1
|
Molina F, Dezalay J, Tabata JI, Soorkia S, Broquier M, Hirata K, Ishiuchi SI, Fujii M, Grégoire G. Conformer-selective Photodynamics of TrpH + -H 2 O. Chemphyschem 2023; 24:e202200561. [PMID: 36177693 PMCID: PMC10092157 DOI: 10.1002/cphc.202200561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/06/2022] [Indexed: 01/20/2023]
Abstract
The photodynamics of protonated tryptophan and its mono hydrated complex TrpH+ -H2 O has been revisited. A combination of steady-state IR and UV cryogenic ion spectroscopies with picosecond pump-probe photodissociation experiments sheds new lights on the deactivation processes of TrpH+ and conformer-selected TrpH+ -H2 O complex, supported by quantum chemistry calculations at the DFT and coupled-cluster levels for the ground and excited states, respectively. TrpH+ excited at the band origin exhibits a transient of less than 100 ps, assigned to the lifetime of the excited state proton transfer (ESPT) structure. The two experimentally observed conformers of TrpH+ -H2 O have been assigned. A striking result arises from the conformer-selective photodynamics of TrpH+ -H2 O, in which a single water molecule inserted in between the ammonium and the indole ring hinders the barrierless ESPT reaction responsible for the ultra-fast deactivation process observed in the other conformer and in bare TrpH+ .
Collapse
Affiliation(s)
- Franco Molina
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405, Orsay, France.,INFIQC (CONICET-UNC). Departamento de Fisicoquímica, Fac. de Ciencias Químicas. Centro Láser de Ciencias Moleculares., Universidad Nacional de Córdoba, Ciudad Universitaria Pabellón Argentina, X5000HUA, Córdoba, Argentina
| | - Jordan Dezalay
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405, Orsay, France
| | - Jun-Ichi Tabata
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsu-ta-cho, Midori-ku, Yokohama, 226-8503, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsu-ta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Satchin Soorkia
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405, Orsay, France
| | - Michel Broquier
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405, Orsay, France
| | - Keisuke Hirata
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsu-ta-cho, Midori-ku, Yokohama, 226-8503, Japan.,Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 4259 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.,Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovation Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Shun-Ichi Ishiuchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsu-ta-cho, Midori-ku, Yokohama, 226-8503, Japan.,Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 4259 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.,Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovation Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Masaaki Fujii
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsu-ta-cho, Midori-ku, Yokohama, 226-8503, Japan.,Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovation Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsu-ta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Gilles Grégoire
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405, Orsay, France.,Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovation Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| |
Collapse
|
2
|
Dezalay J, Broquier M, Soorkia S, Hirata K, Ishiuchi SI, Fujii M, Grégoire G. Excited-state proton transfer in protonated adrenaline revealed by cryogenic UV photodissociation spectroscopy. Phys Chem Chem Phys 2020; 22:11498-11507. [PMID: 32393956 DOI: 10.1039/d0cp01127d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report a comprehensive study of the structures and deactivation processes of protonated adrenaline through cryogenic UV photodissociation spectroscopy. Single UV and double-resonance UV-UV hole burning spectroscopies have been performed and compared to coupled-cluster SCS-CC2 calculations performed on the ground and first electronic states. Three conformers were assigned, two lowest energy gauche conformers along with a higher energy conformer with an extended structure which is indeed the global minimum in solution. This demonstrates the kinetic trapping of this high energy gas phase conformer during the electrospray process. At the band origin of all conformers, the main fragmentation channel is the Cα-Cβ bond cleavage, triggered by an excited state proton transfer to the catechol ring. Internal conversion leading to the water loss channel competes with the direct dissociation and tends to prevail with the increase of excess energy brought by the UV laser. Picosecond time-resolved pump-probe spectroscopy was performed to measure the excited state lifetimes of the three conformers of AdH+, which decay with the increase of excess energy in the ππ* state, from 2 ns at the band origin down to few hundreds of picoseconds 0.5 eV to the blue. Finally, about 0.8 eV above the band origin, the πσ* state is directly reached, leading to the opening of the H-loss channel.
