1
|
Zhang Q, Zhang X, He Q, Tian Y, Liu Z. Cimifugin Alleviates Chronic Constriction Injury of the Sciatic Nerve by Suppressing Inflammatory Response and Schwann Cell Apoptosis. Cell Biochem Biophys 2024:10.1007/s12013-024-01513-4. [PMID: 39392551 DOI: 10.1007/s12013-024-01513-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/12/2024]
Abstract
Inflammation and Schwann cell apoptosis play critical roles in neuropathic pain after sciatic nerve injury. This study aimed to explore the function and mechanism of cimifugin in lipopolysaccharide (LPS)-stimulated rat Schwann cells and sciatic nerves of rats treated with chronic constriction injury (CCI). Thermal, mechanical and cold hyperalgesia of rats in response to cimifugin or mecobalamin (the positive drug control) treatment were evaluated through behavioral tests. H&E staining of sciatic nerves was performed for pathological observation. ELISA was conducted to assess concentrations of inflammatory cytokines in rat serum and sciatic nerves. The intensity of S100β in sciatic nerves was determined using immunohistochemistry. Flow cytometry analysis was conducted for detection of Schwann cell apoptosis. RT-qPCR was performed to measure mRNA levels of inflammatory factors in Schwann cells. Immunofluorescence staining was performed to detect cellular p65/NF-κB activity. Western blotting was performed to quantify protein levels of apoptotic markers and factors associated with the NF-κB and MAPK pathways in rat nerves and Schwann cells. As shown by experimental data, cimifugin mitigated thermal, mechanical and cold hyperalgesia of CCI rats. Cimifugin repressed inflammatory cell infiltration, reduced proinflammatory cytokine levels while increasing anti-inflammatory factor (IL-10) level in serum or sciatic nerves of CCI rats. Cimifugin enhanced S100β expression and downregulated apoptotic markers in vivo. The anti-inflammatory and anti-apoptotic properties of cimifugin were verified in the LPS-stimulated Schwann cells. Moreover, cimifugin suppressed nuclear translocation of p65 NF-κB in vitro and repressed the phosphorylation of IκB, p65 NF-κB, p38 MAPK, ERK1/2, as well as JNK in CCI rats. In conclusion, cimifugin alleviates neuropathic pain after sciatica by suppressing inflammatory response and Schwann cell apoptosis via inactivation of NF-κB and MAPK pathways.
Collapse
Affiliation(s)
- Qijuan Zhang
- Department of rehabilitation medicine, Wuhan Orthopaedic Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Wuhan Sports University), Wuhan, 430070, China.
| | - Xiaoli Zhang
- Wuhan Fiberhome technical service Co. Ltd, Wuhan, 430000, China
| | - Qing He
- Department of rehabilitation medicine, Wuhan Orthopaedic Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Wuhan Sports University), Wuhan, 430070, China
| | - Yu Tian
- Department of rehabilitation medicine, Wuhan Orthopaedic Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Wuhan Sports University), Wuhan, 430070, China
| | - Zhengmao Liu
- Department of rehabilitation medicine, Wuhan Orthopaedic Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Wuhan Sports University), Wuhan, 430070, China
| |
Collapse
|
2
|
Hu N, Liu J, Luo Y, Li Y. A comprehensive review of traditional Chinese medicine in treating neuropathic pain. Heliyon 2024; 10:e37350. [PMID: 39296122 PMCID: PMC11407996 DOI: 10.1016/j.heliyon.2024.e37350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Neuropathic pain (NP) is a common, intractable chronic pain caused by nerve dysfunction and primary lesion of the nervous system. The etiology and pathogenesis of NP have not yet been clarified, so there is a lack of precise and effective clinical treatments. In recent years, traditional Chinese medicine (TCM) has shown increasing advantages in alleviating NP. Our review aimed to define the therapeutic effect of TCM (including TCM prescriptions, TCM extracts and natural products from TCM) on NP and reveal the underlying mechanisms. Literature from 2018 to 2024 was collected from databases including Web of Science, PubMed, ScienceDirect, Google academic and CNKI databases. Herbal medicine, Traditional Chinese medicines (TCM), neuropathic pain, neuralgia and peripheral neuropathy were used as the search terms. The anti-NP activity of TCM is clarified to propose strategies for discovering active compounds against NP, and provide reference to screen anti-NP drugs from TCM. We concluded that TCM has the characteristics of multi-level, multi-component, multi-target and multi-pathway, which can alleviate NP through various pathways such as anti-inflammation, anti-oxidant, anti-apoptotic pathway, regulating autophagy, regulating intestinal flora, and influencing ion channels. Based on the experimental study and anti-NP mechanism of TCM, this paper can offer analytical evidence to support the effectiveness in treating NP. These references will be helpful to the research and development of innovative TCM with multiple levels and multiple targets. TCM can be an effective treatment for NP and can serve as a treasure house for new drug development.
