1
|
Christopher MW, Ericson AC, Klug AC, Dinglasan RR, Prentice BM, Garrett TJ. Divergent Metabolic Fates of Aromatic Amino Acid-Derived Isomers: Insights from Ex Vivo Metabolomics and HDX-HRMS/MS-Based Resolution of Tautomers. Anal Chem 2024; 96:16917-16925. [PMID: 39374072 DOI: 10.1021/acs.analchem.4c03862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Tautomers are one of the many types of isomers, and differences in tautomeric structures confer altered chemical and biological properties. Using ultrahigh-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) ex vivo metabolomics, we investigate, in whole blood, the divergent metabolism of enol and keto forms of indole-3-pyruvate (IPyA), a tautomeric product of aromatic amino acid metabolism. Two new compounds resulting from IPyA metabolism were discovered, 3-(1H-indol-3-yl)-2,3-dioxopropanoic acid or "indole-3-oxopyruvic acid" and glutathionyl-indole pyruvate (GSHIPyA), which were characterized via ultraviolet photodissociation (UVPD) and higher-energy collisional dissociation (HCD). Computational calculations support the hypothesis that GSHIPyA forms specifically through the enol form of IPyA. GSHIPyA is also hypothesized to be tautomeric, and a hydrogen-deuterium exchange-high-resolution tandem mass spectrometry (HDX-HRMS/MS) approach is developed to prove the presence of an enol and keto tautomer. HDX of GSHIPyA labels the keto form with an additional deuterium, relative to the enol form. HRMS/MS of the labeled isomers is employed to leverage the relationship of resolving power scaling inversely with the square root of m/z, for Orbitrap mass analyzers. HRMS/MS yields a smaller-molecular-weight deuterated tautomeric product ion, reducing the analyte ion m/z and thus lowering the resolving power necessary to separate the deuterated keto tautomer product ion from the [13]C product ion.
Collapse
Affiliation(s)
- Michael W Christopher
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Aiden C Ericson
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Alexander C Klug
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Rhoel R Dinglasan
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, Gainesville, Florida 32608, United States
| | - Boone M Prentice
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Timothy J Garrett
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, College of Medicine, Gainesville, Florida 32608, United States
| |
Collapse
|
2
|
Martínez-Fernández L, Ranković ML, Canon F, Nahon L, Giuliani A, Milosavljević AR, Martin-Somer A. Photodissociation of leucine-enkephalin protonated peptide: an experimental and theoretical perspective. RSC Adv 2024; 14:16809-16820. [PMID: 38784408 PMCID: PMC11112675 DOI: 10.1039/d4ra01690d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Understanding the competing processes that govern far ultraviolet photodissociation (FUV-PD) of biopolymers such as proteins is a challenge. Here, we report a combined experimental and theoretical investigation of FUV-PD of protonated leucine-enkephalin pentapeptide ([YGGFL + H]+) in the gas-phase. Time-dependent density functional theory (TD-DFT) calculations in combination with experiments and previous results for amino acids and shorter peptides help in rationalizing the evolution of the excited states. The results confirm that fragmentation of [YGGFL + H]+ results mainly from vibrationally excited species in the ground electronic state, populated after internal conversion. We also propose fragmentation mechanisms for specific photo-fragments such as tyrosine side chain loss (with an extra hydrogen) or hydrogen loss. In general, we observe the same mechanisms as for smaller peptides or protonated Tyr and Phe, that are not quenched by the presence of other amino acids. Nevertheless, we also found some differences, as for H loss, in part due to the fact that the charge is solvated by the peptide chain and not only by the COOH terminal group.
Collapse
Affiliation(s)
- Lara Martínez-Fernández
- Departamento de Química Física de Materiales, Instituto de Química Física de Materiales, Instituto de Química Física Blas Cabrera, CSIC 28006 Madrid Spain
| | - Miloš Lj Ranković
- Institute of Physics Belgrade, University of Belgrade Pregrevica 118 11080 Belgrade Serbia
| | - Francis Canon
- SOLEIL l'Orme des Merisiers, St Aubin, BP48, F-91192 Gif sur Yvette Cedex France
| | - Laurent Nahon
- SOLEIL l'Orme des Merisiers, St Aubin, BP48, F-91192 Gif sur Yvette Cedex France
| | - Alexandre Giuliani
- SOLEIL l'Orme des Merisiers, St Aubin, BP48, F-91192 Gif sur Yvette Cedex France
- INRAE, Dpet. Transform UAR1008, Rue de la Géraudière, BP 71627 F-44316 Nantes France
| | | | - Ana Martin-Somer
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid Módulo 14 28049 Spain
| |
Collapse
|
3
|
Foley CD, Lee C, Abou Taka A, Au K, Chollet E, Kubasik MA, McCaslin LM, Zwier TS. Site-Specific Photochemistry along a Protonated Peptide Scaffold. J Am Chem Soc 2024; 146:13282-13295. [PMID: 38687970 DOI: 10.1021/jacs.4c01576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
We present a detailed study of the time-dependent photophysics and photochemistry of a known conformation of the two protonated pentapeptides Leu-enkephalin (Tyrosine-Glycine-Glycine-Phenylalanine-Leucine, YGGFL) and its chromophore-swapped analogue FGGYL, carried out under cryo-cooled conditions in the gas phase. Using ultraviolet-infrared (UV-IR) double resonance, we record excited state IR spectra as a function of time delay between UV and IR pulses. We identify unique Tyr OH stretch transitions due to the S1 state and the vibrationally excited triplet state(s) formed by intersystem crossing, Tn(v). Photofragment mass spectra are recorded out of the S1 origin and following UV-IR double resonance. Several competing site-specific fragmentation pathways are discovered involving peptide backbone cleavage, Tyr side chain loss, and N-terminal NH3 loss mediated by electron transfer. In YGGFL, IR excitation in the S1 state promotes electron transfer (ET) from the aromatic ring to the N-terminal R-NH3+ group leading to loss of neutral NH3. This product channel is missing in FGGYL due to the larger distance for ET from Y(4) to NH3+. Selective loss of the Tyr side chain occurs out of an excited state process following UV excitation and is further enhanced by IR excitation in S1 and Tn(v) states of both YGGFL and FGGYL. Finally, IR excitation in the S1 or Tn(v) states fragments the peptide backbone exclusively at amide(4), producing the b4 cation. We postulate that this selective fragmentation results from intersystem crossing to produce vibrationally excited triplets with enough energy to launch the proton along a proton conduit present in the known starting structure.
Collapse
Affiliation(s)
- Casey D Foley
- Gas Phase Chemical Physics, Sandia National Laboratories, Livermore, California 94550, United States
| | - Chin Lee
- Gas Phase Chemical Physics, Sandia National Laboratories, Livermore, California 94550, United States
| | - Ali Abou Taka
- Gas Phase Chemical Physics, Sandia National Laboratories, Livermore, California 94550, United States
| | - Kendrew Au
- Gas Phase Chemical Physics, Sandia National Laboratories, Livermore, California 94550, United States
| | - Etienne Chollet
- Department of Chemistry and Biochemistry, Fairfield University, Fairfield, Connecticut 06824, United States
| | - Matthew A Kubasik
- Department of Chemistry and Biochemistry, Fairfield University, Fairfield, Connecticut 06824, United States
| | - Laura M McCaslin
- Gas Phase Chemical Physics, Sandia National Laboratories, Livermore, California 94550, United States
| | - Timothy S Zwier
- Gas Phase Chemical Physics, Sandia National Laboratories, Livermore, California 94550, United States
| |
Collapse
|
4
|
Gammelgaard SK, Petersen SB, Haselmann KF, Nielsen PK. Characterization of Insulin Dimers by Top-Down Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1910-1918. [PMID: 33084334 DOI: 10.1021/jasms.0c00257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
High-molecular weight products (HMWP) are an important critical quality attribute in research and development of insulin biopharmaceuticals. We here demonstrate on two case studies of covalent insulin dimers, induced by Fe2+ incubation or ultraviolet (UV) light stress, that de novo characterization in top-down mass spectrometry (MS) workflows can identify cross-link types and sites. On the MS2 level, electron-transfer/higher-energy collision dissociation (EThcD) efficiently cleaved the interchain disulfide bonds in the dimers to reveal cross-link connectivities between chains. The combined utilization of EThcD and 213 nm ultraviolet photodissociation (UVPD) facilitated identification of the chemical composition of the cross-links. Identification of cross-link sites between chains at residue level was achievable for both dimers with MS3 analysis of MS2 fragments cleaved at the cross-link or additionally the interchain disulfide bonds. UVPD provided identification of cross-link sites in the Fe2+-induced dimer without MS3, while cross-link site identification with MS2 was not possible for the UV light-induced dimer. Thus, using varied multistage approaches, it was discovered that in the UV light-induced dimer, Tyr14 of the A-chain participated in an -O-S- cross-link in which the sulfur was derived either from Cys7 or Cys19 of the B-chain. In the Fe2+-induced dimer, Phe1 from both B-chains were cross-linked through a -CH2-. The UV chromophoric side chain of Phe1 was indicated in the cross-link, explaining why UVPD-MS2 was effective in fragmenting the cross-link and nearby backbone bonds. Our results demonstrated that higher-energy collisional dissociation (HCD), EThcD, and UVPD combined with MS3 were powerful tools for direct de novo characterization of cross-linked insulin dimers.
