1
|
Verma NL, Kumar S, Kumar M, Pal J, Sharma D, Lalji RSK, Chahal M, Kant H, Rathor N, Javed S, Jaiswar G. Quantum chemical treatment, electronic energy in various solvents, spectroscopic, molecular docking and dynamic simulation studies of 2-amino-N-(2-chloro-6-methylphenyl)thiazole-5-carboxamide: A core of anticancer drug. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 326:125263. [PMID: 39413608 DOI: 10.1016/j.saa.2024.125263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/18/2024]
Abstract
The titled molecule 2-Amino-N-(2-chloro-6-methylphenyl)thiazole-5-carboxamide (ANMC) is a core of anticancer drug dasatinib (leukemia). Its derivatives exhibited bioactivity against breast cancer. Experimentally, the titled compound was described using NMR (1H NMR and 13C NMR), FTIR and UV-visible spectroscopy. The results were compared with the theoretical predictions, showing good agreement such as theoretical NH vibrations showed symmetric stretching and asymmetric stretching at 3429 and 3440 cm-1 respectively, λmax values appear at 305 nm for experimental and 307.75 nm for theoretical observations in acetone medium. Hirshfeld surface analysis well described the secondary internal and external interactions obtained like dnorm and di ranges -1.8551 to 1.4590 and 0.0918 to 2.6756 respectively. Comparing UV-visible spectra obtained in various solvents with the calculated TD-DFT results revealed minimal solvent effects. Molecular electrostatic potential (MEP) map and Fukui functions were employed, which indicated reactive sites of the molecule and the obtained order of nucleophilic reactivity was C16 > C2 > C8 > Cl1 > C22 > C21. The bioactivity profile probability of ANMC was theoretically explored by calculation of electrophilicity index and drug-likeness. Molecular docking of the ANMC molecule was performed with ten receptors to obtain the best ligand-protein interaction and the minimum binding energy obtained was -8.0 kcal/mol. Biomolecular stability of ANMC was investigated by Molecular Dynamic Simulation (MDS). And also the analysis of free energies showed strong interactions between the ligand and the protein.
Collapse
Affiliation(s)
- Nand Lal Verma
- Department of Chemistry, K. R. (PG) College, Mathura 281001, U.P, India
| | - Shilendra Kumar
- Department of Chemistry, R. B. S College, Agra 282002, U.P, India
| | - Mohit Kumar
- Department of Chemistry, Dr. Bhimrao Ambedkar University, Agra 282002, U.P, India
| | - Jai Pal
- Department of Chemistry, R. B. S College, Agra 282002, U.P, India
| | - Deepa Sharma
- Department of Chemistry, Dr. Bhimrao Ambedkar University, Agra 282002, U.P, India
| | - Ram Sunil Kumar Lalji
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi 110007, India
| | - Mohit Chahal
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Hari Kant
- Department of Chemistry, R. B. S College, Agra 282002, U.P, India
| | - Nisha Rathor
- Department of Chemistry, K. R. (PG) College, Mathura 281001, U.P, India.
| | - Saleem Javed
- Department of Chemistry, Jamia Millia Islamia, New Delhi, Delhi 110025, India.
| | - Gautam Jaiswar
- Department of Chemistry, Dr. Bhimrao Ambedkar University, Agra 282002, U.P, India.
| |
Collapse
|
2
|
Zhao X, Li Y, Lin S, Liu C, Guo X, Li X, He L, Chen X, Ye G. DFT studies of solvent effect in hydrogen abstraction reactions from different allyl-type monomers with benzoyl radical. BMC Chem 2023; 17:111. [PMID: 37700296 PMCID: PMC10496217 DOI: 10.1186/s13065-023-01027-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Inert allyl-type monomers have been widely documented due to reduce degradation chain transfer. Recently, we and others discovered that the [3 + 2] cyclization reaction process by a photo-driven radical reaction, which can accelerate the polymerization. It was discovered that allyl ether monomers had much higher reactivity than other allyl monomers in the suspension photopolymerization initiated by Type I photoinitiator. Since the hydrogen abstraction reaction (HAR) is the initial step of cyclization, and in order to clarify the influence of solvents effect, three allyl-type monomers were employed, containing "O", "N" and "S" atom as hydrogen donors. The benzoyl radical obtained from cleavage of photoinitiator was chosen as hydrogen acceptors. We explored the hydrogen abstraction reaction in different solvents (methanol, water and DMSO) by quantum chemistry for geometry and energy. An investigation was undertaken regarding the structural orbital by electrostatic potential (ESP) and topological analysis (ELF and LOL). The findings were also combined with the distortion model and transition state theory. We obtained the molecular interactions used independent gradient method in the Hirshfeld molecular density partition (IGMH). The Eckart's correction allowed to examine the driving factors of the hydrogen abstraction reaction tunnels and these reactions constant rates are determined in the range of 500-2500 K depending on the modified Arrhenius form in different solvents effect. Our results can provide an answer for the different reactivities.