Collapse
Affiliation(s)
- Naihua Hu
- Deyang Hospital of Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, No. 159, Section 2, Tianshan South Road, Deyang, 618000, Sichuan, China
| | - Jie Liu
- Deyang Hospital of Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, No. 159, Section 2, Tianshan South Road, Deyang, 618000, Sichuan, China
| | - Yong Luo
- Deyang Hospital of Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, No. 159, Section 2, Tianshan South Road, Deyang, 618000, Sichuan, China
| | - Yunxia Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
3
|
Di Z, Zhenni C, Zifeng Z, Bei J, Yong C, Yixuan L, Yuwei P, Li G, Jiaxu C, Guoping Z. Danggui Sini Decoction normalizes the intestinal microbiota and serum metabolite levels to treat sciatica. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155740. [PMID: 39059091 DOI: 10.1016/j.phymed.2024.155740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/15/2024] [Accepted: 05/14/2024] [Indexed: 07/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danggui Sini Decoction (DGSD), which is commonly used to treat sciatica, has been shown to have an analgesic effect, but the underlying mechanisms are unclear. Here, Danggui Sini Decoction was shown to normalize the intestinal microbiota and serum metabolite levels to exert an analgesic effect. AIM OF THE STUDY This study aimed to elucidate the therapeutic effects of DGSD on sciatica and the underlying mechanisms involved. METHODS In this study, we conducted chronic constriction injury (CCI) model. Mecobalamin and DGSD were administered to CCI rats. Behavioural tests were used to examine the therapeutic effects of the drugs. UHPLC was used to identify DGSD components. 16S rRNA gene sequencing analysis of the intestinal flora was used to analyse the effect of DGSD on the intestinal microbiota. UHPLC‒MS/MS was used to identify blood metabolites. KEGG pathway analysis of differentially abundant metabolites was subsequently conducted. ELISA was used to measure the serum inflammatory factor levels, and correlation analysis between the serum inflammatory factor levels and intestinal microbe abundance was conducted. PCR, western blotting, and immunohistochemical staining were used to validate the results of the KEGG pathway analysis. RESULTS After CCI, the rats exhibited obvious thermal hyperalgesia; disruption of sciatic nerve structure; increased IL1α, SP, CCL5, and PGE2 levels; decreased IL10 levels in the blood; increased IL1β, IL6, COX2, MMP9, nNOS, and p-NF-κB levels; and decreased IL4 levels in the sciatic nerve. In addition, CCI led to increased abundances of Peptostreptococcaceae, Leuconostocaceae, Christensenellaceae, Akkermansiaceae, Staphylococcaceae, Romboutsia, Marvinbryantia, Turicibacter, Weissella, UCG-005, Christensenellaceae_R-7_group, Akkermansia, Staphylococcus, Romboutsia_ilealis, Weissella_paramesenteroides, and Akkermansia_muciniphila and decreased abundances of Lactobacillaceae, Lactobacillus, Lactobacillus_murinus, and Lactobacillus_johnsonii. Correlation analysis indicated that Turicibacter abundance was most strongly related to IL1α, PGE2, IL10, and CCL5 levels, while norank_o_Coriobacteriales abundance had the weakest relationship with SP levels. KEGG pathway analysis of the differentially abundant metabolites revealed that the 'NF-kappa B signalling pathway' was involved in sciatica. DGSD reduced the levels of inflammatory factors, including IL1α, SP, CCL5, PGE2, IL6, COX2, and MMP9, in the blood and sciatic nerve and inhibited nNOS and NF-κB phosphorylation. DGSD improved the abundance of probiotics, including Lactobacillus and Blautia, and lowered the abundance of harmful bacteria, including Romboutsia, Turicibacter, and Weissella. DGSD promoted the repair of the injured sciatic nerve. CONCLUSIONS DGSD can treat sciatica by inhibiting intestinal microbiota disorders induced by CCI in rats, normalizing inflammatory factor levels, and promoting nerve repair.