Collapse
Affiliation(s)
- Jordan Dezalay
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, F-91405 Orsay, France.
| | | | | | | | | | | | | |
Collapse
|
3
|
Brodbelt JS, Morrison LJ, Santos I. Ultraviolet Photodissociation Mass Spectrometry for Analysis of Biological Molecules. Chem Rev 2020; 120:3328-3380. [PMID: 31851501 PMCID: PMC7145764 DOI: 10.1021/acs.chemrev.9b00440] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of new ion-activation/dissociation methods continues to be one of the most active areas of mass spectrometry owing to the broad applications of tandem mass spectrometry in the identification and structural characterization of molecules. This Review will showcase the impact of ultraviolet photodissociation (UVPD) as a frontier strategy for generating informative fragmentation patterns of ions, especially for biological molecules whose complicated structures, subtle modifications, and large sizes often impede molecular characterization. UVPD energizes ions via absorption of high-energy photons, which allows access to new dissociation pathways relative to more conventional ion-activation methods. Applications of UVPD for the analysis of peptides, proteins, lipids, and other classes of biologically relevant molecules are emphasized in this Review.
Collapse
Affiliation(s)
- Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Lindsay J. Morrison
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Inês Santos
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
4
|
Ickert S, Beck S, Linscheid MW, Riedel J. VUV Photodissociation Induced by a Deuterium Lamp in an Ion Trap. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2114-2122. [PMID: 31429053 DOI: 10.1007/s13361-019-02282-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 05/16/2023]
Abstract
Tandem mass spectrometry represents an important analytical tool to unravel molecular structures and to study the gas-phase behavior of organic molecules. Besides commonly used methods like collision-induced dissociation and electron capture or transfer dissociation, new ultraviolet light-based techniques have the potential to synergistically add to the activation methods. Here, we present a new simple, yet robust, experimental design for polychromatic activation of trapped ions using the 115-160 nm output of a commercially available deuterium lamp. The resulting continuous dissociative excitation with photons of a wide energy range from 7.7 to 10.8 eV is studied for a comprehensive set of analyte classes in both positive and negative ion modes. While being simple, affordable, compact, and of low maintenance, the new setup initiates fragmentation of most precursor ions via their known dissociation pathways. Additionally, some new fragmentation patterns were discovered. Especially, electron loss and electron capture reactions with subsequent fragmentations were observed. For oligonucleotides, peptides, carbohydrates, and organic dyes, in comparison to collision-induced dissociation, a significantly wider fragment distribution was obtained, resulting in an information increase. Since the individual photons carry enough energy to post-ionize the nascent fragments, a permanent vacuum ultraviolet light exposure inside the ion trap potentially goes along with a general increase in detection capability.
Collapse
Affiliation(s)
- Stefanie Ickert
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
- Bundesanstalt für Materialforschung und -prüfung, Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Sebastian Beck
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Michael W Linscheid
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Jens Riedel
- Bundesanstalt für Materialforschung und -prüfung, Richard-Willstätter-Str. 11, 12489, Berlin, Germany.
| |
Collapse
|
5
|
Soorkia S, Jouvet C, Grégoire G. UV Photoinduced Dynamics of Conformer-Resolved Aromatic Peptides. Chem Rev 2019; 120:3296-3327. [DOI: 10.1021/acs.chemrev.9b00316] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Satchin Soorkia
- Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France
| | - Christophe Jouvet
- CNRS, Aix Marseille Université, PIIM UMR 7345, 13397, Marseille, France
| | - Gilles Grégoire
- Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France
| |
Collapse
|
6
|
Herburger A, van der Linde C, Beyer MK. Photodissociation spectroscopy of protonated leucine enkephalin. Phys Chem Chem Phys 2018; 19:10786-10795. [PMID: 28233882 DOI: 10.1039/c6cp08436b] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protonated leucine enkephalin (YGGFL) was studied by ultraviolet photodissociation (UVPD) from 225 to 300 nm utilizing an optical parametric oscillator tunable wavelength laser system (OPO). Fragments were identified by absolute mass measurement in a 9.4 T Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS). Bond cleavage was preferred in the vicinity of the two aromatic residues, resulting in high ion abundances for a4, a1, b3, y2 and y1 fragments. a, b and y ions dominated the mass spectrum, and full sequence coverage was achieved for those types. Photodissociation was most effective at the short wavelength end of the studied range, which is assigned to the onset of the La π-π* transition of the tyrosine chromophore, but worked well also at the Lb π-π* chromophore absorption maxima in the 35 000-39 000 cm-1 region. Several side-chain and internal fragments were observed. H atom loss is observed only above 41 000 cm-1, consistent with the requirement of a curve crossing to a repulsive 1πσ* state. It is suggested that the photochemically generated mobile H atom plays a role in further backbone cleavages, similar to the mechanism for electron capture dissociation. The b4 fragment is most intense at the Lb chromophore absorptions, undergoing additional fragmentation at higher photon energies. The high resolution of the FT-ICR MS revealed that out of all x and z-type fragments only x3 and x4 were formed, with low intensity. Other previously reported x- and z-fragments were re-assigned to internal fragments, based on exact mass measurement.
