by ovalbumin (OVA) along with cold stimulation. The effects of SMD and TAS2R10 expression in CA rats were evaluated using the following methods: clinical symptoms, weights, pathological staining, immunofluorescence staining (IF), enzyme-linked immunosorbent assay (ELISA), real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot (WB). Assays in vitro including cell counting Kit-8 (CCK-8), ELISA, flow cytometry, TUNEL staining, RT-qPCR and WB were performed to investigate potential mechanism of SMD on the proliferation and apoptosis of ASMCs through upregulation of TAS2R10. RESULTS The administration of SMD resulted in a notable improvement in the symptoms, trends in weight, airway inflammation and airway remodeling observed in CA rats with upregulated TAS2R10. Mechanistically, we furtherly confirmed that SMD inhibits p70S6K/CyclinD1 pathway by upregulating TAS2R10. SMD furthermore blocked the G0/G1 phase, suppressed the proliferation and inducted apoptosis in ASMCs induced by platelet-derived growth factor-BB (PDGF-BB). Erythromycin (EM), a TAS2R10 agonist, can intensify these effects. CONCLUSIONS SMD significantly ameliorates CA by upregulating TAS2R10 and inhibiting the p70S6K/CyclinD1 pathway, thereby modulating ASMCs' proliferation and apoptosis. Inspired by the Five Flavors Theory of Traditional Chinese Medicine, this study provides an updated treatment perspective for treating CA.
Collapse
Affiliation(s)
- Qiuhui Li
- School of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Xiaoxiao Shan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Yamei Yuan
- School of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Weidong Ye
- School of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Xiangming Fang
- School of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
7
|
Park SY, Mun JG, Lee YS, Lee SB, Kim SJ, Jang JH, Kim HY, Hong SH, Kee JY. Inhibitory Effect of Alnustone on Survival and Lung Metastasis of Colorectal Cancer Cells. Nutrients 2024; 16:3737. [PMID: 39519569 PMCID: PMC11547205 DOI: 10.3390/nu16213737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Alnustone (Aln) is an effective compound of Alpinia katsumadae Hayata. Aln possesses various pharmacological activities such as antibacterial, anti-inflammatory, and anti-cancer effects. However, the inhibitory effect of Aln on colorectal cancer (CRC) has not yet been identified. Thus, research was conducted to clarify whether Aln can suppress the proliferative and metastatic ability of CRC cells. METHODS A cell viability assay was performed to confirm the decrease in CRC cell viability following Aln treatment. Flow cytometry was carried out to evaluate the effects of Aln on cell cycle arrest, autophagy, and apoptosis in CRC cells. In addition, a lung metastasis animal model was used to check the inhibitory effect of Aln on the metastasis of CRC cells. RESULTS Aln remarkably diminished the viability and colony-forming ability of several CRC cell lines. In addition, Aln led to a halt at the G0/G1 phase through downregulating cyclin D1-CDK4 in CRC cells. The upregulation of LC3B and p62 expression by Aln triggered autophagy of CRC cells. Moreover, Aln promoted mitochondrial depolarization, resulting in apoptosis of CRC cells. Oral administration of Aln significantly restrained the metastasized lung tumor nodules. CONCLUSIONS This study demonstrated that Aln can suppress the survival and lung metastasis of CRC cells by promoting cell cycle arrest, autophagy, and apoptosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Seung-Heon Hong
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea; (S.-Y.P.); (J.-G.M.); (Y.-S.L.); (S.-B.L.); (S.-J.K.); (J.-H.J.); (H.-Y.K.)
| | - Ji-Ye Kee
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea; (S.-Y.P.); (J.-G.M.); (Y.-S.L.); (S.-B.L.); (S.-J.K.); (J.-H.J.); (H.-Y.K.)