Collapse
Affiliation(s)
- Xiaotian Zhao
- Department of Pharmacy, Chengdu Second Peoples Hospital, Chengdu, 610017, People's Republic of China
| | - YaMing Li
- Department of Stomatology, Chengdu Second Peoples Hospital, Chengdu, 610017, People's Republic of China
| | - Shibo Lin
- Department of Pharmacy, Chengdu Second Peoples Hospital, Chengdu, 610017, People's Republic of China
| | - Chun Liu
- Department of Pharmacy, Chengdu Second Peoples Hospital, Chengdu, 610017, People's Republic of China
| | - Xirui Guo
- Department of Pharmacy, Chengdu Second Peoples Hospital, Chengdu, 610017, People's Republic of China
| | - Xuanhao Li
- Department of Pharmacy, Chengdu Second Peoples Hospital, Chengdu, 610017, People's Republic of China
| | - Lihui He
- Department of Pharmacy, Chengdu Second Peoples Hospital, Chengdu, 610017, People's Republic of China
| | - Xi Chen
- Department of Pharmacy, Chengdu Second Peoples Hospital, Chengdu, 610017, People's Republic of China
| | - Guodong Ye
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
3
|
Smitha Rose C, Suthan T, Mary Delphine S, Wise Bell CC, Lekshmi NP. Studies on crystal growth, experimental, structural, DFT, optical, thermal and biological studies of 3-hydroxy-4-methoxybenzaldehyde single crystals. Heliyon 2023; 9:e15219. [PMID: 37095901 PMCID: PMC10122042 DOI: 10.1016/j.heliyon.2023.e15219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/26/2023] Open
Abstract
The organic 3-hydroxy-4-methoxybenzaldehyde single crystal has been grown by the slow evaporation technique. Single crystal X-ray diffraction (XRD) study shows that the grown crystal belongs to a monoclinic crystal system with centrosymmetric space group P21/c. The spectral analysis of 3-hydroxy-4-methoxybenzaldehyde calculations was performed with the help of DFT at the B3LYP/6-311 + G(d,p) level of theory. The experimental results of FTIR and FT-Raman were compared with the computational results. Detailed interpretations of the vibrational spectra were carried out with the aid of vibrational energy distribution analysis using potential energy distribution (PED) analysis and vibrational wavenumber scaled by the WLS (Wavenumber Linear Scaling) method. The natural bond orbital (NBO) analysis was carried out to identify intramolecular hydrogen bonding. The optical properties of the grown crystal were analyzed by UV-Visible studies. Photoluminescence studies show that the high-intensity peak observed around 410 nm. The laser damage threshold value of the grown crystal has been determined using an Nd:YAG laser operating at 1064 nm. The HOMO (Highest Occupied Molecular Orbital) - LUMO (Lowest Unoccupied Molecular Orbital) was used to identify the energy gap. Hirshfeld Surface (HS) analysis was used to determine the intermolecular interactions. The thermal properties of the grown crystal were performed by Thermogravimetric (TG) and Differential thermal analyses (DTA). The kinetic and thermodynamic parameters were calculated. The surface morphology of the grown crystal was studied by using Scanning Electron Microscopy (SEM) analysis. The antibacterial and antifungal studies were analyzed.
Collapse
Affiliation(s)
- C. Smitha Rose
- Department of Physics & Research Centre, Holy Cross College, Nagercoil, 629002, India
- Affiliated to Manonmaniam Sundaranar University, Tirunelveli, 627012, India
| | - T. Suthan
- Department of Physics, Lekshmipuram College of Arts and Science, Neyyoor, 629802, India
- Affiliated to Manonmaniam Sundaranar University, Tirunelveli, 627012, India
- Corresponding author. Department of Physics, Lekshmipuram College of Arts and Science, Neyyoor, 629802, India.
| | - S. Mary Delphine
- Department of Physics & Research Centre, Holy Cross College, Nagercoil, 629002, India
- Affiliated to Manonmaniam Sundaranar University, Tirunelveli, 627012, India
| | - C. Cynitha Wise Bell
- Department of Physics, Loyola Institute of Technology and Science, Thovalai, 629302, India
| | - N.C.J. Packia Lekshmi
- Department of Allied Health Sciences, Noorul Islam Centre for Higher Education, Kumaracoil, 629180, India
| |
Collapse
|
4
|
Lefi N, Kazachenko AS, Raja M, Issaoui N, Kazachenko AS. Molecular Structure, Spectral Analysis, Molecular Docking and Physicochemical Studies of 3-Bromo-2-hydroxypyridine Monomer and Dimer as Bromodomain Inhibitors. Molecules 2023; 28:molecules28062669. [PMID: 36985641 PMCID: PMC10054851 DOI: 10.3390/molecules28062669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
In this paper, both methods (DFT and HF) were used in a theoretical investigation of 3-bromo-2-Hydroxypyridine (3-Br-2HyP) molecules where the molecular structures of the title compound have been optimized. Molecular electrostatic potential (MEP) was computed using the B3LYP/6-311++G(d,p) level of theory. The time-dependent density functional theory (TD-DFT) approach was used to simulate the HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) on the one hand to achieve the frontier orbital gap and on the other hand to calculate the UV–visible spectrum of the compound in gas phase and for different solvents. In addition, electronic localization function and Fukui functions were carried out. Intermolecular interactions were discussed by the topological AIM (atoms in molecules) approach. The thermodynamic functions have been reported with the help of spectroscopic data using statistical methods revealing the correlations between these functions and temperature. To describe the non-covalent interactions, the reduced density gradient (RDG) analysis is performed. To study the biological activity of the compound of the molecule, molecular docking studies were executed on the active sites of BRD2 inhibitors and to explore the hydrogen bond interaction, minimum binding energies with targeted receptors such as PDB ID: 5IBN, 3U5K, 6CD5 were calculated.