Collapse
Affiliation(s)
- Andreas Herburger
- Institut für Ionenphysik und Angewandte Physik, Leopold-Franzens-Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | | | | |
Collapse
|
7
|
Morrison LJ, Chai W, Rosenberg JA, Henkelman G, Brodbelt JS. Characterization of hydrogen bonding motifs in proteins: hydrogen elimination monitoring by ultraviolet photodissociation mass spectrometry. Phys Chem Chem Phys 2018; 19:20057-20074. [PMID: 28722742 DOI: 10.1039/c7cp04073c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Determination of structure and folding of certain classes of proteins remains intractable by conventional structural characterization strategies and has spurred the development of alternative methodologies. Mass spectrometry-based approaches have a unique capacity to differentiate protein heterogeneity due to the ability to discriminate populations, whether minor or major, featuring modifications or complexation with non-covalent ligands on the basis of m/z. Cleavage of the peptide backbone can be further utilized to obtain residue-specific structural information. Here, hydrogen elimination monitoring (HEM) upon ultraviolet photodissociation (UVPD) of proteins transferred to the gas phase via nativespray ionization is introduced as an innovative approach to deduce backbone hydrogen bonding patterns. Using well-characterized peptides and a series of proteins, prediction of the engagement of the amide carbonyl oxygen of the protein backbone in hydrogen bonding using UVPD-HEM is demonstrated to show significant agreement with the hydrogen-bonding motifs derived from molecular dynamics simulations and X-ray crystal structures.
Collapse
|
8
|
|
9
|
Schennach M, Breuker K. Probing Protein Structure and Folding in the Gas Phase by Electron Capture Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1059-67. [PMID: 25868904 PMCID: PMC4475247 DOI: 10.1007/s13361-015-1088-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/19/2015] [Accepted: 01/27/2015] [Indexed: 05/11/2023]
Abstract
The established methods for the study of atom-detailed protein structure in the condensed phases, X-ray crystallography and nuclear magnetic resonance spectroscopy, have recently been complemented by new techniques by which nearly or fully desolvated protein structures are probed in gas-phase experiments. Electron capture dissociation (ECD) is unique among these as it provides residue-specific, although indirect, structural information. In this Critical Insight article, we discuss the development of ECD for the structural probing of gaseous protein ions, its potential, and limitations.
Collapse
Affiliation(s)
- Moritz Schennach
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Kathrin Breuker
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
10
|
Mass Spectral Profile for Rapid Differentiating Beta-Lactams from Their Ring-Opened Impurities. BIOMED RESEARCH INTERNATIONAL 2015; 2015:697958. [PMID: 26090434 PMCID: PMC4450268 DOI: 10.1155/2015/697958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/01/2014] [Accepted: 10/07/2014] [Indexed: 11/17/2022]
Abstract
High performance liquid chromatography tandem mass spectrometry (HPLC MS) has been widely used for β-lactam antibiotics determination. However, its application to identify impurities of these frequently used drugs is not sufficient at present. In this job, characteristic profiles of the collision induced dissociation (CID) spectra of both β-lactams and ring-opened β-lactams were extracted from the MS data of six β-lactam antibiotics and their forty-five impurities, and were confirmed by the MS data reported in the literature. These characteristics have been successfully applied to rapid differentiation of β-lactam and ring-opened β-lactam impurities in cefixime, cefdinir, and cefaclor. However, these characteristic profiles can only be obtained under low activating voltage. They did not display in the high energy activated CID spectra. Diagnostic fragmentations for determining the localization of double bond and substituents on the thiazine ring and the side chain were also observed. In addition, several characteristic fragmentations are hopeful to be used to differentiate the configurations of C-2 on the thiazine ring of ring-opened impurities, which is generally disadvantageous of mass spectrometry. Taken together, forty-five impurities were identified from the capsules of cefixime, cefdinir, and cefaclor.