| |
Collapse
|
8
|
Han B, Wang H, Niu X. A natural inhibitor of diapophytoene desaturase attenuates methicillin-resistant Staphylococcus aureus (MRSA) pathogenicity and overcomes drug-resistance. Br J Pharmacol 2024; 181:2583-2599. [PMID: 38604611 DOI: 10.1111/bph.16377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/14/2024] [Accepted: 01/27/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND AND PURPOSE At present, the inhibition of staphyloxanthin biosynthesis has emerged as a prominent strategy in combating methicillin-resistant Staphylococcus aureus (MRSA) infection. Nonetheless, there remains a limited understanding regarding the bio-structural characteristics of staphyloxanthin biosynthetic enzymes, as well as the molecular mechanisms underlying the interaction between inhibitors and proteins. Furthermore, the functional scope of these inhibitors is relatively narrow. EXPERIMENTAL APPROACH In this study, we address these limitations by harnessing the power of deep learning techniques to construct the 3D structure of diapophytoene desaturase (CrtN). We perform efficient virtual screening and unveil alnustone as a potent inhibitor of CrtN. Further investigations employing molecular modelling, site-directed mutagenesis and biolayer interferometry (BLI) confirmed that alnustone binds to the catalytic active site of CrtN. Transcriptomic analysis reveals that alnustone significantly down-regulates genes associated with staphyloxanthin, histidine and peptidoglycan biosynthesis. KEY RESULTS Under the effects of alnustone, MRSA strains exhibit enhanced sensitivity to various antibiotics and the host immune system, accompanied by increased cell membrane permeability. In a mouse model of systemic MRSA infection, the combination of alnustone and antibiotics exhibited a significant therapeutic effect, leading to reduced bacterial colony counts and attenuated pathological damage. CONCLUSION AND IMPLICATIONS Alnustone, as a natural inhibitor targeting CrtN, exhibits outstanding antibacterial properties that are single-targeted yet multifunctional. This finding provides a novel strategy and theoretical basis for the development of drugs targeting staphyloxanthin producing bacteria.
Collapse
Affiliation(s)
- Baoqing Han
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Hongsu Wang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
9
|
Du J, Zhang Y, Chen J, Jin L, Pan L, Lei P, Lin S. Phenethyl isothiocyanate inhibits the carcinogenic properties of hepatocellular carcinoma Huh7.5.1 cells by activating MAPK/PI3K-Akt/p53 signaling pathways. PeerJ 2024; 12:e17532. [PMID: 38873643 PMCID: PMC11172670 DOI: 10.7717/peerj.17532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is an aggressive malignancy with limited effective treatment options. Phenethyl isothiocyanate (PEITC) is a bioactive substance present primarily in the cruciferous vegetables. PEITC has exhibited anti-cancer properties in various cancers, including lung, bile duct, and prostate cancers. It has been demonstrated that PEITC can inhibit the proliferation, invasion, and metastasis of SK-Hep1 cells, while effectively inducing apoptosis and cell cycle arrest in HepG2 cells. However, knowledge of its anti-carcinogenic effects on Huh7.5.1 cells and its underlying mechanism remains elusive. In the present study, we aim to evaluate the anti-carcinogenic effects of PEITC on human HCC Huh7.5.1 cells. Methods MTT assay and colony formation assay was performed to investigate the anti-proliferative effects of PEITC against Huh7.5.1 cells. The pro-apoptosis effects of PEITC were determined by Annexin V-FITC/PI double staining assay by flow cytometry (FCM), mitochondrial transmembrane potential (MMP) measurement, and Caspase-3 activity detection. A DAPI staining and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay was conducted to estimate the DNA damage in Huh7.5.1 cells induced by PEITC. Cell cycle progression was determined by FCM. Transwell invasion assay and wound healing migration assay were performed to investigate the impact of PEITC on the migration and invasion of Huh7.5.1 cells. In addition, transcriptome sequencing and gene set enrichment analysis (GSEA) were used to explore the potential molecular mechanisms of the inhibitory effects of PEITC on HCC. Quantitative real-time PCR (qRT-PCR) analysis was performed to verify the transcriptome data. Results MTT assay showed that treatment of Huh7.5.1 cells with PEITC resulted in a dose-dependent decrease in viability, and colony formation assay further confirmed its anti-proliferative effect. Furthermore, we found that PEITC could induce mitochondrial-related apoptotic responses, including a decrease of mitochondrial transmembrane potential, activation of Caspase-3 activity, and generation of intracellular reactive oxygen species. It was also observed that PEITC caused DNA damage and cell cycle arrest in the S-phase in Huh7.5.1 cells. In addition, the inhibitory effect of PEITC on the migration and invasion ability of Huh7.5.1 cells was assessed. Transcriptome sequencing analysis further suggested that PEITC could activate the typical MAPK, PI3K-Akt, and p53 signaling pathways, revealing the potential mechanism of PEITC in inhibiting the carcinogenic properties of Huh7.5.1 cells. Conclusion PEITC exhibits anti-carcinogenic activities against human HCC Huh7.5.1 cells by activating MAPK/PI3K-Akt/p53 signaling pathways. Our results suggest that PEITC may be useful for the anti-HCC treatment.