Collapse
Affiliation(s)
- Zhang Di
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Chen Zhenni
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zhuang Zifeng
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jing Bei
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Cao Yong
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Li Yixuan
- Guangzhou Medical University Affiliated Traditional Chinese Medicine Hospital, China
| | - Pan Yuwei
- Guangzhou Medical University Affiliated Traditional Chinese Medicine Hospital, China
| | - Gao Li
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Chen Jiaxu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Zhao Guoping
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
4
|
Li M, Zhu X, Zhang M, Yu J, Jin S, Hu X, Piao H. The analgesic effect of paeoniflorin: A focused review. Open Life Sci 2024; 19:20220905. [PMID: 39220595 PMCID: PMC11365469 DOI: 10.1515/biol-2022-0905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/19/2024] [Accepted: 06/03/2024] [Indexed: 09/04/2024] Open
Abstract
Pain has been a prominent medical concern since ancient times. Despite significant advances in the diagnosis and treatment of pain in contemporary medicine, there is no a therapeutic cure for chronic pain. Chinese herbaceous peony, a traditional Chinese analgesic herb has been in clinical use for millennia, with widespread application and substantial efficacy. Paeoniflorin (PF), the main active ingredient of Chinese herbaceous peony, has antioxidant, anti-inflammatory, anticancer, analgesic, and antispasmodic properties, among others. The analgesic effect of PF, involving multiple critical targets and pain regulatory pathways, has been a hot spot for current research. This article reviews the literature related to the analgesic effect of PF in the past decade and discusses the molecular mechanism of the analgesic effect of PF, including the protective effects of nerve cells, inhibition of inflammatory reactions, antioxidant effects, reduction of excitability in nociceptor, inhibition of the nociceptive excitatory neuroreceptor system, activation of the nociceptive inhibitory neuroreceptor system and regulation of other receptors involved in nociceptive sensitization. Thus, providing a theoretical basis for pain prevention and treatment research. Furthermore, the prospect of PF-based drug development is presented to propose new ideas for clinical analgesic therapy.
Collapse
Affiliation(s)
- Mingzhu Li
- Department of Integrated Traditional Chinese and Western Medicine Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, P.R. China
| | - Xudong Zhu
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, P.R. China
| | - Mingxue Zhang
- First Clinical College, Liaoning University of Traditional Chinese Medicine, No. 33 Beiling Street, Shenyang, Liaoning, 110032, China
| | - Jun Yu
- College of Acupuncture and Massage of Liaoning Chinese Traditional Medicine, Shenyang, Liaoning, 110847, P.R. China
| | - Shengbo Jin
- College of Acupuncture and Massage of Liaoning Chinese Traditional Medicine, Shenyang, Liaoning, 110847, P.R. China
| | - Xiaoli Hu
- First Clinical College, Liaoning University of Traditional Chinese Medicine, No. 33 Beiling Street, Shenyang, Liaoning, 110032, China
| | - Haozhe Piao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, P.R. China
| |
Collapse
|
5
|
Zeng L, Hu P, Zhang Y, Li M, Zhao Y, Li S, Luo A. Macrophage migration inhibitor factor (MIF): Potential role in cognitive impairment disorders. Cytokine Growth Factor Rev 2024; 77:67-75. [PMID: 38548489 DOI: 10.1016/j.cytogfr.2024.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 06/22/2024]
Abstract
Macrophage migration inhibitory factor (MIF) is a cytokine in the immune system, participated in both innate and adaptive immune responses. Except from immune cells, MIF is also secreted by a variety of non-immune cells, including hematopoietic cells, endothelial cells (ECs), and neurons. MIF plays a crucial role in various diseases, such as sepsis, rheumatoid arthritis, acute kidney injury, and neurodegenerative diseases. The role of MIF in the neuropathogenesis of cognitive impairment disorders is emphasized, as it recruits multiple inflammatory mediators, leading to activating microglia or astrocyte-derived neuroinflammation. Furthermore, it contributes to the cell death of neurons and ECs with the binding of apoptosis-inducing factor (AIF) through parthanatos-associated apoptosis-inducing factor nuclease (PAAN) / MIF pathway. This review comprehensively delves into the relationship between MIF and the neuropathogenesis of cognitive impairment disorders, providing a series of emerging MIF-targeted pharmaceuticals as potential treatments for cognitive impairment disorders.