Collapse
|
11
|
Canon F, Milosavljević AR, Nahon L, Giuliani A. Action spectroscopy of a protonated peptide in the ultraviolet range. Phys Chem Chem Phys 2015; 17:25725-33. [DOI: 10.1039/c4cp04762a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Action spectroscopy of substance P, a model undecapeptide, has been probed from 5.2 eV to 20 eV.
Collapse
Affiliation(s)
- Francis Canon
- Synchrotron Soleil
- l'Orme des Merisiers
- 91192 Gif sur Yvette Cedex
- France
- UMR1324 Centre des Sciences du Goût et de l'Alimentation
| | | | - Laurent Nahon
- Synchrotron Soleil
- l'Orme des Merisiers
- 91192 Gif sur Yvette Cedex
- France
| | - Alexandre Giuliani
- Synchrotron Soleil
- l'Orme des Merisiers
- 91192 Gif sur Yvette Cedex
- France
- Uar1008
| |
Collapse
|
12
|
Giuliani A, Milosavljević AR, Canon F, Nahon L. Contribution of synchrotron radiation to photoactivation studies of biomolecular ions in the gas phase. MASS SPECTROMETRY REVIEWS 2014; 33:424-441. [PMID: 24375654 DOI: 10.1002/mas.21398] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Photon activation of ions in the visible and ultraviolet range attracts a growing interest, partly for its promising applications in tandem mass spectrometry. However, this task is not trivial, as it requires notably high brilliance photon sources. Hence, most of the work in that field has been performed using lasers. Synchrotron radiation is a source continuously tunable over a wide photon energy range and which possesses the necessary characteristics for ion activation. This review focuses on the array of applications of synchrotron radiation in photon activation of ions ranging from near UV to soft X-rays.
Collapse
Affiliation(s)
- Alexandre Giuliani
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, 91192, Gif-sur-Yvette, France; UAR1008 CEPIA, INRA, 44316, Nantes, France
| | | | | | | |
Collapse
|
13
|
Marshall DL, Hansen CS, Trevitt AJ, Oh HB, Blanksby SJ. Photodissociation of TEMPO-modified peptides: new approaches to radical-directed dissociation of biomolecules. Phys Chem Chem Phys 2014; 16:4871-9. [DOI: 10.1039/c3cp54825b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
14
|
Dixit RB, Suseela MR. Cyanobacteria: potential candidates for drug discovery. Antonie van Leeuwenhoek 2013; 103:947-61. [DOI: 10.1007/s10482-013-9898-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 02/28/2013] [Indexed: 11/30/2022]
|
15
|
Aravind G, Klærke B, Rajput J, Toker Y, Andersen LH, Bochenkova AV, Antoine R, Lemoine J, Racaud A, Dugourd P. Photodissociation pathways and lifetimes of protonated peptides and their dimers. J Chem Phys 2012; 136:014307. [PMID: 22239781 DOI: 10.1063/1.3671943] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Photodissociation lifetimes and fragment channels of gas-phase, protonated YA(n) (n = 1,2) peptides and their dimers were measured with 266 nm photons. The protonated monomers were found to have a fast dissociation channel with an exponential lifetime of ~200 ns while the protonated dimers show an additional slow dissociation component with a lifetime of ~2 μs. Laser power dependence measurements enabled us to ascribe the fast channel in the monomer and the slow channel in the dimer to a one-photon process, whereas the fast dimer channel is from a two-photon process. The slow (1 photon) dissociation channel in the dimer was found to result in cleavage of the H-bonds after energy transfer through these H-bonds. In general, the dissociation of these protonated peptides is non-prompt and the decay time was found to increase with the size of the peptides. Quantum RRKM calculations of the microcanonical rate constants also confirmed a statistical nature of the photodissociation processes in the dipeptide monomers and dimers. The classical RRKM expression gives a rate constant as an analytical function of the number of active vibrational modes in the system, estimated separately on the basis of the equipartition theorem. It demonstrates encouraging results in predicting fragmentation lifetimes of protonated peptides. Finally, we present the first experimental evidence for a photo-induced conversion of tyrosine-containing peptides into monocyclic aromatic hydrocarbon along with a formamide molecule both found in space.