Collapse
Affiliation(s)
- Simon K Gammelgaard
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7, 9220 Aalborg, Denmark
| | - Steffen B Petersen
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7, 9220 Aalborg, Denmark
| | - Kim F Haselmann
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Peter Kresten Nielsen
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| |
Collapse
|
5
|
Dörner S, Schwob L, Atak K, Schubert K, Boll R, Schlathölter T, Timm M, Bülow C, Zamudio-Bayer V, von Issendorff B, Lau JT, Techert S, Bari S. Probing Structural Information of Gas-Phase Peptides by Near-Edge X-ray Absorption Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:670-684. [PMID: 33573373 DOI: 10.1021/jasms.0c00390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Near-edge X-ray absorption mass spectrometry (NEXAMS) is an action-spectroscopy technique of growing interest for investigations into the spatial and electronic structure of biomolecules. It has been used successfully to give insights into different aspects of the photodissociation of peptides and to probe the conformation of proteins. It is a current question whether the fragmentation pathways are sensitive toward effects of conformational isomerism, tautomerism, and intramolecular interactions in gas-phase peptides. To address this issue, we studied the cationic fragments of cryogenically cooled gas-phase leucine enkephalin ([LeuEnk+H]+) and methionine enkephalin ([MetEnk+H]+) produced upon soft X-ray photon absorption at the carbon, nitrogen, and oxygen K-edges. The interpretation of the experimental ion yield spectra was supported by density-functional theory and restricted-open-shell configuration interaction with singles (DFT/ROCIS) calculations. The analysis revealed several effects that could not be rationalized based on the peptide's amino acid sequences alone. Clear differences between the partial ion yields measured for both peptides upon C 1s → π*(C═C) excitations in the aromatic amino acid side chains give evidence for a sulfur-aromatic interaction between the methionine and phenylalanine side chain of [MetEnk+H]+. Furthermore, a peak associated with N 1s → π*(C═N) transitions, linked to a tautomeric keto-to-enol conversion of peptide bonds, was only present in the photon energy resolved ion yield spectra of [MetEnk+H]+.
Collapse
Affiliation(s)
- Simon Dörner
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Lucas Schwob
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Kaan Atak
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Kaja Schubert
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Rebecca Boll
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Thomas Schlathölter
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Martin Timm
- Abteilung Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Christine Bülow
- Abteilung Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Vicente Zamudio-Bayer
- Abteilung Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Bernd von Issendorff
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany
| | - J Tobias Lau
- Abteilung Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany
| | - Simone Techert
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Sadia Bari
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
6
|
Brodbelt JS, Morrison LJ, Santos I. Ultraviolet Photodissociation Mass Spectrometry for Analysis of Biological Molecules. Chem Rev 2020; 120:3328-3380. [PMID: 31851501 PMCID: PMC7145764 DOI: 10.1021/acs.chemrev.9b00440] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of new ion-activation/dissociation methods continues to be one of the most active areas of mass spectrometry owing to the broad applications of tandem mass spectrometry in the identification and structural characterization of molecules. This Review will showcase the impact of ultraviolet photodissociation (UVPD) as a frontier strategy for generating informative fragmentation patterns of ions, especially for biological molecules whose complicated structures, subtle modifications, and large sizes often impede molecular characterization. UVPD energizes ions via absorption of high-energy photons, which allows access to new dissociation pathways relative to more conventional ion-activation methods. Applications of UVPD for the analysis of peptides, proteins, lipids, and other classes of biologically relevant molecules are emphasized in this Review.
Collapse
Affiliation(s)
- Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Lindsay J. Morrison
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Inês Santos
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
7
|
Schwob L, Dörner S, Atak K, Schubert K, Timm M, Bülow C, Zamudio-Bayer V, von Issendorff B, Lau JT, Techert S, Bari S. Site-Selective Dissociation upon Sulfur L-Edge X-ray Absorption in a Gas-Phase Protonated Peptide. J Phys Chem Lett 2020; 11:1215-1221. [PMID: 31978303 DOI: 10.1021/acs.jpclett.0c00041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Site-selective dissociation induced by core photoexcitation of biomolecules is of key importance for the understanding of radiation damage processes and dynamics and for its promising use as "chemical scissors" in various applications. However, identifying products of site-selective dissociation in large molecules is challenging at the carbon, nitrogen, and oxygen edges because of the high recurrence of these atoms and related chemical groups. In this paper, we present the observation of site-selective dissociation at the sulfur L-edge in the gas-phase peptide methionine enkephalin, which contains only a single sulfur atom. Near-edge X-ray absorption mass spectrometry has revealed that the resonant S 2p → σ*C-S excitation of the sulfur contained in the methionine side chain leads to site-selective dissociation, which is not the case after core ionization above the sulfur L-edge. The prospects of such results for the study of charge dynamics in biomolecular systems are discussed.
Collapse
Affiliation(s)
- Lucas Schwob
- Deutsches Elektronen-Synchrotron DESY , Notkestrasse 85 , 22607 Hamburg , Germany
| | - Simon Dörner
- Deutsches Elektronen-Synchrotron DESY , Notkestrasse 85 , 22607 Hamburg , Germany
| | - Kaan Atak
- Deutsches Elektronen-Synchrotron DESY , Notkestrasse 85 , 22607 Hamburg , Germany
| | - Kaja Schubert
- Deutsches Elektronen-Synchrotron DESY , Notkestrasse 85 , 22607 Hamburg , Germany
| | - Martin Timm
- Abteilung für Hochempfindliche Röntgenspektroskopie , Helmholtz Zentrum Berlin für Materialien und Energie , Albert-Einstein-Strasse 15 , 12489 Berlin , Germany
| | - Christine Bülow
- Abteilung für Hochempfindliche Röntgenspektroskopie , Helmholtz Zentrum Berlin für Materialien und Energie , Albert-Einstein-Strasse 15 , 12489 Berlin , Germany
| | - Vicente Zamudio-Bayer
- Abteilung für Hochempfindliche Röntgenspektroskopie , Helmholtz Zentrum Berlin für Materialien und Energie , Albert-Einstein-Strasse 15 , 12489 Berlin , Germany
| | - Bernd von Issendorff
- Physikalisches Institut , Universität Freiburg , Hermann-Herder-Straße 3 , 79104 Freiburg , Germany
| | - J Tobias Lau
- Abteilung für Hochempfindliche Röntgenspektroskopie , Helmholtz Zentrum Berlin für Materialien und Energie , Albert-Einstein-Strasse 15 , 12489 Berlin , Germany
- Physikalisches Institut , Universität Freiburg , Hermann-Herder-Straße 3 , 79104 Freiburg , Germany
| | - Simone Techert
- Deutsches Elektronen-Synchrotron DESY , Notkestrasse 85 , 22607 Hamburg , Germany
- Institute of X-ray Physics , University of Göttingen , Friedrich-Hund-Platz 1 , 37077 Göttingen , Germany
| | - Sadia Bari
- Deutsches Elektronen-Synchrotron DESY , Notkestrasse 85 , 22607 Hamburg , Germany
| |
Collapse
|
8
|
Shi Y, Zhou M, Zhang K, Ma L, Kong X. Chiral Differentiation of Non-Covalent Diastereomers Based on Multichannel Dissociation Induced by 213-nm Ultraviolet Photodissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2297-2305. [PMID: 31410655 DOI: 10.1007/s13361-019-02302-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/10/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
Here we present the implementation of 213-nm ultraviolet photodissociation (UVPD) in a FT-ICR mass spectrometer for chiral differentiation in the gas phase. The L/D amino acid-substituted serine octamer ions were selected as examples of diastereoisomers for chiral analysis. Several kinds of fragment ions were observed in these experiments, including fragment ions that are similar to the ones observed in corresponding collision-activated dissociation (CAD) experiments, fragment ions generated with different protonation sites by only destroying non-covalent bonds, and unique non-covalent cluster radical ions. The latter two kinds of fragment ions are found to be more sensitive to the chirality of the substituted units. Further experiments suggest that the formation of radical ions is mainly affected by chromophores on side chains of the substituted units and micro surroundings of the characterized non-covalent diastereoisomers. A comparing experiment performed by only changing the wavelength of UV laser to 266 nm shows that the 213-nm UV laser has the priority in the diversity of fragmentation pathways and potential of further application in chiral differentiation experiments.