Collapse
Affiliation(s)
- Jiao Du
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Yuting Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Jiajia Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Libo Jin
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| | - Liying Pan
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Pengyu Lei
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Sue Lin
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| |
Collapse
|
10
|
Zhong J, Hua Y, Zou S, Wang B. Juglone triggers apoptosis of non-small cell lung cancer through the reactive oxygen species -mediated PI3K/Akt pathway. PLoS One 2024; 19:e0299921. [PMID: 38814975 PMCID: PMC11139338 DOI: 10.1371/journal.pone.0299921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/16/2024] [Indexed: 06/01/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most common malignancies worldwide, and oxidative stress plays a crucial role in its development. Juglone, a naturally occurring naphthoquinone in J. mandshurica, exhibits significant cytotoxic activity against various cancer cell lines. However, whether the anticancer activity of juglone is associated with oxidative stress remains unexplored. In this study, mouse Lewis lung cancer (LLC) and human non-small cell lung cancer A549 cells were used to explore the anticancer mechanisms of juglone. Juglone inhibited LLC and A549 cells viability, with IC50 values of 10.78 μM and 9.47 μM, respectively, for 24 h, and substantially suppressed the migration and invasion of these two lung cancer cells. Additionally, juglone arrested the cell cycle, induced apoptosis, increased the cleavage of caspase 3 and the protein expression of Bax and Cyt c, and decreased the protein expression of Bcl-2 and caspase-3. Furthermore, juglone treatment considerably increased intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) levels, but suppressed glutathione peroxidase 4 (GPX4) and superoxide dismutase (SOD) activities. It also inhibited the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway, which was attenuated by 1,3-diCQA (an activator of PI3K/Akt). Moreover, N-acetylcysteine (a ROS scavenger) partially reversed the positive effects of juglone in terms of migration, invasion, ROS production, apoptosis, and PI3K/Akt pathway-associated protein expression. Finally, in tumor-bearing nude mouse models, juglone inhibited tumor growth without any apparent toxicity and significantly induced apoptosis in NSCLC cells. Collectively, our findings suggest that juglone triggers apoptosis via the ROS-mediated PI3K/Akt pathway. Therefore, juglone may serve as a potential therapeutic agent for the treatment of NSCLC.
Collapse
Affiliation(s)
- Jian Zhong
- Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Yongzhi Hua
- Digestive Department, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Shuting Zou
- Digestive Department, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Bo Wang
- Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, PR China
| |
Collapse
|
11
|
Liu Y, Feng L, Yao L. Albiflorin Alleviates Sepsis-induced Acute Liver Injury through mTOR/p70S6K Pathway. Curr Mol Med 2024; 24:344-354. [PMID: 36892118 DOI: 10.2174/1566524023666230309124004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 12/10/2022] [Accepted: 01/09/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND Sepsis often induces hepatic dysfunction and inflammation, accounting for a significant increase in the incidence and mortality rates. To this end, albiflorin (AF) has garnered enormous interest due to its potent anti-inflammatory activity. However, the substantial effect of AF on sepsis-mediated acute liver injury (ALI), along with its potential mechanism of action, remains to be explored. METHODS An LPS-mediated primary hepatocyte injury cell model in vitro and a mouse model of CLP-mediated sepsis in vivo were initially built to explore the effect of AF on sepsis. Furthermore, the hepatocyte proliferation by CCK-8 assay in vitro and animal survival analyses in vivo for the survival time of mice were carried out to determine an appropriate concentration of AF. Then, flow cytometry, Western blot (WB), and TUNEL staining analyses were performed to investigate the effect of AF on the apoptosis of hepatocytes. Moreover, the expressions of various inflammatory factors by ELISA and RT-qPCR analyses and oxidative stress by ROS, MDA, and SOD assays were determined. Finally, the potential mechanism of AF alleviating the sepsis-mediated ALI via the mTOR/p70S6K pathway was explored through WB analysis. RESULTS AF treatment showed a significant increase in the viability of LPS-inhibited mouse primary hepatocytes cells. Moreover, the animal survival analyses of the CLP model mice group indicated a shorter survival time than the CLP+AF group. AF-treated groups showed significantly decreased hepatocyte apoptosis, inflammatory factors, and oxidative stress. Finally, AF exerted an effect by suppressing the mTOR/p70S6K pathway. CONCLUSION In summary, these findings demonstrated that AF could effectively alleviate sepsis-mediated ALI via the mTOR/p70S6K signaling pathway.