Collapse
Affiliation(s)
- G Aravind
- Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kumar SS, Lucas B, Soorkia S, Barat M, Fayeton JA. Cα–Cβ chromophore bond dissociation in protonated tyrosine-methionine, methionine-tyrosine, tryptophan-methionine, methionine-tryptophan and their sulfoxide analogs. Phys Chem Chem Phys 2012; 14:10225-32. [DOI: 10.1039/c2cp40773f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
van der Rest G, Hui R, Frison G, Chamot-Rooke J. Dissociation channel dependence on peptide size observed in electron capture dissociation of tryptic peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:1631-1644. [PMID: 21953266 DOI: 10.1007/s13361-011-0166-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 05/02/2011] [Accepted: 05/06/2011] [Indexed: 05/31/2023]
Abstract
Electron capture dissociation (ECD) of a series of five residue peptides led to the observation that these small peptides did not lead to the formation of the usual c/z ECD fragments, but to a, b, y, and w fragments. In order to determine how general this behavior is for small sized peptides, the effect of peptide size on ECD fragments using a complete set of ECD spectra from the SwedECD spectra database was examined. Analysis of the database shows that b and w fragments are favored for small peptide sizes and that average fragment size shows a linear relationship to parent peptide size for most fragment types. From these data, it appears that most of the w fragments are not secondary fragments of the major z ions, in sharp contrast with the proposed mechanism leading to these ions. These data also show that c fragment distributions depend strongly on the nature of C-terminal residue basic site: arginine leads to loss of short neutral fragments, whereas lysine leads to loss of longer neutral fragments. It also appears that b ions might be produced by two different mechanisms depending on the parent peptide size. A model for the fragmentation pathways in competition is proposed. These relationships between average fragment size and parent peptide size could be further exploited also for CID fragment spectra and could be included in fragmentation prediction algorithms.
Collapse
Affiliation(s)
- Guillaume van der Rest
- Laboratoire des Mécanismes Réactionnels, Department of Chemistry, Ecole Polytechnique and CNRS, 91128, Palaiseau Cedex, France.
| | | | | | | |
Collapse
|
18
|
Antoine R, Dugourd P. Visible and ultraviolet spectroscopy of gas phase protein ions. Phys Chem Chem Phys 2011; 13:16494-509. [PMID: 21811728 DOI: 10.1039/c1cp21531k] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Optical spectroscopy has contributed enormously to our knowledge of the structure and dynamics of atoms and molecules and is now emerging as a cornerstone of the gas phase methods available for investigating biomolecular ions. This article focuses on the UV and visible spectroscopy of peptide and protein ions stored in ion traps, with emphasis placed on recent results obtained on protein polyanions, by electron photodetachment experiments. We show that among a large number of possible de-excitation pathways, the relaxation of biomolecular polyanions is mainly achieved by electron emission following photo-excitation in electronically excited states. Electron photodetachment is a fast process that occurs prior to relaxation on vibrational degrees of freedom. Electron photodetachment yield can then be used to record gas phase action spectra for systems as large as entire proteins, without the limitation of system size that would arise from energy redistribution on numerous modes and prevent fragmentation after the absorption of a photon. The optical activity of proteins in the near UV is directly related to the electronic structure and optical absorption of aromatic amino acids (Trp, Phe and Tyr). UV spectra for peptides and proteins containing neutral, deprotonated and radical aromatic amino acids were recorded. They displayed strong bathochromic shifts. In particular, the results outline the privileged role played by open shell ions in molecular spectroscopy which, in the case of biomolecules, is directly related to their reactivity and biological functions. The optical shifts observed are sufficient to provide unambiguous fingerprints of the electronic structure of chromophores without the requirement of theoretical calculations. They constitute benchmarks for calculating the absorption spectra of chromophores embedded in entire proteins and could be used in the future to study biochemical processes in the gas phase involving charge transfer in aromatic amino acids, such as in the mediation of electron transfer or redox reactions. We then addressed the important question of the sensitivity of protein optical spectra to the intrinsic properties of protein ions, including conformation, charge state, etc., and to environmental factors. We report optical spectra for different charge states of insulin, for ubiquitin starting from native and denaturated solutions, and for apo-myoglobin protein. All these spectra are compared critically to spectra recorded in solution, in order to assess solvent effects. We also report the spectra of peptides complexed with metal cations and show that complexation gives rise to new optical transitions related to charge transfer types of excitation. The perspectives of this work include integrative approaches where UV-Vis spectroscopy could, for example, be combined with ion mobility spectrometry and high level calculations for protein structural characterization. It could also be used in spectroscopy to probe biological processes in the gas phase, with different light sources including VUV radiation (to probe different types of excitations) and ultra short pulses with time and phase modulation (to probe and control the dynamics of de-excitation or charge transfer events), and with the derivatization of proteins with chromophores to modulate their optical properties. We also envision that photo-excitation will play an important role in the future to produce intermediates with new chemical and reactive properties. Another promising route is to conduct activated electron photodetachment dissociation experiments.