Collapse
Affiliation(s)
- Yingying Shi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Min Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
- Department of Physics, Anhui Normal University, Wuhu, 241000, People's Republic of China
| | - Kailin Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Lifu Ma
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Xianglei Kong
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China.
- Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
9
|
Mukherjee S, Fang M, Kok WM, Kapp EA, Thombare VJ, Huguet R, Hutton CA, Reid GE, Roberts BR. Establishing Signature Fragments for Identification and Sequencing of Dityrosine Cross-Linked Peptides Using Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2019; 91:12129-12133. [DOI: 10.1021/acs.analchem.9b02986] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Soumya Mukherjee
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Mengxuan Fang
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, 3010, Australia
| | - W. Mei Kok
- University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland 4072, Australia
| | - Eugene A. Kapp
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Varsha J. Thombare
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, 3010, Australia
| | - Romain Huguet
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Craig A. Hutton
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, 3010, Australia
| | - Gavin E. Reid
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, 3010, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Blaine R. Roberts
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
10
|
Soorkia S, Jouvet C, Grégoire G. UV Photoinduced Dynamics of Conformer-Resolved Aromatic Peptides. Chem Rev 2019; 120:3296-3327. [DOI: 10.1021/acs.chemrev.9b00316] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Satchin Soorkia
- Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France
| | - Christophe Jouvet
- CNRS, Aix Marseille Université, PIIM UMR 7345, 13397, Marseille, France
| | - Gilles Grégoire
- Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France
| |
Collapse
|
11
|
Herburger A, van der Linde C, Beyer MK. Photodissociation spectroscopy of protonated leucine enkephalin. Phys Chem Chem Phys 2018; 19:10786-10795. [PMID: 28233882 DOI: 10.1039/c6cp08436b] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protonated leucine enkephalin (YGGFL) was studied by ultraviolet photodissociation (UVPD) from 225 to 300 nm utilizing an optical parametric oscillator tunable wavelength laser system (OPO). Fragments were identified by absolute mass measurement in a 9.4 T Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS). Bond cleavage was preferred in the vicinity of the two aromatic residues, resulting in high ion abundances for a4, a1, b3, y2 and y1 fragments. a, b and y ions dominated the mass spectrum, and full sequence coverage was achieved for those types. Photodissociation was most effective at the short wavelength end of the studied range, which is assigned to the onset of the La π-π* transition of the tyrosine chromophore, but worked well also at the Lb π-π* chromophore absorption maxima in the 35 000-39 000 cm-1 region. Several side-chain and internal fragments were observed. H atom loss is observed only above 41 000 cm-1, consistent with the requirement of a curve crossing to a repulsive 1πσ* state. It is suggested that the photochemically generated mobile H atom plays a role in further backbone cleavages, similar to the mechanism for electron capture dissociation. The b4 fragment is most intense at the Lb chromophore absorptions, undergoing additional fragmentation at higher photon energies. The high resolution of the FT-ICR MS revealed that out of all x and z-type fragments only x3 and x4 were formed, with low intensity. Other previously reported x- and z-fragments were re-assigned to internal fragments, based on exact mass measurement.
Collapse
Affiliation(s)
- Andreas Herburger
- Institut für Ionenphysik und Angewandte Physik, Leopold-Franzens-Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | | | | |
Collapse
|
12
|
Brodie NI, Huguet R, Zhang T, Viner R, Zabrouskov V, Pan J, Petrotchenko EV, Borchers CH. Top-Down Hydrogen-Deuterium Exchange Analysis of Protein Structures Using Ultraviolet Photodissociation. Anal Chem 2018; 90:3079-3082. [PMID: 29336549 DOI: 10.1021/acs.analchem.7b03655] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Top-down hydrogen-deuterium exchange (HDX) analysis using electron capture or transfer dissociation Fourier transform mass spectrometry (FTMS) is a powerful method for the analysis of secondary structure of proteins in solution. The resolution of the method is a function of the degree of fragmentation of backbone bonds in the proteins. While fragmentation is usually extensive near the N- and C-termini, electron capture (ECD) or electron transfer dissociation (ETD) fragmentation methods sometimes lack good coverage of certain regions of the protein, most often in the middle of the sequence. Ultraviolet photodissociation (UVPD) is a recently developed fast-fragmentation technique, which provides extensive backbone fragmentation that can be complementary in sequence coverage to the aforementioned electron-based fragmentation techniques. Here, we explore the application of electrospray ionization (ESI)-UVPD FTMS on an Orbitrap Fusion Lumos Tribrid mass spectrometer to top-down HDX analysis of proteins. We have incorporated UVPD-specific fragment-ion types and fragment-ion mixtures into our isotopic envelope fitting software (HDX Match) for the top-down HDX analysis. We have shown that UVPD data is complementary to ETD, thus improving the overall resolution when used as a combined approach.
Collapse
Affiliation(s)
- Nicholas I Brodie
- University of Victoria -Genome British Columbia Proteomics Centre , No. 3101-4464 Markham Street, Vancouver Island Technology Park , Victoria , British Columbia V8Z 7X8 , Canada
| | - Romain Huguet
- Thermo Fisher Scientific , 355 River Oaks Parkway , San Jose , California 95134 , United States
| | - Terry Zhang
- Thermo Fisher Scientific , 355 River Oaks Parkway , San Jose , California 95134 , United States
| | - Rosa Viner
- Thermo Fisher Scientific , 355 River Oaks Parkway , San Jose , California 95134 , United States
| | - Vlad Zabrouskov
- Thermo Fisher Scientific , 355 River Oaks Parkway , San Jose , California 95134 , United States
| | - Jingxi Pan
- University of Victoria -Genome British Columbia Proteomics Centre , No. 3101-4464 Markham Street, Vancouver Island Technology Park , Victoria , British Columbia V8Z 7X8 , Canada
| | - Evgeniy V Petrotchenko
- University of Victoria -Genome British Columbia Proteomics Centre , No. 3101-4464 Markham Street, Vancouver Island Technology Park , Victoria , British Columbia V8Z 7X8 , Canada
| | - Christoph H Borchers
- University of Victoria -Genome British Columbia Proteomics Centre , No. 3101-4464 Markham Street, Vancouver Island Technology Park , Victoria , British Columbia V8Z 7X8 , Canada.,Department of Biochemistry and Microbiology , University of Victoria , Petch Building, Room 270d, 3800 Finnerty Road , Victoria , British Columbia V8P 5C2 , Canada.,Gerald Bronfman Department of Oncology, Jewish General Hospital , McGill University , 3755 Côte Ste-Catherine Road , Montreal , Quebec H3T 1E2 , Canada.,Proteomics Centre, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital , McGill University , 3755 Côte Ste-Catherine Road , Montreal , Quebec H3T 1E2 , Canada
| |
Collapse
|
13
|
Schöneich C. Novel chemical degradation pathways of proteins mediated by tryptophan oxidation: tryptophan side chain fragmentation. J Pharm Pharmacol 2017; 70:655-665. [DOI: 10.1111/jphp.12688] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 12/11/2016] [Indexed: 01/04/2023]
Abstract
Abstract
Objectives
This minireview focuses on novel degradation pathways of proteins in solution via intermediary tryptophan (Trp) radical cations, which are generated via photo-induced electron transfer to suitable acceptors such as disulfide bonds.
Methods
Gas-phase mass spectrometry studies had indicated the potential for Trp radical cations to fragment via release of 3-methylene-3H-indol-1-ium from the side chain. HPLC-MS/MS analysis demonstrates that analogous fragmentation reactions occur during the exposure of peptides and proteins to light or accelerated stability testing.
Key findings
The light exposure of selected peptides and monoclonal antibodies leads to the conversion of Trp to glycine (Gly) or glycine hydroperoxide (GlyOOH), where GlyOOH could be reduced to hydroxyglycine, which undergoes subsequent cleavage. Product formation is consistent with Cα–Cβ fragmentation of intermediary Trp radical cations. For the peptide octreotide and specific glycoforms of IgG1 Fc domains, Trp side chain cleavage in aqueous solution is indicated by the formation of 3-methyleneindolenine (3-MEI), which adds to nucleophilic side chains, for example to Lys residues adjacent to the original Trp residues.
Conclusions
Trp side chain cleavage leads to novel reaction products on specific peptide and protein sequences, which may have consequences for potency and immunogenicity.