Collapse
Affiliation(s)
- Nizar Lefi
- Department of Physics, College of Sciences and Arts in Uglat Asugour, Qassim University, Buraydah 52571, Saudi Arabia
- Laboratory of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences, University of Monastir, Monastir 5079, Tunisia
| | - Aleksandr S. Kazachenko
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50, Bld. 24, 660036 Krasnoyarsk, Russia
- Department of Organic and Analytical Chemistry, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia
- Department of Biological Chemistry with Courses in Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University, St. Partizan Zheleznyak, Bld. 1, 660022 Krasnoyarsk, Russia
- Correspondence: (A.S.K.); (N.I.); (A.S.K.)
| | - Murugesan Raja
- Department of Physics, Govt. Thirumagal Mills College, Gudiyatham, Vellore 632602, India
| | - Noureddine Issaoui
- Laboratory of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences, University of Monastir, Monastir 5079, Tunisia
- Correspondence: (A.S.K.); (N.I.); (A.S.K.)
| | - Anna S. Kazachenko
- Department of Organic and Analytical Chemistry, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia
- Correspondence: (A.S.K.); (N.I.); (A.S.K.)
| |
Collapse
|
5
|
Intermolecular interactions in ethanol solution of OABA: Raman, FTIR, DFT, M062X, MEP, NBO, FMO, AIM, NCI, RDG analysis. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
6
|
Kaur P, Verma I, Shashikant, Khanum G, Siddiqui N, Javed S, Arora H. Dimeric ZnII complex of carboxylate-appended (2-pyridyl)alkylamine ligand and Exploration of experimental, theoretical, molecular docking and electronic excitation studies of ligand. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
7
|
DFT, Molecular Docking, Molecular Dynamics Simulation (MMGBSA) and Hirshfeld Surface Analysis of 5-Sulfosalicylic Acid. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Synthesis, crystal structure, characterization, Hirshfeld analysis, molecular docking and DFT calculations of 5-Phenylamino-isophthalic acid: A good NLO material. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132791] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
9
|
Kazachenko AS, Akman F, Vasilieva NY, Malyar YN, Fetisova OY, Lutoshkin MA, Berezhnaya YD, Miroshnikova AV, Issaoui N, Xiang Z. Sulfation of Wheat Straw Soda Lignin with Sulfamic Acid over Solid Catalysts. Polymers (Basel) 2022. [DOI: doi.org/10.3390/polym14153000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Soda lignin is a by-product of the soda process for producing cellulose from grassy raw materials. Since a method for the industrial processing of lignin of this type is still lacking, several research teams have been working on solving this problem. We first propose a modification of soda lignin with sulfamic acid over solid catalysts. As solid catalysts for lignin sulfation, modified carbon catalysts (with acid sites) and titanium and aluminum oxides have been used. In the elemental analysis, it is shown that the maximum sulfur content (16.5 wt%) was obtained with the Sibunit-4® catalyst oxidized at 400 °C. The incorporation of a sulfate group has been proven by the elemental analysis and Fourier-transform infrared spectroscopy. The molecular weight distribution has been examined by gel permeation chromatography. It has been demonstrated that the solid catalysts used in the sulfation process causes hydrolysis reactions and reduces the molecular weight and polydispersity index. It has been established by the thermal analysis that sulfated lignin is thermally stabile at temperatures of up to 200 °C. According to the atomic force microscopy data, the surface of the investigated film consists of particles with an average size of 50 nm. The characteristics of the initial and sulfated β-O-4 lignin model compounds have been calculated and recorded using the density functional theory.
Collapse
|
10
|
Kazachenko AS, Akman F, Vasilieva NY, Malyar YN, Fetisova OY, Lutoshkin MA, Berezhnaya YD, Miroshnikova AV, Issaoui N, Xiang Z. Sulfation of Wheat Straw Soda Lignin with Sulfamic Acid over Solid Catalysts. Polymers (Basel) 2022; 14:polym14153000. [PMID: 35893964 PMCID: PMC9331396 DOI: 10.3390/polym14153000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 01/18/2023] Open
Abstract
Soda lignin is a by-product of the soda process for producing cellulose from grassy raw materials. Since a method for the industrial processing of lignin of this type is still lacking, several research teams have been working on solving this problem. We first propose a modification of soda lignin with sulfamic acid over solid catalysts. As solid catalysts for lignin sulfation, modified carbon catalysts (with acid sites) and titanium and aluminum oxides have been used. In the elemental analysis, it is shown that the maximum sulfur content (16.5 wt%) was obtained with the Sibunit-4® catalyst oxidized at 400 °C. The incorporation of a sulfate group has been proven by the elemental analysis and Fourier-transform infrared spectroscopy. The molecular weight distribution has been examined by gel permeation chromatography. It has been demonstrated that the solid catalysts used in the sulfation process causes hydrolysis reactions and reduces the molecular weight and polydispersity index. It has been established by the thermal analysis that sulfated lignin is thermally stabile at temperatures of up to 200 °C. According to the atomic force microscopy data, the surface of the investigated film consists of particles with an average size of 50 nm. The characteristics of the initial and sulfated β-O-4 lignin model compounds have been calculated and recorded using the density functional theory.
Collapse
Affiliation(s)
- Aleksandr S. Kazachenko
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50, Bld. 24, 660036 Krasnoyarsk, Russia; (N.Y.V.); (Y.N.M.); (O.Y.F.); (M.A.L.); (Y.D.B.); (A.V.M.)
- School of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia
- Correspondence:
| | - Feride Akman
- Vocational School of Food, Agriculture and Livestock, University of Bingöl, Bingöl 12000, Turkey;
| | - Natalya Yu. Vasilieva
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50, Bld. 24, 660036 Krasnoyarsk, Russia; (N.Y.V.); (Y.N.M.); (O.Y.F.); (M.A.L.); (Y.D.B.); (A.V.M.)