Collapse
|
19
|
Larraillet V, Antoine R, Dugourd P, Lemoine J. Activated-electron photodetachment dissociation for the structural characterization of protein polyanions. Anal Chem 2010; 81:8410-6. [PMID: 19775153 DOI: 10.1021/ac901304d] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Multiply deprotonated anions [M - nH](n-) of large peptide mellitin, ubiquitin, and beta-casein proteins were subjected to laser irradiation at 260 nm in a quadrupole ion trap. For all compounds, the predominant event consecutive to laser irradiation was the detachment of an electron. The subsequent isolation and collisional activation of the oxidized [M - nH]((n-1)-*) resulted in extensive fragmentation of the peptide backbone. For mellitin peptide, nearly a complete series of c(*), z, and a(*), x product ions were observed. Applied to proteins, this technique, coined as activated-electron photodetachment dissociation (activated-EPD), achieved much more extensive sequence coverage than regular collision activated dissociation (CAD) on the even-electron components. Furthermore, the activated-EPD spectrum of beta-casein displayed phosphorylated fragment ions which suggest that the method is able to preserve part of the labile bonds of post-translational modifications. Activated-EPD is, therefore, a promising complementary technique to other dissociation techniques governed by radicals, i.e., electron capture dissociation (ECD), electron transfer dissociation (ETD), and electron detachment dissociation (EDD), for the structural characterization of large peptides and small proteins.
Collapse
|
20
|
Parthasarathi R, He Y, Reilly JP, Raghavachari K. New Insights into the Vacuum UV Photodissociation of Peptides. J Am Chem Soc 2010; 132:1606-10. [DOI: 10.1021/ja907975v] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Yi He
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405
| | - James P. Reilly
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405
| | | |
Collapse
|
21
|
Park S, Ahn WK, Lee S, Han SY, Rhee BK, Oh HB. Ultraviolet photodissociation at 266 nm of phosphorylated peptide cations. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:3609-3620. [PMID: 19890956 DOI: 10.1002/rcm.4184] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Ultraviolet (UV) photodissociation (PD) experiments using 266 nm light were performed for a series of phosphopeptide cations in a Fourier transform mass spectrometer. The objective of the experiments was to determine whether 266 nm UV irradiation on the phosphopeptide cations would induce unique peptide backbone dissociation. In addition, the general behavior of the phosphate loss (-80 or -98 Da) was monitored, particularly for those phosphopeptides with a phosphotyrosine residue that itself is a UV chromophore. For phosphopeptides with a UV chromophore, their photodissociation behavior was very similar to that of low-energy sustained off-resonance irradiation collisionally activated dissociation (SORI-CAD), with a few exceptions. For example, b- and y-type peptide backbone fragments were prevalent, and their dephosphorylation behavior was consistent with that of the SORI-CAD results. For phosphoserine peptides, the loss of a phosphate group was always observed. On the other hand, for phosphotyrosine peptides, the phosphate loss was found to be dependent on the presence of a basic amino group in the sequence and the charge state of the precursor ions, in agreement with the CAD results in the literature. However, hydrogen atom loss or aromatic side chain loss, which is known to be the excited state specific fragmentation pathway, was rarely observed in our 266 nm UV PD experiments, in contrast to the previous UV PD literature (particularly at 220 nm). The mechanism for these observations is described in terms of dominant internal conversion followed by intramolecular vibrational energy redistribution (IVR).
