1
|
Sagu ST, Huschek G, Homann T, Rawel HM. Effect of Sample Preparation on the Detection and Quantification of Selected Nuts Allergenic Proteins by LC-MS/MS. Molecules 2021; 26:4698. [PMID: 34361856 PMCID: PMC8348345 DOI: 10.3390/molecules26154698] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/20/2022] Open
Abstract
The detection and quantification of nut allergens remains a major challenge. The liquid chroma-tography tandem mass spectrometry (LC-MS/MS) is emerging as one of the most widely used methods, but sample preparation prior to the analysis is still a key issue. The objective of this work was to establish optimized protocols for extraction, tryptic digestion and LC-MS analysis of almond, cashew, hazelnut, peanut, pistachio and walnut samples. Ammonium bicar-bonate/urea extraction (Ambi/urea), SDS buffer extraction (SDS), polyvinylpolypyrroli-done (PVPP) extraction, trichloroacetic acid/acetone extraction (TCA/acetone) and chloro-form/methanol/sodium chloride precipitation (CM/NaCl) as well as the performances of con-ventional tryptic digestion and microwave-assisted breakdown were investigated. Overall, the protein extraction yields ranged from 14.9 ± 0.5 (almond extract from CM/NaCl) to 76.5 ± 1.3% (hazelnut extract from Ambi/urea). Electrophoretic profiling showed that the SDS extraction method clearly presented a high amount of extracted proteins in the range of 0-15 kDa, 15-35 kDa, 35-70 kDa and 70-250 kDa compared to the other methods. The linearity of the LC-MS methods in the range of 0 to 0.4 µg equivalent defatted nut flour was assessed and recovery of internal standards GWGG and DPLNV(d8)LKPR ranged from 80 to 120%. The identified bi-omarkers peptides were used to relatively quantifier selected allergenic protein form the inves-tigated nut samples. Considering the overall results, it can be concluded that SDS buffer allows a better protein extraction from almond, peanut and walnut samples while PVPP buffer is more appropriate for cashew, pistachio and hazelnut samples. It was also found that conventional overnight digestion is indicated for cashew, pistachio and hazelnut samples, while microwave assisted tryptic digestion is recommended for almond, hazelnut and peanut extracts.
Collapse
Affiliation(s)
- Sorel Tchewonpi Sagu
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; (S.T.S.); (T.H.)
| | - Gerd Huschek
- GV-Institut für Getreideverarbeitung GmbH, Arthur-Scheunert-Allee 40/41, 14558 Nuthetal, Germany;
| | - Thomas Homann
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; (S.T.S.); (T.H.)
| | - Harshadrai M. Rawel
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; (S.T.S.); (T.H.)
| |
Collapse
|
2
|
Rivera-Albarran ME, Ray SJ. A Novel Combined Microstrip Resonator/Nanospray Ionization Source for Microwave-Assisted Trypsin Digestion of Proteins. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1684-1696. [PMID: 32573245 DOI: 10.1021/jasms.0c00115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Enzymatic digestion of proteins is a critical step in bottom-up and middle-down proteomics. Here, we demonstrate a method for decreasing the time required for proteolytic digestion of proteins from multiple hours to minutes by using an in-line microstrip cavity for programmed microwave heating. When a nanospray emitter tip, containing a digestion sample, is exposed to a region of highly focused microwave field, the rate of proteolytic digestion is enhanced and the time required for digestion greatly decreased. The design is advantageous for mass spectrometry because the solution-based digestion can then be directly sprayed from a nanoelectrospray tip emitter, decreasing sample transfer loss and allowing the system to be used in a flow-through proteolytic workflow. Microwave-assisted digestion using this method is evaluated against standard overnight digestion protocols using a variety of proteins, evaluating sequence coverage and observed peptide location, digestion rate, and overall efficacy. The influence of applied microwave power is investigated, and enzymatic kinetic parameters are evaluated to estimate temperature within the microreactor. Finally, the modulation of the proteolytic digestion of proteins based upon the modulation of applied microwave power is demonstrated on a time scale of seconds in a flow-through system.