- School of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia
| | - Yuriy N. Malyar
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50, Bld. 24, 660036 Krasnoyarsk, Russia; (N.Y.V.); (Y.N.M.); (O.Y.F.); (M.A.L.); (Y.D.B.); (A.V.M.)
- School of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia
| | - Olga Yu. Fetisova
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50, Bld. 24, 660036 Krasnoyarsk, Russia; (N.Y.V.); (Y.N.M.); (O.Y.F.); (M.A.L.); (Y.D.B.); (A.V.M.)
| | - Maxim A. Lutoshkin
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50, Bld. 24, 660036 Krasnoyarsk, Russia; (N.Y.V.); (Y.N.M.); (O.Y.F.); (M.A.L.); (Y.D.B.); (A.V.M.)
| | - Yaroslava D. Berezhnaya
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50, Bld. 24, 660036 Krasnoyarsk, Russia; (N.Y.V.); (Y.N.M.); (O.Y.F.); (M.A.L.); (Y.D.B.); (A.V.M.)
| | - Angelina V. Miroshnikova
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50, Bld. 24, 660036 Krasnoyarsk, Russia; (N.Y.V.); (Y.N.M.); (O.Y.F.); (M.A.L.); (Y.D.B.); (A.V.M.)
- School of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia
| | - Noureddine Issaoui
- Laboratory of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences, University of Monastir, Monastir 5079, Tunisia;
| | - Zhouyang Xiang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China;
| |
Collapse
|
11
|
Sharma A, Khanum G, Kumar A, Fatima A, Singh M, Abualnaja KM, Althubeiti K, Muthu S, Siddiqui N, Javed S. Conformational stability, quantum computational, spectroscopic, molecular docking and molecular dynamic simulation study of 2-hydroxy-1-naphthaldehyde. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
Rbaa M, Mequedade M, Berkiks I, Lakhrissi Y, Mague J, El Hessni A, Hadda TB, Warad I, Lakhrissi B, Zarrouk A. Toxicological and Pharmacological Studies of a Crystal Structure Derivative of 8-Hydroxyquinoline. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-06007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Quantum chemical, spectroscopic, hirshfeld surface and molecular docking studies on 2-aminobenzothiazole. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
14
|
Singh N, Fatima A, Singh M, kumar M, Verma I, Muthu S, Siddiqui N, Javed S. Exploration of experimental, theoretical, Hirshfeld surface, molecular docking and electronic excitation studies of Menadione: A potent anti-cancer agent. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118670] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
15
|
|
16
|
Sumrra SH, Mushtaq F, Ahmad F, Hussain R, Zafar W, Imran M, Zafar MN. Coordination behavior, structural, statistical and theoretical investigation of biologically active metal-based isatin compounds. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02123-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
17
|
Fatima A, Khanum G, Sharma A, Garima K, Savita S, Verma I, Siddiqui N, Javed S. Computational, spectroscopic, Hirshfeld surface, electronic state and molecular docking studies on phthalic anhydride. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131571] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
18
|
Deciphering non-covalent interactions of 1,3-Benzenedimethanaminium bis(trioxonitrate): Synthesis, empirical and computational study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
19
|
Khanum G, Fatima A, Siddiqui N, Agarwal D, Butcher R, Srivastava SK, Javed S. Synthesis, single crystal, characterization and computational study of 2-amino-N-cyclopropyl-5-ethyl-thiophene-3-carboxamide. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131890] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
20
|
Kazachenko AS, Akman F, Vasilieva NY, Issaoui N, Malyar YN, Kondrasenko AA, Borovkova VS, Miroshnikova AV, Kazachenko AS, Al-Dossary O, Wojcik MJ, Berezhnaya YD, Elsuf’ev EV. Catalytic Sulfation of Betulin with Sulfamic Acid: Experiment and DFT Calculation. Int J Mol Sci 2022. [DOI: doi.org/10.3390/ijms23031602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Betulin is an important triterpenoid substance isolated from birch bark, which, together with its sulfates, exhibits important bioactive properties. We report on a newly developed method of betulin sulfation with sulfamic acid in pyridine in the presence of an Amberlyst®15 solid acid catalyst. It has been shown that this catalyst remains stable when being repeatedly (up to four cycles) used and ensures obtaining of sulfated betulin with a sulfur content of ~10%. The introduction of the sulfate group into the betulin molecule has been proven by Fourier-transform infrared, ultraviolet-visible, and nuclear magnetic resonance spectroscopy. The Fourier-transform infrared (FTIR) spectra contain absorption bands at 1249 and 835–841 cm−1; in the UV spectra, the peak intensity decreases; and, in the nuclear magnetic resonance (NMR) spectra, of betulin disulfate, carbons С3 and С28 are completely shifted to the weak-field region (to 88.21 and 67.32 ppm, respectively) with respect to betulin. Using the potentiometric titration method, the product of acidity constants K1 and K2 of a solution of the betulin disulfate H+ form has been found to be 3.86 × 10–6 ± 0.004. It has been demonstrated by the thermal analysis that betulin and the betulin disulfate sodium salt are stable at temperatures of up to 240 and 220 °C, respectively. The density functional theory method has been used to obtain data on the most stable conformations, molecular electrostatic potential, frontier molecular orbitals, and mulliken atomic charges of betulin and betulin disulfate and to calculate the spectral characteristics of initial and sulfated betulin, which agree well with the experimental data.