Collapse
Affiliation(s)
- Christian Schöneich
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, USA
| |
Collapse
|
14
|
Kopysov V, Makarov A, Boyarkin OV. Nonstatistical UV Fragmentation of Gas-Phase Peptides Reveals Conformers and Their Structural Features. J Phys Chem Lett 2016; 7:1067-1071. [PMID: 26950179 DOI: 10.1021/acs.jpclett.6b00292] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Solving the 3D structure of a biomolecule requires recognition of its conformers and measurements of their individual structural identities, which can be compared with calculations. We employ the phenomenon of nonstatistical photofragmentation, detected by a combination of UV cold ion spectroscopy and high-resolution mass spectrometry, to identify the main conformers of gas-phase peptides and to recover individual UV absorption and mass spectra of all of these conformers in a single laser scan. We first validate this approach with a benchmark dipeptide, Tyr-Ala, and then apply it to a decapeptide, gramicidin S. The revealed characteristic structural difference between the conformers of the latter identifies some of the previously calculated structures of gramicidin S as the most likely geometries of its remaining unsolved conformer.
Collapse
Affiliation(s)
- Vladimir Kopysov
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne , Station-6, 1015 Lausanne, Switzerland
| | - Alexander Makarov
- Thermo Fisher Scientific , Hanna-Kunath Str. 11, 28199 Bremen, Germany
| | - Oleg V Boyarkin
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne , Station-6, 1015 Lausanne, Switzerland
| |
Collapse
|
15
|
Halim MA, Girod M, MacAleese L, Lemoine J, Antoine R, Dugourd P. 213 nm Ultraviolet Photodissociation on Peptide Anions: Radical-Directed Fragmentation Patterns. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:474-86. [PMID: 26545767 DOI: 10.1007/s13361-015-1297-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/13/2015] [Accepted: 10/16/2015] [Indexed: 05/25/2023]
Abstract
Characterization of acidic peptides and proteins is greatly hindered due to lack of suitable analytical techniques. Here we present the implementation of 213 nm ultraviolet photodissociation (UVPD) in high-resolution quadrupole-Orbitrap mass spectrometer in negative polarity for peptide anions. Radical-driven backbone fragmentation provides 22 distinctive fragment ion types, achieving the complete sequence coverage for all reported peptides. Hydrogen-deficient radical anion not only promotes the cleavage of Cα-C bond but also stimulates the breaking of N-Cα and C-N bonds. Radical-directed loss of small molecules and specific side chain of amino acids are detected in these experiments. Radical containing side chain of amino acids (Tyr, Ser, Thr, and Asp) may possibly support the N-Cα backbone fragmentation. Proline comprising peptides exhibit the unusual fragment ions similar to reported earlier. Interestingly, basic amino acids such as Arg and Lys also stimulated the formation of abundant b and y ions of the related peptide anions. Loss of hydrogen atom from the charge-reduced radical anion and fragment ions are rationalized by time-dependent density functional theory (TDDFT) calculation, locating the potential energy surface (PES) of ππ* and repulsive πσ* excited states of a model amide system.
Collapse
Affiliation(s)
- Mohammad A Halim
- Institut Lumière Matière, Université Lyon 1 - CNRS, Université de Lyon, 69622, Villeurbanne Cedex, France
| | - Marion Girod
- Institut des Sciences Analytiques, Université Lyon 1 - CNRS, Université de Lyon, 69622, Villeurbanne Cedex, France
| | - Luke MacAleese
- Institut Lumière Matière, Université Lyon 1 - CNRS, Université de Lyon, 69622, Villeurbanne Cedex, France
| | - Jérôme Lemoine
- Institut des Sciences Analytiques, Université Lyon 1 - CNRS, Université de Lyon, 69622, Villeurbanne Cedex, France
| | - Rodolphe Antoine
- Institut Lumière Matière, Université Lyon 1 - CNRS, Université de Lyon, 69622, Villeurbanne Cedex, France
| | - Philippe Dugourd
- Institut Lumière Matière, Université Lyon 1 - CNRS, Université de Lyon, 69622, Villeurbanne Cedex, France.
| |
Collapse
|
16
|
Ranković ML, Canon F, Nahon L, Giuliani A, Milosavljević AR. Photoinduced fragmentation of gas-phase protonated leucine- enkephalin peptide in the VUV range. ACTA ACUST UNITED AC 2015. [DOI: 10.1088/1742-6596/635/1/012034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Kopysov V, Boyarkin OV. Resonance Energy Transfer Relates the Gas-Phase Structure and Pharmacological Activity of Opioid Peptides. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201508915] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Resonance Energy Transfer Relates the Gas-Phase Structure and Pharmacological Activity of Opioid Peptides. Angew Chem Int Ed Engl 2015; 55:689-92. [DOI: 10.1002/anie.201508915] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Indexed: 11/07/2022]
|
19
|
Kopysov V, Makarov A, Boyarkin OV. Colors for Molecular Masses: Fusion of Spectroscopy and Mass Spectrometry for Identification of Biomolecules. Anal Chem 2015; 87:4607-11. [DOI: 10.1021/acs.analchem.5b00822] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Vladimir Kopysov
- Laboratoire
de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Alexander Makarov
- Thermo Fisher Scientific, Hanna-Kunath
Strasse 11, 28199 Bremen, Germany
| | - Oleg V. Boyarkin
- Laboratoire
de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
20
|
Oh HB, Moon B. Radical-driven peptide backbone dissociation tandem mass spectrometry. MASS SPECTROMETRY REVIEWS 2015; 34:116-132. [PMID: 24863492 DOI: 10.1002/mas.21426] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 05/06/2013] [Accepted: 11/20/2013] [Indexed: 06/03/2023]
Abstract
In recent years, a number of novel tandem mass spectrometry approaches utilizing radical-driven peptide gas-phase fragmentation chemistry have been developed. These approaches show a peptide fragmentation pattern quite different from that of collision-induced dissociation (CID). The peptide fragmentation features of these approaches share some in common with electron capture dissociation (ECD) or electron transfer dissociation (ETD) without the use of sophisticated equipment such as a Fourier-transform mass spectrometer. For example, Siu and coworkers showed that CID of transition metal (ligand)-peptide ternary complexes led to the formation of peptide radical ions through dissociative electron transfer (Chu et al., 2000. J Phys Chem B 104:3393-3397). The subsequent collisional activation of the generated radical ions resulted in a number of characteristic product ions, including a, c, x, z-type fragments and notable side-chain losses. Another example is the free radical initiated peptide sequencing (FRIPS) approach, in which Porter et al. and Beauchamp et al. independently introduced a free radical initiator to the primary amine group of the lysine side chain or N-terminus of peptides (Masterson et al., 2004. J Am Chem Soc 126:720-721; Hodyss et al., 2005 J Am Chem Soc 127: 12436-12437). Photodetachment of gaseous multiply charged peptide anions (Joly et al., 2008. J Am Chem Soc 130:13832-13833) and UV photodissociation of photolabile radical precursors including a C-I bond (Ly & Julian, 2008. J Am Chem Soc 130:351-358; Ly & Julian, 2009. J Am Soc Mass Spectrom 20:1148-1158) also provide another route to generate radical ions. In this review, we provide a brief summary of recent results obtained through the radical-driven peptide backbone dissociation tandem mass spectrometry approach.
Collapse
Affiliation(s)
- Han Bin Oh
- Department of Chemistry, Sogang University, Seoul, 121-742, Republic of Korea
| | | |
Collapse
|
21
|
Giuliani A, Milosavljević AR, Canon F, Nahon L. Contribution of synchrotron radiation to photoactivation studies of biomolecular ions in the gas phase. MASS SPECTROMETRY REVIEWS 2014; 33:424-441. [PMID: 24375654 DOI: 10.1002/mas.21398] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Photon activation of ions in the visible and ultraviolet range attracts a growing interest, partly for its promising applications in tandem mass spectrometry. However, this task is not trivial, as it requires notably high brilliance photon sources. Hence, most of the work in that field has been performed using lasers. Synchrotron radiation is a source continuously tunable over a wide photon energy range and which possesses the necessary characteristics for ion activation. This review focuses on the array of applications of synchrotron radiation in photon activation of ions ranging from near UV to soft X-rays.