Collapse
Affiliation(s)
- Maria E Rivera-Albarran
- Department of Chemistry, The State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Steven J Ray
- Department of Chemistry, The State University of New York at Buffalo, Buffalo, New York 14260, United States
| |
Collapse
|
3
|
Antioxidant activity measurement and potential antioxidant peptides exploration from hydrolysates of novel continuous microwave-assisted enzymolysis of the Scomberomorus niphonius protein. Food Chem 2017; 223:89-95. [DOI: 10.1016/j.foodchem.2016.12.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 11/24/2016] [Accepted: 12/10/2016] [Indexed: 11/19/2022]
|
4
|
Esmaeilnejad-Ahranjani P, Kazemeini M, Singh G, Arpanaei A. Amine-functionalized magnetic nanocomposite particles for efficient immobilization of lipase: effects of functional molecule size on properties of the immobilized lipase. RSC Adv 2015. [DOI: 10.1039/c5ra02471d] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The size of functional molecules influences the immobilization efficiency and properties of lipase immobilized on amine-functionalized magnetite–silica nanocomposite particles.
Collapse
Affiliation(s)
- Parvaneh Esmaeilnejad-Ahranjani
- Department of Industrial and Environmental Biotechnology
- National Institute of Genetic Engineering and Biotechnology
- Tehran
- Iran
- Department of Chemical and Petroleum Engineering
| | - Mohammad Kazemeini
- Department of Chemical and Petroleum Engineering
- Sharif University of Technology
- Tehran
- Iran
| | - Gurvinder Singh
- Department of Chemical Engineering
- Norwegian University of Science and Technology
- Trondheim
- Norway
| | - Ayyoob Arpanaei
- Department of Industrial and Environmental Biotechnology
- National Institute of Genetic Engineering and Biotechnology
- Tehran
- Iran
| |
Collapse
|
5
|
Liu H, Yang CL, Ge MY, Ibrahim M, Li B, Zhao WJ, Chen GY, Zhu B, Xie GL. Regulatory role of tetR gene in a novel gene cluster of Acidovorax avenae subsp. avenae RS-1 under oxidative stress. Front Microbiol 2014; 5:547. [PMID: 25374564 PMCID: PMC4204640 DOI: 10.3389/fmicb.2014.00547] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/01/2014] [Indexed: 01/14/2023] Open
Abstract
Acidovorax avenae subsp. avenae is the causal agent of bacterial brown stripe disease in rice. In this study, we characterized a novel horizontal transfer of a gene cluster, including tetR, on the chromosome of A. avenae subsp. avenae RS-1 by genome-wide analysis. TetR acted as a repressor in this gene cluster and the oxidative stress resistance was enhanced in tetR-deletion mutant strain. Electrophoretic mobility shift assay demonstrated that TetR regulator bound directly to the promoter of this gene cluster. Consistently, the results of quantitative real-time PCR also showed alterations in expression of associated genes. Moreover, the proteins affected by TetR under oxidative stress were revealed by comparing proteomic profiles of wild-type and mutant strains via 1D SDS-PAGE and LC-MS/MS analyses. Taken together, our results demonstrated that tetR gene in this novel gene cluster contributed to cell survival under oxidative stress, and TetR protein played an important regulatory role in growth kinetics, biofilm-forming capability, superoxide dismutase and catalase activity, and oxide detoxicating ability.
Collapse
Affiliation(s)
- He Liu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China ; Department of Plant Pathology, University of California Davis Davis, CA, USA
| | - Chun-Lan Yang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Meng-Yu Ge
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Muhammad Ibrahim
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China ; Department of Biosciences, COMSATS Institute of Information Technology Sahiwal, Pakistan
| | - Bin Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Wen-Jun Zhao
- Chinese Academy of Inspection and Quarantine Beijing, China
| | - Gong-You Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University Shanghai, China
| | - Bo Zhu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Guan-Lin Xie
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| |
Collapse
|
6
|
Gao M, Deng C, Zhang X. Magnetic nanoparticles-based digestion and enrichment methods in proteomics analysis. Expert Rev Proteomics 2014; 8:379-90. [DOI: 10.1586/epr.11.25] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Su P, Wang S, Shi Y, Yang Y. Application of cellulase-polyamidoamine dendrimer-modified silica for microwave-assisted chitosan enzymolysis. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Evaluating the potential nonthermal microwave effects of microwave-assisted proteolytic reactions. J Proteomics 2013; 80:160-70. [DOI: 10.1016/j.jprot.2013.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 01/09/2013] [Accepted: 01/09/2013] [Indexed: 11/18/2022]
|
9
|
Switzar L, Giera M, Niessen WMA. Protein Digestion: An Overview of the Available Techniques and Recent Developments. J Proteome Res 2013; 12:1067-77. [DOI: 10.1021/pr301201x] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Linda Switzar