Collapse
|
21
|
Kazachenko AS, Akman F, Vasilieva NY, Issaoui N, Malyar YN, Kondrasenko AA, Borovkova VS, Miroshnikova AV, Kazachenko AS, Al-Dossary O, Wojcik MJ, Berezhnaya YD, Elsuf’ev EV. Catalytic Sulfation of Betulin with Sulfamic Acid: Experiment and DFT Calculation. Int J Mol Sci 2022; 23:1602. [PMID: 35163526 PMCID: PMC8836291 DOI: 10.3390/ijms23031602] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 01/18/2023] Open
Abstract
Betulin is an important triterpenoid substance isolated from birch bark, which, together with its sulfates, exhibits important bioactive properties. We report on a newly developed method of betulin sulfation with sulfamic acid in pyridine in the presence of an Amberlyst®15 solid acid catalyst. It has been shown that this catalyst remains stable when being repeatedly (up to four cycles) used and ensures obtaining of sulfated betulin with a sulfur content of ~10%. The introduction of the sulfate group into the betulin molecule has been proven by Fourier-transform infrared, ultraviolet-visible, and nuclear magnetic resonance spectroscopy. The Fourier-transform infrared (FTIR) spectra contain absorption bands at 1249 and 835-841 cm-1; in the UV spectra, the peak intensity decreases; and, in the nuclear magnetic resonance (NMR) spectra, of betulin disulfate, carbons С3 and С28 are completely shifted to the weak-field region (to 88.21 and 67.32 ppm, respectively) with respect to betulin. Using the potentiometric titration method, the product of acidity constants K1 and K2 of a solution of the betulin disulfate H+ form has been found to be 3.86 × 10-6 ± 0.004. It has been demonstrated by the thermal analysis that betulin and the betulin disulfate sodium salt are stable at temperatures of up to 240 and 220 °C, respectively. The density functional theory method has been used to obtain data on the most stable conformations, molecular electrostatic potential, frontier molecular orbitals, and mulliken atomic charges of betulin and betulin disulfate and to calculate the spectral characteristics of initial and sulfated betulin, which agree well with the experimental data.
Collapse
Affiliation(s)
- Aleksandr S. Kazachenko
- Department of Organic and Analytical Chemistry, Institute of Nonferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (N.Y.V.); (Y.N.M.); (V.S.B.); (A.V.M.); (A.S.K.)
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok, 50, bld. 24, 660036 Krasnoyarsk, Russia; (A.A.K.); (Y.D.B.); (E.V.E.)
| | - Feride Akman
- Vocational School of Food, Agriculture and Livestock, University of Bingöl, Bingöl 12000, Turkey;
| | - Natalya Yu. Vasilieva
- Department of Organic and Analytical Chemistry, Institute of Nonferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (N.Y.V.); (Y.N.M.); (V.S.B.); (A.V.M.); (A.S.K.)
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok, 50, bld. 24, 660036 Krasnoyarsk, Russia; (A.A.K.); (Y.D.B.); (E.V.E.)
| | - Noureddine Issaoui
- Laboratory of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences, University of Monastir, Monastir 5079, Tunisia;
| | - Yuriy N. Malyar
- Department of Organic and Analytical Chemistry, Institute of Nonferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (N.Y.V.); (Y.N.M.); (V.S.B.); (A.V.M.); (A.S.K.)
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok, 50, bld. 24, 660036 Krasnoyarsk, Russia; (A.A.K.); (Y.D.B.); (E.V.E.)
| | - Aleksandr A. Kondrasenko
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok, 50, bld. 24, 660036 Krasnoyarsk, Russia; (A.A.K.); (Y.D.B.); (E.V.E.)
| | - Valentina S. Borovkova
- Department of Organic and Analytical Chemistry, Institute of Nonferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (N.Y.V.); (Y.N.M.); (V.S.B.); (A.V.M.); (A.S.K.)
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok, 50, bld. 24, 660036 Krasnoyarsk, Russia; (A.A.K.); (Y.D.B.); (E.V.E.)
| | - Angelina V. Miroshnikova
- Department of Organic and Analytical Chemistry, Institute of Nonferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (N.Y.V.); (Y.N.M.); (V.S.B.); (A.V.M.); (A.S.K.)
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok, 50, bld. 24, 660036 Krasnoyarsk, Russia; (A.A.K.); (Y.D.B.); (E.V.E.)
| | - Anna S. Kazachenko
- Department of Organic and Analytical Chemistry, Institute of Nonferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (N.Y.V.); (Y.N.M.); (V.S.B.); (A.V.M.); (A.S.K.)
| | - Omar Al-Dossary
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Marek J. Wojcik
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland;
| | - Yaroslava D. Berezhnaya
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok, 50, bld. 24, 660036 Krasnoyarsk, Russia; (A.A.K.); (Y.D.B.); (E.V.E.)