Collapse
Affiliation(s)
- Alexandre Giuliani
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, 91192, Gif-sur-Yvette, France; UAR1008 CEPIA, INRA, 44316, Nantes, France
| | | | | | | |
Collapse
|
22
|
Antoine R, Lemoine J, Dugourd P. Electron photodetachment dissociation for structural characterization of synthetic and bio-polymer anions. MASS SPECTROMETRY REVIEWS 2014; 33:501-22. [PMID: 24285407 DOI: 10.1002/mas.21402] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 12/21/2012] [Accepted: 01/08/2013] [Indexed: 05/25/2023]
Abstract
Tandem mass spectrometry (MS-MS) is a generic term evoking techniques dedicated to structural analysis, detection or quantification of molecules based on dissociation of a precursor ion into fragments. Searching for the most informative fragmentation patterns has led to the development of a vast array of activation modes that offer complementary ion reactivity and dissociation pathways. Collisional activation of ions using atoms, molecules or surface resulting in unimolecular dissociation of activated ions still plays a key role in tandem mass spectrometry. The discovery of electron capture dissociation (ECD) and then the development of other electron-ion or ion/ion reaction methods, constituted a significant breakthrough, especially for structural analysis of large biomolecules. Similarly, photon activation opened promising new frontiers in ion fragmentation owing to the ability of tightly controlled internal energy deposition and easy implementation on commercial instruments. Ion activation by photons includes slow heating methods such as infrared multiple photon dissociation (IRMPD) and black-body infrared radiative dissociation (BIRD) and higher energy methods like ultra-violet photodissociation (UVPD) and electron photo detachment dissociation (EPD). EPD occurs after UV irradiation of multiply negatively charged ions resulting in the formation of oxidized radical anions. The present paper reviews the hypothesis regarding the mechanisms of electron photo-detachment, radical formation and direct or activated dissociation pathways that support the observation of odd and even electron product ions. Finally, the value of EPD as a complementary structural analysis tool is illustrated through selected examples of synthetic polymers, oligonucleotides, polypeptides, lipids, and polysaccharides.
Collapse
Affiliation(s)
- Rodolphe Antoine
- University of Lyon, F-69622, Lyon, France; CNRS et Université Lyon 1, UMR5306, Institut Lumière Matière, Villeurbanne, France
| | | | | |
Collapse
|
23
|
Zabuga AV, Kamrath MZ, Boyarkin OV, Rizzo TR. Fragmentation mechanism of UV-excited peptides in the gas phase. J Chem Phys 2014; 141:154309. [DOI: 10.1063/1.4897158] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Aleksandra V. Zabuga
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Michael Z. Kamrath
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Oleg V. Boyarkin
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Thomas R. Rizzo
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
24
|
Féraud G, Dedonder-Lardeux C, Soorkia S, Jouvet C. Photo-fragmentation spectroscopy of benzylium and 1-phenylethyl cations. J Chem Phys 2014; 140:024302. [PMID: 24437872 DOI: 10.1063/1.4858409] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The electronic spectra of cold benzylium (C6H5-CH2 (+)) and 1-phenylethyl (C6H5-CH-CH3 (+)) cations have been recorded via photofragment spectroscopy. Benzylium and 1-phenylethyl cations produced from electrosprayed benzylamine and phenylethylamine solutions, respectively, were stored in a cryogenically cooled quadrupole ion trap and photodissociated by an OPO laser, scanned in parts of the UV and visible regions (600-225 nm). The electronic states and active vibrational modes of the benzylium and 1-phenylethyl cations as well as those of their tropylium or methyl tropylium isomers have been calculated with ab initio methods for comparison with the spectra observed. Sharp vibrational progressions are observed in the visible region while the absorption features are much broader in the UV. The visible spectrum of the benzylium cation is similar to that obtained in an argon tagging experiment [V. Dryza, N. Chalyavi, J. A. Sanelli, and E. J. Bieske, J. Chem. Phys. 137, 204304 (2012)], with an additional splitting assigned to Fermi resonances. The visible spectrum of the 1-phenylethyl cation also shows vibrational progressions. For both cations, the second electronic transition is observed in the UV, around 33,000 cm(-1) (4.1 eV) and shows a broadened vibrational progression. In both cases the S2 optimized geometry is non-planar. The third electronic transition observed around 40,000 cm(-1) (5.0 eV) is even broader with no apparent vibrational structures, which is indicative of either a fast non-radiative process or a very large change in geometry between the excited and the ground states. The oscillator strengths calculated for tropylium and methyl tropylium are weak. Therefore, these isomeric structures are most likely not responsible for these absorption features. Finally, the fragmentation pattern changes in the second and third electronic states: C2H2 loss becomes predominant at higher excitation energies, for both cations.
Collapse
Affiliation(s)
- Géraldine Féraud
- Physique des Interactions Ioniques et Moleculaires, UMR CNRS 7345, Aix-Marseille Université, Avenue Escadrille Normandie-Niémen, 13397 Marseille Cedex 20, France
| | - Claude Dedonder-Lardeux
- Physique des Interactions Ioniques et Moleculaires, UMR CNRS 7345, Aix-Marseille Université, Avenue Escadrille Normandie-Niémen, 13397 Marseille Cedex 20, France
| | - Satchin Soorkia
- Institut des Sciences Moléculaires d'Orsay, CNRS UMR 8214, Université Paris Sud 11, 91405 Orsay Cedex, France
| | - Christophe Jouvet
- Physique des Interactions Ioniques et Moleculaires, UMR CNRS 7345, Aix-Marseille Université, Avenue Escadrille Normandie-Niémen, 13397 Marseille Cedex 20, France
| |
Collapse
|
25
|
Kopysov V, Nagornova NS, Boyarkin OV. Identification of Tyrosine-Phosphorylated Peptides Using Cold Ion Spectroscopy. J Am Chem Soc 2014; 136:9288-91. [DOI: 10.1021/ja5053544] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vladimir Kopysov
- Laboratoire
de Chimie Physique
Moléculaire, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Natalia S. Nagornova
- Laboratoire
de Chimie Physique
Moléculaire, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Oleg V. Boyarkin
- Laboratoire
de Chimie Physique
Moléculaire, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
26
|
Aponte JR, Vasicek L, Swaminathan J, Xu H, Koag MC, Lee S, Brodbelt JS. Streamlining bottom-up protein identification based on selective ultraviolet photodissociation (UVPD) of chromophore-tagged histidine- and tyrosine-containing peptides. Anal Chem 2014; 86:6237-44. [PMID: 24897623 DOI: 10.1021/ac403654m] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We report a fast and highly efficient diazonium reaction that couples a nitroazobenzene chromophore to tyrosine and histidine residues, thus endowing peptides with high photoabsorption cross sections at 351 nm in the gas phase. Only the tagged peptides undergo ultraviolet photodissociation (UVPD) at 351 nm, as demonstrated for several Tyr- and His-containing peptides from protein digests. Additional selectivity is achieved by the integration of the UVPD-MS method with an in silico database search restricted to Tyr- and His-containing peptides. A modified MassMatrix algorithm condenses analysis by filtering the input database file to include Tyr/His-containing peptides only, thus reducing the search space and increasing confidence. In summary, derivatization of specific amino acid residues in conjunction with selective activation of the derivatized peptides provides a streamlined approach to shotgun proteomics.
Collapse
Affiliation(s)
- Julia R Aponte
- Department of Chemistry, The University of Texas at Austin , 1 University Station A5300, Austin, Texas 78712, United States
| | | | | | | | | | | | | |
Collapse
|
27
|
Brodbelt JS. Photodissociation mass spectrometry: new tools for characterization of biological molecules. Chem Soc Rev 2014; 43:2757-83. [PMID: 24481009 PMCID: PMC3966968 DOI: 10.1039/c3cs60444f] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photodissociation mass spectrometry combines the ability to activate and fragment ions using photons with the sensitive detection of the resulting product ions by mass spectrometry. This combination affords a versatile tool for characterization of biological molecules. The scope and breadth of photodissociation mass spectrometry have increased substantially over the past decade as new research groups have entered the field and developed a number of innovative applications that illustrate the ability of photodissociation to produce rich fragmentation patterns, to cleave bonds selectively, and to target specific molecules based on incorporation of chromophores. This review focuses on many of the key developments in photodissociation mass spectrometry over the past decade with a particular emphasis on its applications to biological molecules.
Collapse
|
28
|
Webber N, He Y, Reilly JP. 157 nm photodissociation of dipeptide ions containing N-terminal arginine. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:196-203. [PMID: 24310819 DOI: 10.1007/s13361-013-0762-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 06/02/2023]
Abstract
Twenty singly-charged dipeptide ions with N-terminal arginine were photodissociated using 157 nm light in both a linear ion-trap mass spectrometer and a MALDI-TOF-TOF mass spectrometer. Analogous to previous work on dipeptides containing C-terminal arginine, this set of samples enabled insights into the photofragmentation propensities associated with individual residues. In addition to familiar products such as a-, d-, and immonium ions, m2 and m2+13 ions were also observed. Certain side chains tended to cleave between their β and γ carbons without necessarily forming d- or w-type ions, and a few other ions were produced by the high-energy fragmentation of multiple bonds.