Collapse
Affiliation(s)
- Lian Zeng
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pengchao Hu
- Hubei Provincial Clinical Research Center for Parkinson's Disease, Central Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 44100, China; Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Zhang
- Hubei Provincial Clinical Research Center for Parkinson's Disease, Central Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 44100, China
| | - Mingyue Li
- Hubei Provincial Clinical Research Center for Parkinson's Disease, Central Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 44100, China
| | - Yilin Zhao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shiyong Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Ailin Luo
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
6
|
Nasir A, Afridi OK, Ullah S, Khan H, Bai Q. Mitigation of sciatica injury-induced neuropathic pain through active metabolites derived from medicinal plants. Pharmacol Res 2024; 200:107076. [PMID: 38237646 DOI: 10.1016/j.phrs.2024.107076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Sciatica characterized by irritation, inflammation, and compression of the lower back nerve, is considered one of the most common back ailments globally. Currently, the therapeutic regimens for sciatica are experiencing a paradigm shift from the conventional pharmacological approach toward exploring potent phytochemicals from medicinal plants. There is a dire need to identify novel phytochemicals with anti-neuropathic potential. This review aimed to identify the potent phytochemicals from diverse medicinal plants capable of alleviating neuropathic pain associated with sciatica. This review describes the pathophysiology of sciatic nerve pain, its cellular mechanisms, and the pharmacological potential of various plants and phytochemicals using animal-based models of sciatic nerve injury-induced pain. Extensive searches across databases such as Medline, PubMed, Web of Science, Scopus, ScienceDirect, and Google Scholar were conducted. The findings highlights 39 families including Lamiaceae, Asteraceae, Fabaceae, and Apocyanaceae and Cucurbitaceae, effectively treating sciatic nerve injury-induced pain. Flavonoids made up 53% constituents, phenols and terpenoids made up 15%, alkaloids made up 13%, and glycosides made up 6% to be used in neuorpathic pain. Phytochemicals derived from various medicinal plants can serve as potential therapeutic targets for both acute and chronic sciatic injury-induced neuropathic pain.
Collapse
Affiliation(s)
- Abdul Nasir
- Department of Anesthesiology, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Medical Research Center, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Sami Ullah
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Pakistan.
| | - Qian Bai
- Department of Anesthesiology, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Medical Research Center, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
7
|
Li L, Li T, Qu X, Sun G, Fu Q, Han G. Stress/cell death pathways, neuroinflammation, and neuropathic pain. Immunol Rev 2024; 321:33-51. [PMID: 37688390 DOI: 10.1111/imr.13275] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/14/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
Neuropathic pain is a common and debilitating modality of chronic pain induced by a lesion or disease of the somatosensory nervous system. Albeit the elucidation of numerous pathophysiological mechanisms and the development of potential treatment compounds, safe and reliable therapies of neuropathic pain remain poor. Multiple stress/cell death pathways have been shown to be implicated in neuroinflammation during neuropathic pain. Here, we summarize the current knowledge of stress/cell death pathways and present an overview of the roles and molecular mechanisms of stress/cell death pathways in neuroinflammation during neuropathic pain, covering intrinsic and extrinsic apoptosis, autophagy, mitophagy, ferroptosis, pyroptosis, necroptosis, and phagoptosis. Small molecule compounds that modulate stress/cell death pathways in alleviating neuropathic pain are discussed mainly based on preclinical neuropathic pain models. These findings will contribute to in-depth understanding of the pathological processes during neuropathic pain as well as bridge the gap between basic and translational research to uncover new neuroprotective interventions.