- Institute of Chemical Technologies, Siberian State University of Science and Technology, pr. Mira 82, 660049 Krasnoyarsk, Russia
| | - Evgeniy V. Elsuf’ev
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok, 50, bld. 24, 660036 Krasnoyarsk, Russia; (A.A.K.); (Y.D.B.); (E.V.E.)
| |
Collapse
|
22
|
Amalanathan M, Michael Mary MS, Beatrice ML, Delphine SM, Robert HM, Twinkle AR, Ratkovic Z, Samson Y. Synthesis, structural, spectroscopic and docking studies on (E)-1-Ferrocenyl-3-phenylpropen-1-one by the density functional theory. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.2016743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- M. Amalanathan
- Department of Physics & Research Centre, Nanjil Catholic College of Arts and Science, Kaliyakkavilai, India
| | - M. Sony Michael Mary
- Manonmaniam Sundaranar University, Tirunelveli, India
- Department of Physics & Research Centre, Nesamony Memorial Christian College, Marthandam, India
| | - M. Latha Beatrice
- Manonmaniam Sundaranar University, Tirunelveli, India
- Department of Physics & Research Centre, Holy Cross College, Nagercoil, India
| | - S. Mary Delphine
- Department of Physics & Research Centre, Holy Cross College, Nagercoil, India
| | - H. Marshan Robert
- Department of Physics & Research Centre, Women’s Christian College, Nagercoil, India
| | - A. R. Twinkle
- Department of Physics, Mar Ivanios College, Thiruvananthapuram, India
| | - Zoran Ratkovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Y. Samson
- Department of Physics, Annai Velankanni College, Tholayavattan, India
| |
Collapse
|
23
|
Vimala M, Stella Mary S, Ramalakshmi R, Muthu S, Niranjana Devi R, Irfan A. Quantum computational studies on optimization, donor-acceptor analysis and solvent effect on reactive sites, global descriptors, non-linear optical parameters of Methyl N-Boc-piperidine-3-carboxylate. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117608] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
24
|
Agarwal N, Verma I, Siddiqui N, Javed S. Experimental spectroscopic and quantum computational analysis of pyridine-2,6-dicarboxalic acid with molecular docking studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
25
|
Probing solvent effect and strong and weak interactions in 2-Nitrophenyl-hydrazine using independent gradient model and Hirshfeld from wave function calculation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
26
|
Medimagh M, Issaoui N, Gatfaoui S, Antonia Brandán S, Al-Dossary O, Marouani H, J. Wojcik M. Impact of non-covalent interactions on FT-IR spectrum and properties of 4-methylbenzylammonium nitrate. A DFT and molecular docking study. Heliyon 2021; 7:e08204. [PMID: 34754970 PMCID: PMC8556648 DOI: 10.1016/j.heliyon.2021.e08204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/09/2021] [Accepted: 10/14/2021] [Indexed: 01/18/2023] Open
Abstract
In this research, the impact of non-covalent interactions on the FT-IR spectrum and structural, electronic, topological and vibrational properties of hybrid 4-methylbenzylammonium nitrate (4MBN) have been studied combining B3LYP/CC-PVTZ calculations with molecular docking. 4MBN was synthesized and characterized by using the FT-IR spectrum while the optimized structures in gas phase and in ethanol and aqueous solutions have evidenced monodentate coordination between the nitrate and methylbenzylammonium groups, in agreement with that experimental determined for this species by X-ray diffraction. Here, non-covalent interactions were deeply analyzed in terms of topological parameters (AIM), electron localization function (ELF), localized orbital locator (LOL), Hirshfeld surface and reduced density gradient (RDG) method. Weak interactions such as H-bonds, VDW and steric effect in 4MBN were visualized and quantified by the independent gradient density (IGM) based on the promolecular density. The hyper-conjugative and the delocalization of charge in 4MBN have been elucidated by natural bonding orbital (NBO) while its chemical reactivity was studied and discussed by using molecular electrostatic potential surface (MESP), frontier molecular orbital (FMOs), density of state (DOS) and partial density of state (PDOS). The complete vibrational assignments of 69 vibration modes expected for 4MBN are reported together with the scaled force constants while the electronic transitions were evaluated by TD-DFT calculations in ethanol solution. Thermal analysis (DTA and DSC) was also determined. Molecular docking calculations have suggested that 4MBN presents biological activity and could act as a good inhibitor against schizophrenia disease.
Collapse
Affiliation(s)
- Mouna Medimagh
- University of Monastir, Laboratory of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences, Monastir, 5079, Tunisia
| | - Noureddine Issaoui
- University of Monastir, Laboratory of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences, Monastir, 5079, Tunisia
| | - Sofian Gatfaoui
- University of Carthage, Laboratory of Chemistry of Materials (LR13ES08), Faculty of Sciences of Bizerte, 7021, Tunisia
| | - Silvia Antonia Brandán
- Cátedra de Química General, Instituto de Química Inorgánica, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000, San Miguel de Tucumán, Tucumán, Argentina
| | - Omar Al-Dossary
- Department of Physics and Astronomy, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Houda Marouani
- University of Carthage, Laboratory of Chemistry of Materials (LR13ES08), Faculty of Sciences of Bizerte, 7021, Tunisia
| | - Marek J. Wojcik
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Gronostajowa 2, Poland
| |
Collapse
|
27
|
Fatima A, Bhadoria J, Srivastava SK, Verma I, Siddiqui N, Javed S. Exploration of experimental and theoretical properties of 5,5-dimethyl 3-amino-cyclohex-2-en-1-one (AMINE DIMEDONE) by DFT/TD-DFT with ethanol and DMSO as solvents and molecular docking studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116551] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
28
|
Douche D, Sert Y, Brandán SA, Kawther AA, Bilmez B, Dege N, Louzi AE, Bougrin K, Karrouchi K, Himmi B. 5-((1H-imidazol-1-yl)methyl)quinolin-8-ol as potential antiviral SARS-CoV-2 candidate: Synthesis, crystal structure, Hirshfeld surface analysis, DFT and molecular docking studies. J Mol Struct 2021; 1232:130005. [PMID: 33526951 PMCID: PMC7839438 DOI: 10.1016/j.molstruc.2021.130005] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 01/18/2023]
Abstract
A potential new drug to treat SARS-CoV-2 infections and chloroquine analogue, 5-((1H-imidazol-1-yl)methyl)quinolin-8-ol (DD1) has been here synthesized and characterized by FT-IR, 1H-NMR, 13C-NMR, ultraviolet-visible, ESI-MS and single-crystal X-ray diffraction. DD1 was optimized in gas phase, aqueous and DMSO solutions using hybrid B3LYP/6-311++G(d,p) method. Comparisons between experimental and theoretical infrared spectra, 1H and 13C NMR chemical shifts and electronic spectrum in DMSO solution evidence good concordances. Higher solvation energy was observed in aqueous solution than in DMSO, showing in aqueous solution a higher value than antiviral brincidofovir and chloroquine. on Bond orders, atomic charges and topological studies suggest that imidazole ring play a very important role in the properties of DD1. NBO and AIM analyses support the intra-molecular O15-H16•••N17 bonds of DD1 in the three media. Low gap value supports the higher reactivity of DD1 than chloroquine justified by the higher electrophilicity and low nucleophilicity. Complete vibrational assignments of DD1 in gas phase and aqueous solution are reported together with the scaled force constants. In addition, better intermolecular interactions were observed by Hirshfeld surface analysis. Finally, the molecular docking mechanism between DD1 ligand and COVID-19/6WCF and COVID-19/6Y84 receptors were studied to explore the binding modes of these compounds at the active sites. Molecular docking results have shown that the DD1 molecule can be considered as a potential agent against COVID-19/6Y84-6WCF receptors.