Collapse
Affiliation(s)
- Nathaniel Webber
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | | | | |
Collapse
|
29
|
Lai CK, Ng DCM, Pang HF, Le Blanc JCY, Hager JW, Fang DC, Cheung ASC, Chu IK. Laser-induced dissociation of singly protonated peptides at 193 and 266 nm within a hybrid linear ion trap mass spectrometer. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:1119-27. [PMID: 23592116 DOI: 10.1002/rcm.6545] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/08/2013] [Accepted: 02/13/2013] [Indexed: 05/16/2023]
Abstract
RATIONALE We implemented, for the first time, laser-induced dissociation (LID) within a modified hybrid linear ion trap mass spectrometer, QTrap, while preserving the original scanning capabilities and routine performance of the instrument. METHODS Precursor ions of interest were mass-selected in the first quadrupole (Q1), trapped in the radiofrequency-only quadrupole (q2), photodissociated under irradiation with a 193- or 266-nm laser beam in the third quadrupole (q3), and mass-analyzed using the linear ion trap. RESULTS LID of singly charged protonated peptides revealed, in addition to conventional amide-bond cleavages, preferential fragmentation at Cα -C/N-Cα bonds of the backbone as well as at the Cα -Cβ /Cβ -Cγ bonds of the side-chains. The LID spectra of [M+H](+) featured product ions that were very similar to the observed radical-induced fragmentations in the CID spectra of analogous odd-electron radical cations generated through dissociative electron-transfer in metal-ligand-peptide complexes or through laser photolysis of iodopeptides. CONCLUSIONS LID of [M+H](+) ions results in fragmentation channels that are comparable with those observed upon the CID of M(•+) ions, with a range of fascinating radical-induced fragmentations.
Collapse
Affiliation(s)
- Cheuk-Kuen Lai
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
He Y, Webber N, Reilly JP. 157 nm photodissociation of a complete set of dipeptide ions containing C-terminal arginine. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:675-683. [PMID: 23378257 DOI: 10.1007/s13361-012-0514-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/17/2012] [Accepted: 07/18/2012] [Indexed: 06/01/2023]
Abstract
Twenty singly-charged dipeptide ions with C-terminal arginine were photodissociated with 157 nm light and their tandem mass spectra recorded. Many of the small product ions that were observed are standard peptide fragments that have been commonly seen in VUV photodissociation studies. However, the study of a library of dipeptides containing all 20 N-terminal amino acids enabled the recognition of trends associated with the occurrence of w-, v-, and immonium ions, the observation of competition between forming N- and C-terminal fragments in dipeptide RR, and the identification of some unusual fragment ions appearing at masses of 183, 187, 196, and 197 Da. A highly accurate internal calibration of the photodissociation TOF-TOF data enabled molecular formulae for these four product ions to be derived. Their proposed structures reflect the rather high-energy nature of this fragmentation phenomenon.
Collapse
Affiliation(s)
- Yi He
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | | | | |
Collapse
|
31
|
Haywood J, Mozziconacci O, Allegre KM, Kerwin BA, Schöneich C. Light-induced conversion of Trp to Gly and Gly hydroperoxide in IgG1. Mol Pharm 2013; 10:1146-50. [PMID: 23363477 DOI: 10.1021/mp300680c] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The exposure of IgG1 in aqueous solution to light with λ = 254 nm or λ > 295 nm yields products consistent with Trp radical cation formation followed by (α)C-(β)C cleavage of the Trp side chain. The resulting glycyl radicals either are reduced to Gly or add oxygen prior to reduction to Gly hydroperoxide. Photoirradiation at λ = 254 nm targets Trp at positions 191 (light chain), 309 and 377 (heavy chain) while photoirradiation at λ > 295 nm targets Trp at position 309 (heavy chain). Mechanistically, the formation of Trp radical cations likely proceeds via photoinduced electron or hydrogen transfer to disulfide bonds, yielding thiyl radicals and thiols, where thiols may serve as reductants for the intermediary glycyl or glycylperoxyl radicals.
Collapse
Affiliation(s)
- Jessica Haywood
- Department of Pharmaceutical Chemistry, 2095 Constant Avenue, University of Kansas, 2095 Constant Avenue, Lawrence, Kansas 66047, USA
| | | | | | | | | |
Collapse
|
32
|
Brunet C, Antoine R, Dugourd P, Canon F, Giuliani A, Nahon L. Formation and fragmentation of radical peptide anions: insights from vacuum ultra violet spectroscopy. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:274-281. [PMID: 22083590 DOI: 10.1007/s13361-011-0285-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 10/17/2011] [Accepted: 10/19/2011] [Indexed: 05/31/2023]
Abstract
We have studied the photodissociation of gas-phase deprotonated caerulein anions by vacuum ultraviolet (VUV) photons in the 4.5 to 20 eV range, as provided by the DESIRS beamline at the synchrotron radiation facility SOLEIL (France). Caerulein is a sulphated peptide with three aromatic residues and nine amide bonds. Electron loss is found to be the major relaxation channel at every photon energy. However, an increase in the fragmentation efficiency (neutral losses and peptide backbone cleavages) as a function of the energy is also observed. The oxidized ions, generated by electron photodetachment were further isolated and activated by collision (CID) in a MS(3) scheme. The branching ratios of the different fragments observed by CID as a function of the initial VUV photon energy are found to be independent of the initial photon energy. Thus, there is no memory effect of the initial excitation energy on the fragmentation channels of the oxidized species on the time scale of our tandem MS experiment. We also report photofragment yields as a function of photon energy for doubly deprotonated caerulein ions, for both closed-shell ([M-2H](2-)) non-radical ions and open-shell ([M-3H](2-•)) radical ions. These latter ions are generated by electron photodetachment from [M-3H](3-) precursor ions. The detachment yield increases monotonically with the energy with the appearance of several absorption bands. Spectra for radical and non-radical ions are quite similar in terms of observed bands; however, the VUV fragmentation yield is enhanced by the presence of a radical in caerulein peptides.
Collapse
|
33
|
Kumar SS, Lucas B, Soorkia S, Barat M, Fayeton JA. Cα–Cβ chromophore bond dissociation in protonated tyrosine-methionine, methionine-tyrosine, tryptophan-methionine, methionine-tryptophan and their sulfoxide analogs. Phys Chem Chem Phys 2012; 14:10225-32. [DOI: 10.1039/c2cp40773f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Enjalbert Q, Simon R, Salvador A, Antoine R, Redon S, Ayhan MM, Darbour F, Chambert S, Bretonnière Y, Dugourd P, Lemoine J. Photo-SRM: laser-induced dissociation improves detection selectivity of Selected Reaction Monitoring mode. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:3375-3381. [PMID: 22002689 DOI: 10.1002/rcm.5232] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Selected Reaction Monitoring (SRM) carried out on triple-quadrupole mass spectrometers coupled to liquid chromatography has been a reference method to develop quantitative analysis of small molecules in biological or environmental matrices for years and is currently emerging as a promising tool in clinical proteomic. However, sensitive assays in complex matrices are often hampered by the presence of co-eluted compounds that share redundant transitions with the target species. On-the-fly better selection of the precursor ion by high-field asymmetric waveform ion mobility spectrometry (FAIMS) or increased quadrupole resolution is one way to escape from interferences. In the present work we document the potential interest of substituting classical gas-collision activation mode by laser-induced dissociation in the visible wavelength range to improve the specificity of the fragmentation step. Optimization of the laser beam pathway across the different quadrupoles to ensure high photo-dissociation yield in Q2 without detectable fragmentation in Q1 was assessed with sucrose tagged with a push-pull chromophore. Next, the proof of concept that photo-SRM ensures more specific detection than does conventional collision-induced dissociation (CID)-based SRM was carried out with oxytocin peptide. Oxytocin was derivatized by the thiol-reactive QSY® 7 C(5)-maleimide quencher on cysteine residues to shift its absorption property into the visible range. Photo-SRM chromatograms of tagged oxytocin spiked in whole human plasma digest showed better detection specificity and sensitivity than CID, that resulted in extended calibration curve linearity. We anticipate that photo-SRM might significantly improve the limit of quantification of classical SRM-based assays targeting cysteine-containing peptides.