Collapse
Affiliation(s)
- Lu Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xinyu Qu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guangwei Sun
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qi Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guang Han
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
8
|
Wu KY, Deng F, Mao XY, Zhou D, Shen WG. Ferroptosis involves in Schwann cell death in diabetic peripheral neuropathy. Open Med (Wars) 2023; 18:20230809. [PMID: 37829841 PMCID: PMC10566555 DOI: 10.1515/med-2023-0809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/16/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023] Open
Abstract
Accumulating evidence shows that Schwann cells' (SCs) death caused by high glucose (HG) is involved in the pathological process of diabetic peripheral neuropathy (DPN). Ferroptosis is a novel form of regulatory cell death driven by iron-dependent lipid peroxidation. However, it is not clear whether ferroptosis is involved in the death process of SCs induced by HG. The expression of ferroptosis-related indicators in the serum of DPN patients was detected by ELISA. Subsequently, using cell counting kit‑8, western blot, real-time PCR, and Ki-67 staining, we investigated the effects of HG on the ferroptosis of SCs and initially explored the underlying mechanism. The results showed that the serum levels of glutathione peroxidase 4 (GPX4) and glutathione in patients with DPN decreased, while malondialdehyde levels increased significantly. Then, we observed that erastin and HG induced ferroptosis in SCs, resulting in the decrease in cell activity and the expression level of GPX4 and SLC7A11, which could be effectively reversed by the ferroptosis inhibitor Fer-1. Mechanistically, HG induced ferroptosis in SCs by inhibiting the NRF2 signaling pathway. Our results showed that ferroptosis was involved in the death process of SCs induced by HG. Inhibition of ferroptosis in SCs might create a new avenue for the treatment of DPN.
Collapse
Affiliation(s)
- Kai-yan Wu
- Department of Cell Biology, School of Medicine of Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Fei Deng
- Department of Cell Biology, School of Medicine of Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xin-yu Mao
- Department of Cell Biology, School of Medicine of Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Dan Zhou
- Department of Central Laboratory, Jintan Hospital, Jiangsu University, 500 Avenue Jintan, Jintan, Jiangsu, 213200, China
| | - Wei-gan Shen
- Department of Cell Biology, School of Medicine of Yangzhou University, Yangzhou, Jiangsu, 225009, China
| |
Collapse
|
9
|
Jo HR, Kim YG, Sung WS, Park KS, Lee YJ, Cho SY, Seo BK, Kwon YE, Kim EJ. Efficacy and Safety of SIKD1977 in Combination with Standard Treatment for Postherpetic Neuralgia: Study Protocol for a Double Blind, Placebo-Controlled, Randomized, Multicenter, Phase 2 Clinical Trial. J Pain Res 2023; 16:1755-1765. [PMID: 37273271 PMCID: PMC10237193 DOI: 10.2147/jpr.s400682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/10/2023] [Indexed: 06/06/2023] Open
Abstract
Purpose Postherpetic neuralgia (PHN) is the most common chronic complication of herpes zoster, associated with poor quality of life and increased patient and healthcare resource expenditure. This randomized controlled trial aims to evaluate the efficacy and safety of SIKD1977 (Sogeonjungtang) in combination with standard treatment and estimate an effective dose for treating PHN. Patients and Methods This is a protocol for a randomized, placebo-controlled, double-blind, multicenter trial. A total of 90 eligible participants with PHN will be recruited from three hospitals and randomly allocated to high-dose group, low-dose group, or placebo group in a 1:1:1 ratio. The trial will involve a 6-week oral administration of SIKD1977/placebo, and a 1-week follow-up period. The primary outcome will be the weekly average change in average daily pain score (ADPS) from baseline to the end of treatment. The secondary outcomes will include the weekly average changes in ADPS from baseline to week 2, 4, and 7, differences in Short-Form McGill Pain Questionnaire, Visual analogue scale, 5-level EuroQol-5 dimensions, Patient Global Impression of Change, and consumption of rescue drugs. All adverse events will be assessed during the trial. Conclusion This study will provide evidence for the efficacy and safety of SIKD1977, and an effective dose for PHN. Trial Registration This protocol has been registered in the Clinical Research Information Service with the identification code KCT0007939.