Collapse
Affiliation(s)
- Dhaybia Douche
- Equipe de Chimie des Plantes et de Synthèse Organique et Bioorganique-URAC23, GEOPAC, Département de Chimie, Faculté des Sciences, Université Mohammed V in Rabat, Morocco
| | - Yusuf Sert
- Sorgun Vocational School, Science and Art Faculty-Department of Physics, Yozgat Bozok University, Yozgat, Turkey
| | - Silvia A Brandán
- Cátedra de Química General, Instituto de Química Inorgánica, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000, Tucumán, Argentina
| | - Ameed Ahmed Kawther
- Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, Turkey
| | - Bayram Bilmez
- Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, Turkey
| | - Necmi Dege
- Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, Turkey
| | - Ahmed El Louzi
- Equipe de Chimie des Plantes et de Synthèse Organique et Bioorganique-URAC23, GEOPAC, Département de Chimie, Faculté des Sciences, Université Mohammed V in Rabat, Morocco
| | - Khalid Bougrin
- Equipe de Chimie des Plantes et de Synthèse Organique et Bioorganique-URAC23, GEOPAC, Département de Chimie, Faculté des Sciences, Université Mohammed V in Rabat, Morocco
- Chemical & Biochemical Sciences Green-Process Engineering (CBS-GPE) Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Benguerir, Morocco
| | - Khalid Karrouchi
- Laboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Banacer Himmi
- Equipe de Chimie des Plantes et de Synthèse Organique et Bioorganique-URAC23, GEOPAC, Département de Chimie, Faculté des Sciences, Université Mohammed V in Rabat, Morocco
- Filière Techniques de Santé, Institut Supérieur des Professions Infirmières et Techniques de Santé de Rabat, Ministère de la Santé, Morocco
| |
Collapse
|
29
|
Carbazole derivatives: Synthesis, spectroscopic characterization, antioxidant activity, molecular docking study, and the quantum chemical calculations. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115651] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
30
|
Rekik N, Salman S, Suleiman J, Farooq U, Flakus HT. IR spectral density of the υS(Cl–H→) band in gaseous (CH3)2O…HCl complex: Phase decoherence due to the anharmonic coupling theory and the bending mode effects. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2018.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
31
|
Rekik N, Salman S, Farooq U, Nakajima T, Wojcik MJ, Blaise P. Towards accurate infrared spectral density of weak H-bonds in absence of relaxation mechanisms. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 207:197-208. [PMID: 30240981 DOI: 10.1016/j.saa.2018.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/04/2018] [Accepted: 09/01/2018] [Indexed: 06/08/2023]
Abstract
Following the previous theoretical developments to completely reproduce the IR spectra of weak hydrogen bond complexes within the framework of the linear response theory (LRT), the quantum theory of the high stretching mode spectral density (SD) of weak H-bonds is reconsidered. Within the LRT theory, the SD is the one sided Fourier transform of the autocorrelation function (ACF) of the high stretching mode dipole moment operator. In order to provide more accurate theoretical bandshapes, we have explored the equivalence between the SDs given in previous studies with respect to a new quantum one, and revealed that in place of the basic equations used in the precedent works for which the SD IOld(ω)=2Re∫0∞GOld(t)e-iωtdt where the ACF GOld(t) = ⟨μ(0)μ(t)+⟩ = tr {ρ {μ(0)} {μ(t)}+}, one can use a new expression for the SD, given by INew(ω)=2ωRe∫0∞GNew(t)e-iωtdt where GNew(t)=μ(0)μ(t)+=1βtrρB∫0βμ(0)μ(t+iλℏ)+dλ. Here ρB is the Boltzmann density operator, μ(0) the dipole moment operator at initial time and μ(t) the dipole moment operator at time t in the Heisenberg picture, ℏ is the Planck constant, β is the inverse of the Boltzmann factor kBT where T is the absolute temperature and kB the Boltzmann constant. Using this formalism, we demonstrated that the new quantum approach gives the same final SD as used by previous models, and reduces to the Franck-Condon progression appearing in the Maréchal and Witkowski's pioneering approach when the relaxation mechanisms are ignored. Results of this approach shed light on the equivalence between the quantum and classical IR SD approaches for weak H-bonds in absence of medium surroundings effect, which has been a subject of debate for decades.