Collapse
Affiliation(s)
- Yanan Liu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei 430060, P.R. China
| | - Lizhi Feng
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei 430060, P.R. China
| | - Lan Yao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
12
|
ÇELEBİOĞLU N, ÖZDEMİR TOZLU Ö, TÜRKEZ H, SEÇEN H. Synthesis of alnustone-like diarylpentanoids via a 4 + 1 strategy and assessment of their potential anticancer activity. Turk J Chem 2023; 47:1249-1259. [PMID: 38173735 PMCID: PMC10760875 DOI: 10.55730/1300-0527.3609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/31/2023] [Accepted: 10/11/2023] [Indexed: 01/05/2024] Open
Abstract
Twelve compounds with a 1,5-diaryl-1-penten-3-one structure were synthesized and their cytotoxic activities were evaluated. The 1,5-diaryl-1-penten-3-one compounds were obtained via in situ enaminations of 4-phenyl-2-butanone and 4-(4-hydroxyphenyl)-2-butanone in the presence of pyrrolidine-AcOH, followed by condensation with six different benzaldehydes. The synthesized compounds were tested for their cytotoxic activity against human glioblastoma (U87-MG), breast (MCF-7), and prostate (PC-3) cancer cell lines. Some of the novel compounds exhibited remarkable cytotoxic action, especially against MCF-7 cancer cells.
Collapse
Affiliation(s)
- Neslihan ÇELEBİOĞLU
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum,
Turkiye
| | - Özlem ÖZDEMİR TOZLU
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum,
Turkiye
| | - Hasan TÜRKEZ
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum,
Turkiye
| | - Hasan SEÇEN
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum,
Turkiye
| |
Collapse
|
13
|
He X, Li X, Tian W, Li C, Li P, Zhao J, Yang S, Li S. The role of redox-mediated lysosomal dysfunction and therapeutic strategies. Biomed Pharmacother 2023; 165:115121. [PMID: 37418979 DOI: 10.1016/j.biopha.2023.115121] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023] Open
Abstract
Redox homeostasis refers to the dynamic equilibrium between oxidant and reducing agent in the body which plays a crucial role in maintaining normal physiological activities of the body. The imbalance of redox homeostasis can lead to the development of various human diseases. Lysosomes regulate the degradation of cellular proteins and play an important role in influencing cell function and fate, and lysosomal dysfunction is closely associated with the development of various diseases. In addition, several studies have shown that redox homeostasis plays a direct or indirect role in regulating lysosomes. Therefore, this paper systematically reviews the role and mechanisms of redox homeostasis in the regulation of lysosomal function. Therapeutic strategies based on the regulation of redox exerted to disrupt or restore lysosomal function are further discussed. Uncovering the role of redox in the regulation of lysosomes helps to point new directions for the treatment of many human diseases.
Collapse
Affiliation(s)
- Xiaomeng He
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xuening Li
- Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Wei Tian
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chenyu Li
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Pengfei Li
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jingyuan Zhao
- The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Shilei Yang
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Shuai Li
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
14
|
Paskeh MDA, Ghadyani F, Hashemi M, Abbaspour A, Zabolian A, Javanshir S, Razzazan M, Mirzaei S, Entezari M, Goharrizi MASB, Salimimoghadam S, Aref AR, Kalbasi A, Rajabi R, Rashidi M, Taheriazam A, Sethi G. Biological impact and therapeutic perspective of targeting PI3K/Akt signaling in hepatocellular carcinoma: Promises and Challenges. Pharmacol Res 2023; 187:106553. [PMID: 36400343 DOI: 10.1016/j.phrs.2022.106553] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Cancer progression results from activation of various signaling networks. Among these, PI3K/Akt signaling contributes to proliferation, invasion, and inhibition of apoptosis. Hepatocellular carcinoma (HCC) is a primary liver cancer with high incidence rate, especially in regions with high prevalence of viral hepatitis infection. Autoimmune disorders, diabetes mellitus, obesity, alcohol consumption, and inflammation can also lead to initiation and development of HCC. The treatment of HCC depends on the identification of oncogenic factors that lead tumor cells to develop resistance to therapy. The present review article focuses on the role of PI3K/Akt signaling in HCC progression. Activation of PI3K/Akt signaling promotes glucose uptake, favors glycolysis and increases tumor cell proliferation. It inhibits both apoptosis and autophagy while promoting HCC cell survival. PI3K/Akt stimulates epithelial-to-mesenchymal transition (EMT) and increases matrix-metalloproteinase (MMP) expression during HCC metastasis. In addition to increasing colony formation capacity and facilitating the spread of tumor cells, PI3K/Akt signaling stimulates angiogenesis. Therefore, silencing PI3K/Akt signaling prevents aggressive HCC cell behavior. Activation of PI3K/Akt signaling can confer drug resistance, particularly to sorafenib, and decreases the radio-sensitivity of HCC cells. Anti-cancer agents, like phytochemicals and small molecules can suppress PI3K/Akt signaling by limiting HCC progression. Being upregulated in tumor tissues and clinical samples, PI3K/Akt can also be used as a biomarker to predict patients' response to therapy.