Collapse
Affiliation(s)
- Hyo-Rim Jo
- Department of Acupuncture & Moxibustion, Dongguk University Bundang Oriental Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Yong-Gyun Kim
- Central Research Institute, Samik Pharmaceutical Company LTD., Incheon, Republic of Korea
| | - Won-Suk Sung
- Department of Acupuncture & Moxibustion, Dongguk University Bundang Oriental Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Kyoung Sun Park
- Jaseng Hospital of Korean Medicine, Seoul, Republic of Korea
| | - Yoon Jae Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, Korea
| | - Sun Young Cho
- IntegroMedLab Company Ltd., Seoul, Republic of Korea
| | - Byung-Kwan Seo
- Department of Acupuncture & Moxibustion, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Young-Ee Kwon
- Central Research Institute, Samik Pharmaceutical Company LTD., Incheon, Republic of Korea
| | - Eun-Jung Kim
- Department of Acupuncture & Moxibustion, Dongguk University Bundang Oriental Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
10
|
Wang L, Lei J, Zhao Z, Jia J, Wang L. Therapeutic effects of paeoniflorin on irritable bowel syndrome in rats. J Vet Sci 2023; 24:e23. [PMID: 37271501 PMCID: PMC10244138 DOI: 10.4142/jvs.22083] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 10/09/2022] [Accepted: 10/14/2022] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a functional bowel disorder (FBD). OBJECTIVES To assess the therapeutic effects of paeoniflorin (PF) on IBS in rats. METHOD Sixty male Sprague-Dawley rats were randomly divided into normal, model, positive drug, low-dose PF, medium-dose PF and high-dose PF groups (n = 10). After gavage for 2 consecutive weeks, the effect of PF on abdominal pain symptoms was assessed based on the abdominal withdrawal reflex (AWR) score, fecal water content and pathological changes in colon tissues. D-lactate, interleukin-1β (IL-1β), transforming growth factor-β (TGF-β) and tumor necrosis factor-α (TNF-α) were detected by enzyme-linked immunosorbent assay, and phosphorylated nuclear factor kappa B (p-NF-κB) p65 was detected by Western blotting. The abundance and diversity changes of intestinal flora were explored using 16S ribosomal RNA sequencing. RESULT In PF groups, the mucosal morphology of colon tissues was intact, and the glands were arranged neatly and structured clearly, without obvious inflammatory cell infiltration. Compared with the model group, PF groups had significantly elevated pain threshold, and mRNA and protein levels of zonula occludens-1 (ZO-1) and occludin, decreased AWR score at 20 mmHg pressure, fecal water content, mRNA levels of IL-1β, TGF-β, and TNF-α, protein level of p-NF-κB p65 and level of serum D-lactate, and reduced levels of serum IL-1β, TGF-β, and TNF-α (p < 0.05, p < 0.01). PF groups had higher abundance of Lactobacillus, Akkermansia, Alistipes, and Bacteroides, but lower abundance of Desulfovibrio, Parasutterella, and Enterococcus than those of the model group. CONCLUSIONS PF exerts therapeutic effects on IBS in rats probably by regulating the intestinal flora, and then up-regulating the expressions of ZO-1 and occludin in colon tissue while down-regulating the levels of IL-1β, TGF-β, TNF-α, D-lactate and p-NF-κB p65.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pharmacy, Tianjin Second People's Hospital, Tianjin 300192, China
- Tianjin Institute of Hepatology, Tianjin 300192, China
| | - Jinyan Lei
- Tianjin Institute of Hepatology, Tianjin 300192, China
- Department of Integrated Chinese and Western Medicine, Tianjin Second People's Hospital, Tianjin 300192, China
| | - Zeyu Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China
| | - Jianwei Jia
- Tianjin Institute of Hepatology, Tianjin 300192, China
- Department of Integrated Chinese and Western Medicine, Tianjin Second People's Hospital, Tianjin 300192, China.