Collapse
|
35
|
Antoine R, Dugourd P. Visible and ultraviolet spectroscopy of gas phase protein ions. Phys Chem Chem Phys 2011; 13:16494-509. [PMID: 21811728 DOI: 10.1039/c1cp21531k] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Optical spectroscopy has contributed enormously to our knowledge of the structure and dynamics of atoms and molecules and is now emerging as a cornerstone of the gas phase methods available for investigating biomolecular ions. This article focuses on the UV and visible spectroscopy of peptide and protein ions stored in ion traps, with emphasis placed on recent results obtained on protein polyanions, by electron photodetachment experiments. We show that among a large number of possible de-excitation pathways, the relaxation of biomolecular polyanions is mainly achieved by electron emission following photo-excitation in electronically excited states. Electron photodetachment is a fast process that occurs prior to relaxation on vibrational degrees of freedom. Electron photodetachment yield can then be used to record gas phase action spectra for systems as large as entire proteins, without the limitation of system size that would arise from energy redistribution on numerous modes and prevent fragmentation after the absorption of a photon. The optical activity of proteins in the near UV is directly related to the electronic structure and optical absorption of aromatic amino acids (Trp, Phe and Tyr). UV spectra for peptides and proteins containing neutral, deprotonated and radical aromatic amino acids were recorded. They displayed strong bathochromic shifts. In particular, the results outline the privileged role played by open shell ions in molecular spectroscopy which, in the case of biomolecules, is directly related to their reactivity and biological functions. The optical shifts observed are sufficient to provide unambiguous fingerprints of the electronic structure of chromophores without the requirement of theoretical calculations. They constitute benchmarks for calculating the absorption spectra of chromophores embedded in entire proteins and could be used in the future to study biochemical processes in the gas phase involving charge transfer in aromatic amino acids, such as in the mediation of electron transfer or redox reactions. We then addressed the important question of the sensitivity of protein optical spectra to the intrinsic properties of protein ions, including conformation, charge state, etc., and to environmental factors. We report optical spectra for different charge states of insulin, for ubiquitin starting from native and denaturated solutions, and for apo-myoglobin protein. All these spectra are compared critically to spectra recorded in solution, in order to assess solvent effects. We also report the spectra of peptides complexed with metal cations and show that complexation gives rise to new optical transitions related to charge transfer types of excitation. The perspectives of this work include integrative approaches where UV-Vis spectroscopy could, for example, be combined with ion mobility spectrometry and high level calculations for protein structural characterization. It could also be used in spectroscopy to probe biological processes in the gas phase, with different light sources including VUV radiation (to probe different types of excitations) and ultra short pulses with time and phase modulation (to probe and control the dynamics of de-excitation or charge transfer events), and with the derivatization of proteins with chromophores to modulate their optical properties. We also envision that photo-excitation will play an important role in the future to produce intermediates with new chemical and reactive properties. Another promising route is to conduct activated electron photodetachment dissociation experiments.
Collapse
|
36
|
Palumbo AM, Smith SA, Kalcic CL, Dantus M, Stemmer PM, Reid GE. Tandem mass spectrometry strategies for phosphoproteome analysis. MASS SPECTROMETRY REVIEWS 2011; 30:600-25. [PMID: 21294150 DOI: 10.1002/mas.20310] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Protein phosphorylation is involved in nearly all essential biochemical pathways and the deregulation of phosphorylation events has been associated with the onset of numerous diseases. A multitude of tandem mass spectrometry (MS/MS) and multistage MS/MS (i.e., MS(n) ) strategies have been developed in recent years and have been applied toward comprehensive phosphoproteomic analysis, based on the interrogation of proteolytically derived phosphopeptides. However, the utility of each of these MS/MS and MS(n) approaches for phosphopeptide identification and characterization, including phosphorylation site localization, is critically dependant on the properties of the precursor ion (e.g., polarity and charge state), the specific ion activation method that is employed, and the underlying gas-phase ion chemistries, mechanisms and other factors that influence the gas-phase fragmentation behavior of phosphopeptide ions. This review therefore provides an overview of recent studies aimed at developing an improved understanding of these issues, and highlights the advantages and limitations of both established (e.g., CID) and newly maturing (e.g., ECD, ETD, photodissociation, etc.) yet complementary, ion activation techniques. This understanding is expected to facilitate the continued refinement of existing MS/MS strategies, and the development of novel MS/MS techniques for phosphopeptide analysis, with great promise in providing new insights into the role of protein phosphorylation on normal biological function, and in the onset and progression of disease. © 2011 Wiley Periodicals, Inc., Mass Spec Rev 30:600-625, 2011.
Collapse
Affiliation(s)
- Amanda M Palumbo
- Department of Chemistry, Michigan State University, East Lansing, USA
| | | | | | | | | | | |
Collapse
|
37
|
Brodbelt JS. Shedding light on the frontier of photodissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:197-206. [PMID: 21472579 DOI: 10.1007/s13361-010-0023-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 10/11/2010] [Accepted: 10/13/2010] [Indexed: 05/30/2023]
Abstract
The development of new ion activation/dissociation methods is motivated by the need for more versatile ways to characterize structures of ions, especially in the growing arena of biological mass spectrometry in which better tools for determining sequences, modifications, interactions, and conformations of biopolymers are essential. Although most agree that collision-induced dissociation (CID) remains the gold standard for ion activation/dissociation, recent inroads in electron- and photon-based activation methods have cemented their role as outstanding alternatives. This article will focus on the impact of photodissociation, including its strengths and drawbacks as an analytical tool, and its potential for further development in the next decade. Moreover, the discussion will emphasize photodissociation in quadrupole ion traps, because that platform has been used for one of the greatest arrays of new applications over the past decade.
Collapse
Affiliation(s)
- Jennifer S Brodbelt
- Department of Chemistry and Biochemistry, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
38
|
Bari S, Gonzalez-Magaña O, Reitsma G, Werner J, Schippers S, Hoekstra R, Schlathölter T. Photodissociation of protonated leucine-enkephalin in the VUV range of 8–40 eV. J Chem Phys 2011; 134:024314. [DOI: 10.1063/1.3515301] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
39
|
Ko BJ, Brodbelt JS. Ultraviolet photodissociation of carboxylate-derivatized peptides in a quadrupole ion trap. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:49-56. [PMID: 21472543 DOI: 10.1007/s13361-010-0016-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 10/13/2010] [Indexed: 05/30/2023]
Abstract
The fragmentation patterns obtained by ultraviolet photodissociation (UVPD) and collision-induced dissociation (CID) in a quadrupole ion trap mass spectrometer were compared for peptides modified at their C-termini and at acidic amino acids. Attachment of Alexa Fluor 350 or 7-amino-4-methyl-coumarin chromophores at the C-terminal and acidic residues enhances the UV absorptivity of the peptides and all fragment ions that retain the chromophore, such as the y ions that contain the chromophore-modified C-terminus. Whereas CID results in the formation of the typical array of mainly y-type and a/b-type fragment ions, UVPD produces predominantly a/b-type ions with greatly reduced abundances of y ions. Immonium ions, mostly ones from aromatic or basic amino acids, are also observed in the low m/z range upon UVPD. UVPD of peptides containing two chromophore moieties (with one at the C-terminus and another at an acidic residue) results in even more efficient photodissociation at the expense of the annihilation of almost all diagnostic b and y ions containing the chromophore.
Collapse
Affiliation(s)
- Byoung Joon Ko
- Department of Chemical Engineering, University of Texas at Austin, 1 University Station A5300, Austin, TX 78712, USA
| | | |
Collapse
|
40
|
Ly T, Kirk BB, Hettiarachchi PI, Poad BLJ, Trevitt AJ, da Silva G, Blanksby SJ. Reactions of simple and peptidic alpha-carboxylate radical anions with dioxygen in the gas phase. Phys Chem Chem Phys 2011; 13:16314-23. [DOI: 10.1039/c1cp20784a] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Larraillet V, Antoine R, Dugourd P, Lemoine J. Activated-electron photodetachment dissociation for the structural characterization of protein polyanions. Anal Chem 2010; 81:8410-6. [PMID: 19775153 DOI: 10.1021/ac901304d] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Multiply deprotonated anions [M - nH](n-) of large peptide mellitin, ubiquitin, and beta-casein proteins were subjected to laser irradiation at 260 nm in a quadrupole ion trap. For all compounds, the predominant event consecutive to laser irradiation was the detachment of an electron. The subsequent isolation and collisional activation of the oxidized [M - nH]((n-1)-*) resulted in extensive fragmentation of the peptide backbone. For mellitin peptide, nearly a complete series of c(*), z, and a(*), x product ions were observed. Applied to proteins, this technique, coined as activated-electron photodetachment dissociation (activated-EPD), achieved much more extensive sequence coverage than regular collision activated dissociation (CAD) on the even-electron components. Furthermore, the activated-EPD spectrum of beta-casein displayed phosphorylated fragment ions which suggest that the method is able to preserve part of the labile bonds of post-translational modifications. Activated-EPD is, therefore, a promising complementary technique to other dissociation techniques governed by radicals, i.e., electron capture dissociation (ECD), electron transfer dissociation (ETD), and electron detachment dissociation (EDD), for the structural characterization of large peptides and small proteins.