Collapse
Affiliation(s)
- Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Ghadyani
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Abbaspour
- Cellular and Molecular Research Center,Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amirhossein Zabolian
- Resident of department of Orthopedics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salar Javanshir
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrnaz Razzazan
- Medical Student, Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc. 6, Tide Street, Boston, MA 02210, USA
| | - Alireza Kalbasi
- Department of Pharmacy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| |
Collapse
|
15
|
Li Z. Comment on: Alnustone inhibits the growth of hepatocellular carcinoma via reactive oxygen species-mediated PI3K/Akt/mTOR/p70S6K axis. Phytother Res 2022. [PMID: 36560899 DOI: 10.1002/ptr.7708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/15/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Li J, Yuan M, Qiu T, Lu M, Zhan S, Bai Y, Yang M, Liu X, Zhang X. A glutathione-sensitive drug delivery system based on carboxymethyl chitosan co-deliver Rose Bengal and oxymatrine for combined cancer treatment. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022; 34:650-673. [PMID: 36272104 DOI: 10.1080/09205063.2022.2139977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
At present, monotherapy of tumor has not met the clinical needs, due to high doses, poor efficacy, and the emergence of drug resistance. Combination therapy can effectively solve these problems, which is a better option for tumor suppression. Based on this, we developed a novel glutathione-sensitive drug delivery nanoparticle system (OMT/CMCS-CYS-RB NPs) for oral cancer treatment. Briefly, carboxymethyl chitosan (CMCS) was used as a carrier to simultaneously load Rose Bengal (RB) and oxymatrine (OMT). The OMT/CMCS-CYS-RB NPs prepared by ion crosslinking were spheres with a stable structure. In addition, the nanoparticles can be excited in vitro to generate a large amount of singlet oxygen, which has a good photodynamic effect. In vitro anti-tumor activity study showed that the nanoparticles after the laser enhanced therapeutic efficacy on tumor cells compared with the free drug and exhibited well security. Furthermore, OMT/CMCS-CYS-RB NPs could inhibit the PI3K/AKT signaling pathway in oxidative stress, and realize tumor apoptosis through mitochondria-related pathways. In conclusion, this combination delivery system for delivering RB and OMT is a safe and effective strategy, which may provide a new avenue for the tumor treatment.
Collapse
Affiliation(s)
- Juncan Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Ming Yuan
- Wuhan Wuchang District Center for Disease Control and Prevention, Wuhan, China
| | - Tong Qiu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| | - Mengli Lu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Siwen Zhan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Yuting Bai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | | | - Xia Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Xueqiong Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
17
|
Dai Q, Ain Q, Rooney M, Song F, Zipprich A. Role of IQ Motif-Containing GTPase-Activating Proteins in Hepatocellular Carcinoma. Front Oncol 2022; 12:920652. [PMID: 35785216 PMCID: PMC9243542 DOI: 10.3389/fonc.2022.920652] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022] Open
Abstract
IQ motif-containing GTPase-activating proteins (IQGAPs) are a class of scaffolding proteins, including IQGAP1, IQGAP2, and IQGAP3, which govern multiple cellular activities by facilitating cytoskeletal remodeling and cellular signal transduction. The role of IQGAPs in cancer initiation and progression has received increasing attention in recent years, especially in hepatocellular carcinoma (HCC), where the aberrant expression of IQGAPs is closely related to patient prognosis. IQGAP1 and 3 are upregulated and are considered oncogenes in HCC, while IQGAP2 is downregulated and functions as a tumor suppressor. This review details the three IQGAP isoforms and their respective structures. The expression and role of each protein in different liver diseases and mainly in HCC, as well as the underlying mechanisms, are also presented. This review also provides a reference for further studies on IQGAPs in HCC.
Collapse
Affiliation(s)
- Qingqing Dai
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
- Else Kröner Graduate School for Medical Students “Jena School for Ageing Medicine (JSAM)”, Jena University Hospital, Jena, Germany
| | - Quratul Ain
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Michael Rooney
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Fei Song
- Department of Urology, Jena University Hospital, Jena, Germany
| | - Alexander Zipprich
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
- *Correspondence: Alexander Zipprich,
| |
Collapse
|