| | - Li Wang
- Department of Pharmacy, Tianjin Second People's Hospital, Tianjin 300192, China
- Academy of Medical Engineering and Transnational Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
11
|
Zhang D, Jing B, Chen ZN, Li X, Shi HM, Zheng YC, Chang SQ, Gao L, Zhao GP. Ferulic acid alleviates sciatica by inhibiting neuroinflammation and promoting nerve repair via the TLR4/NF-κB pathway. CNS Neurosci Ther 2023; 29:1000-1011. [PMID: 36601662 PMCID: PMC10018085 DOI: 10.1111/cns.14060] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/14/2022] [Accepted: 12/02/2022] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Sciatica causes intense pain. No satisfactory therapeutic drugs exist to treat sciatica. This study aimed to probe the potential mechanism of ferulic acid in sciatica treatment. METHODS Thirty-two SD rats were randomly divided into 4 groups: sham operation, chronic constriction injury (CCI), mecobalamin, and ferulic acid. We conducted RNA sequencing, behavioral tests, ELISA, PCR, western blotting, and immunofluorescence analysis. TAK-242 and JSH23 were administered to RSC96 and GMI-R1 cells to explore whether ferulic acid can inhibit apoptosis and alleviate inflammation. RESULTS RNA sequencing showed that TLR4/NF-κB pathway is involved in the mechanism of sciatica. CCI induced cold and mechanical hyperalgesia; destroyed the sciatic nerve structure; increased IL-1β, IL-6, TNF-α, IL-8, and TGF-β protein levels and IL-1β, IL-6, TNF-α, TGF-β, TLR4, and IBA-1 mRNA levels; and decreased IL-10 and INF-γ protein levels and IL-4 mRNA levels. Immunohistochemistry showed that IBA-1, CD32, IL-1β, iNOS, nNOS, COX2, and TLR4 expression was increased while S100β and Arg-1 decreased. CCI increased TLR4, IBA-1, IL-1β, iNOS, Myd88, p-NF-κB, and p-p38MAPK protein levels. Treatment with mecobalamin and ferulic acid reversed these trends. Lipopolysaccharide (LPS) induced RSC96 cell apoptosis by reducing Bcl-2 and Bcl-xl protein and mRNA levels and increasing Bax and Bad mRNA and IL-1β, TLR4, Myd88, p-NF-κB, and p-p38MAPK protein levels, while ferulic acid inhibited cell apoptosis by decreasing IL-1β, TLR4, Myd88, p-NF-κB, and p-p38MAPK levels and increasing Bcl-2 and Bcl-xl levels. In GMI-R1 cells, Ferulic acid attenuated LPS-induced M1 polarization by decreasing the M1 polarization markers IL-1β, IL-6, iNOS, and CD32 and increasing the M2 polarization markers CD206, IL-4, IL-10 and Arg-1. After LPS treatment, IL-1β, iNOS, TLR4, Myd88, p-p38MAPK, and p-NF-κB levels were obviously increased, and Arg-1 expression was reduced, while ferulic acid reversed these changes. CONCLUSION Ferulic acid can promote injured sciatic nerve repair by reducing neuronal cell apoptosis and inflammatory infiltration though the TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Di Zhang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Bei Jing
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zhen-Ni Chen
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xin Li
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Hui-Mei Shi
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Ya-Chun Zheng
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Shi-Quan Chang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Li Gao
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Guo-Ping Zhao
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
12
|
Zhang D, Li X, Jing B, Chen Z, Shi H, Zheng Y, Chang S, Sun J, Zhao G. α-Asarone attenuates chronic sciatica by inhibiting peripheral sensitization and promoting neural repair. Phytother Res 2023; 37:151-162. [PMID: 36070878 DOI: 10.1002/ptr.7603] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 01/19/2023]
Abstract