Collapse
Affiliation(s)
- Najeh Rekik
- Physics Department, Faculty of Science, University of Ha'il, Saudi Arabia; Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| | - Saed Salman
- Physics Department, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Umer Farooq
- Physics Department, Faculty of Science, University of Ha'il, Saudi Arabia
| | - Takahito Nakajima
- RIKEN Advanced Institute for Computational Science, 7-1-26 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Marek J Wojcik
- Laboratory of Molecular Spectroscopy, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Krakow 30-387, Poland
| | - Paul Blaise
- Laboratoire de Mathématiques et Physique (LAMPS), Université de Perpignan Via Domitia (UPVD), 52 Av. Paul Alduy, Perpignan Cedex 66860, France
| |
Collapse
|
32
|
Rekik N, Suleiman J, Blaise P, Wojcik MJ. Equivalence between the Classical and Quantum IR Spectral Density Approaches of Weak H-Bonds in the Absence of Damping. J Phys Chem A 2018; 122:2108-2115. [PMID: 29436830 DOI: 10.1021/acs.jpca.8b00269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The aim of this paper is to overhaul the quantum elucidation of the spectral density (SD) of weak H-bonds treated without taking into account any of the damping mechanisms. The reconsideration of the SD is performed within the framework the linear response theory. Working in the setting of the strong anharmonic coupling theory and the adiabatic approximation, the simplified expression of the classical SD, in the absence of dampings, is equated to be ICl(ω) = Re[∫0∞GCl(t)e-iΩt dt] in which the classical-like autocorrelation function (ACF), GCl(t), is given by GCl(t) = tr{ρ(β){μ(0)}{μ(t)}†}. With this consideration, we have shown that the classical SD is equivalent to the line shape obtained by F(ω) = ΩICl(ω), which in turn is equivalent to the quantum SD given by IQu(ω) = Re[∫0∞GQu(t)e-iΩt dt], where GQu(t) is the corresponding quantum ACF having for expression GQu(t) = (1/β) tr{ρ∫0β[μ(0)}{μ(t + iλℏ)}† dλ}. Thus, we have shown that for weak H-bonds dealt without dampings, the SDs obtained by the quantum approaches are equivalent to the SDs geted by the classical approach in which the incepation ACF is, however, of quantum nature and where the line shape is the Fourier transform of the ACF times the angular frequency. It is further shown that the classical approach dealing with the SD of weak H-bonds leads identically to the result found by Maréchal and Witkowski in their pioneering quantum treatment where they ignored the linear response theory and dampings.
Collapse
Affiliation(s)
- Najeh Rekik
- Physics Department, Faculty of Science, University of Ha'il , Kingdom of Saudi Arabia.,Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada
| | - Jamal Suleiman
- Physics Department, College of Science, King Faisal University , Al Ahsa 31982, Kingdom of Saudi Arabia
| | - Paul Blaise
- Laboratoire de Mathématiques et Physique (LAMPS), Université de Perpignan Via Domitia (UPVD) , 52 Av. Paul Alduy, 66860 Perpignan Cedex, France
| | - Marek J Wojcik
- Laboratory of Molecular Spectroscopy, Faculty of Chemistry, Jagiellonian University , Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
33
|
Fathi S, Blaise P, Ceausu-Velcescu A, Nasr S. Theoretical interpretation of the infrared lineshapes of the H- and D-bonds in liquid formic acid. Chem Phys 2017. [DOI: 10.1016/j.chemphys.2017.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
34
|
Rekik N, Alshammari MF. Electrical anharmonicity and dampings contributions to Cl- H→ stretching band in gaseous (CH 3 ) 2 O…HCl complex: Quantum dynamic study and prediction of the temperature effects. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.04.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
35
|
Rekik N. Signature of Congregated Effects of Mechanical and Electrical Anharmonicities, Fermi Resonances, and Dampings on the IR Spectra of Hydrogen Bonded Systems: Quantum Dynamic Study. J Phys Chem A 2017; 121:3555-3566. [DOI: 10.1021/acs.jpca.7b01616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Najeh Rekik
- Physics
Department, Faculty of Science, University of Ha’il, Ha’il, 81451, Kingdom of Saudi Arabia
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
36
|
Issaoui N, Ghalla H, Oujia B. A theoretical model for polarized infrared spectra of crystals of 2-naphthyl acetic acid in the OH-stretching region. JOURNAL OF APPLIED SPECTROSCOPY 2013. [DOI: 10.1007/s10812-013-9714-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
37
|
Issaoui N, Ghalla H, Oujia B. Theoretical Simulation of the Infrared Absorption Spectrum of the Strong Hydrogen and Deuterium Bond in 2-Pyridone Dimer. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ojpc.2012.24031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
38
|
Ismer L, Ireta J, Neugebauer J. A density functional theory based estimation of the anharmonic contributions to the free energy of a polypeptide helix. J Chem Phys 2011; 135:084122. [DOI: 10.1063/1.3629451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
39
|
Issaoui N, Rekik N, Oujia B, Wójcik MJ. Theoretical infrared line shapes of H-bonds within the strong anharmonic coupling theory and Fermi resonances effects. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 2010. [DOI: 10.1002/qua.22395] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
40
|
Rekik N, Wójcik MJ. On the influence of electrical anharmonicity on infrared bandshape of hydrogen bond. Chem Phys 2010. [DOI: 10.1016/j.chemphys.2010.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|