Collapse
|
42
|
Rijs AM, Compagnon I, Silva A, Hannam JS, Leigh DA, Kay ER, Dugourd P. In trap fragmentation and optical characterization of rotaxanes. Phys Chem Chem Phys 2010; 12:12556-61. [DOI: 10.1039/c0cp00207k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Park S, Ahn WK, Lee S, Han SY, Rhee BK, Oh HB. Ultraviolet photodissociation at 266 nm of phosphorylated peptide cations. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:3609-3620. [PMID: 19890956 DOI: 10.1002/rcm.4184] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Ultraviolet (UV) photodissociation (PD) experiments using 266 nm light were performed for a series of phosphopeptide cations in a Fourier transform mass spectrometer. The objective of the experiments was to determine whether 266 nm UV irradiation on the phosphopeptide cations would induce unique peptide backbone dissociation. In addition, the general behavior of the phosphate loss (-80 or -98 Da) was monitored, particularly for those phosphopeptides with a phosphotyrosine residue that itself is a UV chromophore. For phosphopeptides with a UV chromophore, their photodissociation behavior was very similar to that of low-energy sustained off-resonance irradiation collisionally activated dissociation (SORI-CAD), with a few exceptions. For example, b- and y-type peptide backbone fragments were prevalent, and their dephosphorylation behavior was consistent with that of the SORI-CAD results. For phosphoserine peptides, the loss of a phosphate group was always observed. On the other hand, for phosphotyrosine peptides, the phosphate loss was found to be dependent on the presence of a basic amino group in the sequence and the charge state of the precursor ions, in agreement with the CAD results in the literature. However, hydrogen atom loss or aromatic side chain loss, which is known to be the excited state specific fragmentation pathway, was rarely observed in our 266 nm UV PD experiments, in contrast to the previous UV PD literature (particularly at 220 nm). The mechanism for these observations is described in terms of dominant internal conversion followed by intramolecular vibrational energy redistribution (IVR).
Collapse
Affiliation(s)
- Soojin Park
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul 121-742, Republic of Korea
| | | | | | | | | | | |
Collapse
|
44
|
Kim TY, Schwartz JC, Reilly JP. Development of a Linear Ion Trap/Orthogonal-Time-of-Flight Mass Spectrometer for Time-Dependent Observation of Product Ions by Ultraviolet Photodissociation of Peptide Ions. Anal Chem 2009; 81:8809-17. [DOI: 10.1021/ac9013258] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tae-Young Kim
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, and Thermo Electron, 355 River Oaks Parkway, San Jose, California 95134
| | - Jae C. Schwartz
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, and Thermo Electron, 355 River Oaks Parkway, San Jose, California 95134
| | - James P. Reilly
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, and Thermo Electron, 355 River Oaks Parkway, San Jose, California 95134
| |
Collapse
|
45
|
Racaud A, Antoine R, Joly L, Mesplet N, Dugourd P, Lemoine J. Wavelength-tunable ultraviolet photodissociation (UVPD) of heparin-derived disaccharides in a linear ion trap. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:1645-1651. [PMID: 19515575 DOI: 10.1016/j.jasms.2009.04.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 04/29/2009] [Accepted: 04/29/2009] [Indexed: 05/27/2023]
Abstract
A set of three heparin-derived disaccharide deprotonated ions was isolated in a linear ion trap and subjected to UV laser irradiation in the 220-290 nm wavelength range. The dissociation yields of the deprotonated molecular ions were recorded as a function of laser wavelength. They revealed maximum absorption at 220 nm for the nonsulfated disaccharide, but centered at 240 nm for the sulfated species. The comparison of the fragmentation patterns between ultraviolet photodissociation (UVPD) at 240 nm and CID modes showed roughly the same distribution of fragment ions resulting from glycosidic bond cleavages. Interestingly, UVPD favored additional cross ring cleavages of A and X type ion series enabling easier sulfate group location. It also reduced small neutral losses (H(2)O).
Collapse
|
46
|
Wyer JA, Ehlerding A, Zettergren H, Kirketerp MBS, Brøndsted Nielsen S. Tagging of Protonated Ala-Tyr and Tyr-Ala by Crown Ether Prevents Direct Hydrogen Loss and Proton Mobility after Photoexcitation: Importance for Gas-Phase Absorption Spectra, Dissociation Lifetimes, and Channels. J Phys Chem A 2009; 113:9277-85. [DOI: 10.1021/jp904053d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jean Ann Wyer
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark
| | - Anneli Ehlerding
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark
| | - Henning Zettergren
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark
| | - Maj-Britt S. Kirketerp
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark
| | - Steen Brøndsted Nielsen
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark
| |
Collapse
|
47
|
Brodbelt JS, Wilson JJ. Infrared multiphoton dissociation in quadrupole ion traps. MASS SPECTROMETRY REVIEWS 2009; 28:390-424. [PMID: 19294735 DOI: 10.1002/mas.20216] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The development of new ion activation techniques continues to be a dynamic area of scientific discovery, in part to complement the tremendous innovations in ionization methods that have allowed the mass spectrometric analysis of an enormous array of molecules. Ion activation/dissociation provides key information about ion structures, binding energies, and differentiation of isomers, as well as affording a primary means of identifying compounds in mixtures. Numerous new activation methods have emerged over the past two decades in an effort to develop alternatives to collisional activated dissociation, the gold standard for providing structurally diagnostic fragmentation patterns. Collisional activated dissociation does not always offer sufficiently high or controllable energy deposition, thus rendering it less useful for certain classes of molecules, such as large proteins or macromolecular complexes. Photodissociation is one of the most promising alternatives and is readily implemented in ion trapping and time-of-flight mass spectrometers. Photodissociation generally entails using a laser to irradiate ions with UV, visible, or IR photons, thus resulting in internal energy deposition based on the number and wavelengths of the photons. The activation process can be extremely rapid and efficient, as well as having the potential for high total energy deposition. This review describes infrared multiphoton dissociation in quadrupole ion trap mass spectrometry. A comparison of photodissociation and collisional activated dissociation is covered, in addition to some of the methods to increase photodissociation efficiency. Numerous applications of IRMPD are discussed as well, including ones related to the analysis of drugs, peptides, nucleic acids, and oligosaccharides.
Collapse
Affiliation(s)
- Jennifer S Brodbelt
- Department of Chemistry and Biochemistry, University of Texas, Austin, TX 78712, USA.
| | | |
Collapse
|
48
|
Abstract
Mass spectrometric identification of all types of molecules relies on the observation and interpretation of ion fragmentation patterns. Peptides, proteins, carbohydrates, and nucleic acids that are often found as components of complex biological samples represent particularly important challenges. The most common strategies for fragmenting biomolecular ions include low- and high-energy collisional activation, post-source decay, and electron capture or transfer dissociation. Each of these methods has its own idiosyncrasies and advantages but encounters problems with some types of samples. Novel fragmentation methods that can offer improvements are always desirable. One approach that has been under study for years but is not yet incorporated into a commercial instrument is ultraviolet photofragmentation. This review discusses experimental results on various biological molecules that have been generated by several research groups using different light wavelengths and mass analyzers. Work involving short-wavelength vacuum ultraviolet light is particularly emphasized. The characteristics of photofragmentation are examined and its advantages summarized.
Collapse
Affiliation(s)
- James P Reilly
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
49
|
Loison C, Antoine R, Broyer M, Dugourd P, Guthmuller J, Simon D. Microsolvation Effects on the Optical Properties of Crystal Violet. Chemistry 2008; 14:7351-7. [DOI: 10.1002/chem.200800547] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
50
|
Wilson JJ, Brodbelt JS. Ultraviolet photodissociation at 355 nm of fluorescently labeled oligosaccharides. Anal Chem 2008; 80:5186-96. [PMID: 18505268 DOI: 10.1021/ac800315k] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ultraviolet photodissociation (UVPD) produces complementary fragmentation to collision-induced dissociation (CID) when implemented for activation of fluorescently labeled oligosaccharide and glycan ions. Reductive amination of oligosaccharides with fluorophore reagents results in efficient photon absorption at 355 nm, producing fragment ions from the nonreducing end that do not contain the appended fluorophore. In contrast to the fragment ions observed upon UVPD (A- and C-type ions), CID produces mainly reducing end fragments retaining the fluorophore (Y-type ions). UVPD affords better isomeric differentiation of both the lacto-N-fucopentaoses series and the lacto-N-difucohexaoses series, but in general, the combination of UVPD and CID offers the most diagnostic elucidation of complex branched oligosaccharides. Four fluorophores yielded similar MS/MS results; however, 6-aminoquinoline (6-AQ), 2-amino-9(10 H)-acridone (AMAC) and 7-aminomethylcoumarin (AMC) afforded more efficient photon absorption and subsequent dissociation than 2-aminobenzamide (2-AB). UVPD also was useful for characterization of glycans released from ribonuclease B and derivatized with 6-AQ. Lastly, electron photodetachment dissociation of oligosaccharides derivatized with 7-amino-1,3-naphthalenedisulfonic acid (AGA) yielded unique cross-ring cleavages similar to those obtained by electron detachment dissociation.
Collapse
Affiliation(s)
- Jeffrey J Wilson
- Department of Chemistry and Biochemistry, 1 University Station A5300, University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|