This study explored the therapeutic effect of α-asarone on chronic sciatica. Thirty-two Sprague-Dawley (SD) rats were divided into four groups: the sham group, chronic constriction injury (CCI) group, pregabalin group, and α-asarone group. Hot hyperalgesia was induced after the CCI operation, and α-asarone was found to relieve chronic neuralgia. Furthermore, α-asarone reduced IL1β, IL6, TNF-α, CRP, and LPS levels and increased IL10 levels in serum. α-Asarone decreased the protein levels of TRPA1, TRPM8, and TRPV1-4 and the mRNA levels of TRPA1, TRPM8, TRPV1-4, IL1β, and TNF-α in dorsal root ganglion neurons. In the sciatic nerve, α-asarone treatment reduced the number of inflammatory cells and promoted the proliferation of Schwann cells, favouring recovery of the nerve structure. In cellular experiments, LPS induced Schwann cell apoptosis via TLR4/p38MAPK signalling; α-asarone attenuated LPS-induced Schwann cell apoptosis by decreasing TLR4, p-p38MAPK, cleaved-caspase3, and cleaved-caspase7 levels and increasing Bcl-2 and Bcl-xl expression. Overall, these findings suggest that α-asarone relieves chronic sciatica by decreasing the levels of inflammatory factors, inhibiting peripheral sensitization, and favouring the repair of damaged nerves.
Collapse
Affiliation(s)
- Di Zhang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xin Li
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Bei Jing
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zhenni Chen
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Huimei Shi
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yachun Zheng
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Shiquan Chang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jianxin Sun
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Guoping Zhao
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
13
|
Zhang D, Jing B, Chen Z, Li X, Shi H, Zheng Y, Chang S, Zhao G. Ferulic acid alleviates sciatica by inhibiting peripheral sensitization through the RhoA/p38MAPK signalling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154420. [PMID: 36115115 DOI: 10.1016/j.phymed.2022.154420] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Nonsteroidal anti-inflammatory drugs are used to relieve sciatica, but their effects are not satisfactory. PURPOSE This study aimed to explore the therapeutic effects of ferulic acid on sciatica. METHODS Thirty-two SD rats were randomly divided into 4 groups, i.e., sham operation group, chronic constriction injury (CCI) group, mecobalamin group, and ferulic acid group. We conducted behavioural tests, ELISA, PCR, Western blots, and immunofluorescence analysis. Specific inhibitors were used in cell experiments to explore the related mechanisms. RESULTS Thermal hyperalgesia was induced after CCI operation, and ferulic acid relieved thermal hyperalgesia. In addition, ferulic acid decreased the IL1β, IL6, TNF-α, and CRP mRNA levels; the IBA-1, iNOS, IL1β, RhoA, RhoA-GTP, COX2, Rock1, TRPV1, TRPA1, and p-p38MAPK levels in dorsal root ganglion (DRG) neurons; and the LPS, CRP, substance P (SP), and prostaglandin E2 (PGE2) levels in serum, and these levels were higher in the CCI group. In the cell experiments, LPS induced M1 polarization of GMI-R1 cells via the RhoA/Rock pathway. Ferulic acid attenuated LPS-induced M1 polarization by decreasing the levels of M1 polarization markers, including IL1β, IL6, TNF-α, iNOS, and CD32, and increased M2 polarization by increasing the levels of M2 polarization markers, including CD206 and Arg-1. LPS treatment clearly increased the iNOS, IL1β, RhoA, Rock1, Rock2 and p-p38 MAPK levels and reduced Arg-1 expression, and ferulic acid reversed these changes. CONCLUSION Ferulic acid can inhibit peripheral sensitization by reducing the levels of inflammatory factors, TRPA1 and TRPV1 through the RhoA/p38 MAPK pathway to alleviate sciatica.
Collapse
Affiliation(s)
- Di Zhang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Bei Jing
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zhenni Chen
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xin Li
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Huimei Shi
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yachun Zheng
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Shiquan Chang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Guoping Zhao
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|