Collapse
Affiliation(s)
- Soojin Park
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul 121-742, Republic of Korea
| | | | | | | | | | | |
Collapse
|
22
|
Antol I, Vazdar M, Barbatti M, Eckert-Maksić M. The effect of protonation on the photodissociation processes in formamide – An ab initio surface hopping dynamics study. Chem Phys 2008. [DOI: 10.1016/j.chemphys.2008.01.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
MALDI-TOF-MS detection of the low molecular weight neurotoxins anatoxin-a and homoanatoxin-a on lyophilized and fresh filaments of axenic Oscillatoria strains. Toxicon 2008; 51:1308-15. [DOI: 10.1016/j.toxicon.2008.02.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 02/22/2008] [Accepted: 02/25/2008] [Indexed: 11/16/2022]
|
24
|
Joly L, Antoine R, Broyer M, Dugourd P, Lemoine J. Specific UV photodissociation of tyrosyl-containing peptides in multistage mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2007; 42:818-24. [PMID: 17511013 DOI: 10.1002/jms.1222] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
UV photodissociation (UVPD) at 262 nm has been carried out on protonated tyrosyl-containing peptides formed by trypsin digestion of apo-transferrin. Under UVPD, the main event is the fragmentation of the C(alpha)-C(beta) bond of the tyrosyl residues leading to a radical ion 107 Da below the precursor ion. The dissociation rate of this specific cleavage appears to be strongly dependent on the peptide sequence and is more prominent on the singly protonated species than on the doubly protonated state. The fragmentation spectra resulting from collisional activation of the protonated even-electron native peptides and of the odd-electron radical species prepared by UVPD are dominated by y-type backbone cleavages. A comparison of their respective y-ion pattern shows complementarities since the combination of both increases the sequence coverage of the peptide sequence. The specific detection of the neutral loss of 107 Da from peptides witnesses the content of at least one tyrosyl residue and, though preliminary, is proposed as a potential new filtering strategy during protein database searching.
Collapse
Affiliation(s)
- Laure Joly
- Université Lyon 1, CNRS, LASIM, UMR 5579, Villeurbanne cedex, France
| | | | | | | | | |
Collapse
|
25
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2007; 42:266-277. [PMID: 17262881 DOI: 10.1002/jms.1071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|
26
|
Grégoire G, Dedonder-Lardeux C, Jouvet C, Desfrançois C, Fayeton JA. Ultrafast excited state dynamics in protonated GWG and GYG tripeptides. Phys Chem Chem Phys 2007; 9:78-82. [PMID: 17164888 DOI: 10.1039/b613585d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The excited state dynamics of two protonated tripeptides GWG and GYG has been investigated by pump/probe femtosecond measurements on photofragments, to explore the behavior of peptides where the terminal protonated amino group is not directly linked to the aromatic residue. The dynamics observed are short and surprisingly similar to the dynamics observed on the free protonated tryptophan and tyrosine aromatic amino acids. Specific photofragments observed for protonated GWG are related to the formation of a radical species WG degrees (+) after cleavage of the C(alpha)-N bond near the tryptophan residue.
Collapse
Affiliation(s)
- G Grégoire
- Laboratoire de Physique des Lasers, UMR7538 CNRS-Université Paris13, Institut Galilée, F-93430 Villetaneuse, France.
| | | | | | | | | |
Collapse
|
27
|
Poulain P, Calvo F, Antoine R, Broyer M, Dugourd P. Performances of Wang-Landau algorithms for continuous systems. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 73:056704. [PMID: 16803071 DOI: 10.1103/physreve.73.056704] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Indexed: 05/10/2023]
Abstract
The relative performances of different implementations of the Wang-Landau method are assessed on two classes of systems with continuous degrees of freedom, namely, two polypeptides and two atomic Lennard-Jones clusters. Parallel tempering Monte Carlo simulations serve as a reference, and we pay particular attention to the variations of the multiplicative factor f during the course of the simulation. For the systems studied, the Wang-Landau method is found to be of comparable accuracy as parallel tempering, but has significant difficulties in reproducing low-temperature transitions exhibited by the Lennard-Jones clusters at low temperature. Using a complementary order parameter and calculating a two-dimensional joint density of states significantly improves the situation, especially for the notoriously difficult LJ(38) system. However, while parallel tempering easily converges for LJ(31), we have not been able to get data of comparable accuracy with Wang-Landau multicanonical sampling.
Collapse
Affiliation(s)
- P Poulain
- Laboratoire de Spectrométrie Ionique et Moléculaire, UMR 5579, Université Lyon I et CNRS, Villeurbanne, France
| | | | | | | | | |
Collapse
|