- AIMMS Division of BioMolecular
Analysis, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | - Martin Giera
- Division of Molecular Cell Physiology,
Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
- Biomolecular Mass Spectrometry
Unit, Department of Parasitology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Wilfried M. A. Niessen
- AIMMS Division of BioMolecular
Analysis, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
- hyphen MassSpec, de Wetstraat 8, 2332 XT Leiden, The Netherlands
| |
Collapse
|
10
|
Shen Y, Guo W, Qi L, Qiao J, Wang F, Mao L. Immobilization of trypsin via reactive polymer grafting from magnetic nanoparticles for microwave-assisted digestion. J Mater Chem B 2013; 1:2260-2267. [DOI: 10.1039/c3tb20116c] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Li Y, Zhang X, Deng C. Functionalized magnetic nanoparticles for sample preparation in proteomics and peptidomics analysis. Chem Soc Rev 2013; 42:8517-39. [DOI: 10.1039/c3cs60156k] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
Van Steendam K, De Ceuleneer M, Dhaenens M, Van Hoofstat D, Deforce D. Mass spectrometry-based proteomics as a tool to identify biological matrices in forensic science. Int J Legal Med 2012; 127:287-98. [PMID: 22843116 PMCID: PMC3578717 DOI: 10.1007/s00414-012-0747-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 07/11/2012] [Indexed: 12/22/2022]
Abstract
In forensic casework analysis, identification of the biological matrix and the species of a forensic trace, preferably without loss of DNA, is of major importance. The biological matrices that can be encountered in a forensic context are blood (human or non-human), saliva, semen, vaginal fluid, and to a lesser extent nasal secretions, feces, and urine. All these matrices were applied on swabs and digested with trypsin in order to obtain peptides. These peptides were injected on a mass spectrometer (ESI Q-TOF) resulting in the detection of several biomarkers that were used to build a decision tree for matrix identification. Saliva and blood were characterized by the presence of alpha-amylase 1 and hemoglobin, respectively. In vaginal fluid, cornulin, cornifin, and/or involucrin were found as biomarkers while semenogelin, prostate-specific antigen, and/or acid phosphatase were characteristic proteins for semen. Uromodulin or AMBP protein imply the presence of urine, while plunc protein is present in nasal secretions. Feces could be determined by the presence of immunoglobulins without hemoglobin. The biomarkers for the most frequently encountered biological matrices (saliva, blood, vaginal fluid, and semen) were validated in blind experiments and on real forensic samples. Additionally, by means of this proteomic approach, species identification was possible. This approach has the advantage that the analysis is performed on the first "washing" step of the chelex DNA extraction, a solution which is normally discarded, and that one single test is sufficient to determine the identity and the species of the biological matrix, while the conventional methods require cascade testing. This technique can be considered as a useful additional tool for biological matrix identification in forensic science and holds the promise of further automation.
Collapse
Affiliation(s)
- Katleen Van Steendam
- Laboratory for Pharmaceutical Biotechnology, Ghent University, Harelbekestraat 72, 9000, Ghent, Belgium
| | | | | | | | | |
Collapse
|
13
|
Chen Q, Liu T, Chen G. Highly efficient proteolysis accelerated by electromagnetic waves for Peptide mapping. Curr Genomics 2011; 12:380-90. [PMID: 22379392 PMCID: PMC3178907 DOI: 10.2174/138920211797248583] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 07/11/2011] [Accepted: 07/20/2011] [Indexed: 11/22/2022] Open
Abstract
Proteomics will contribute greatly to the understanding of gene functions in the post-genomic era. In proteome research, protein digestion is a key procedure prior to mass spectrometry identification. During the past decade, a variety of electromagnetic waves have been employed to accelerate proteolysis. This review focuses on the recent advances and the key strategies of these novel proteolysis approaches for digesting and identifying proteins. The subjects covered include microwave-accelerated protein digestion, infrared-assisted proteolysis, ultraviolet-enhanced protein digestion, laser-assisted proteolysis, and future prospects. It is expected that these novel proteolysis strategies accelerated by various electromagnetic waves will become powerful tools in proteome research and will find wide applications in high throughput protein digestion and identification.
Collapse
Affiliation(s)
| | | | - Gang Chen
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| |
Collapse
|
14
|
Hustoft HK, Reubsaet L, Greibrokk T, Lundanes E, Malerod H. Critical assessment of accelerating trypsination methods. J Pharm Biomed Anal 2011; 56:1069-78. [PMID: 21873015 DOI: 10.1016/j.jpba.2011.08.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 08/03/2011] [Accepted: 08/04/2011] [Indexed: 10/17/2022]
Abstract
In LC-MS based proteomics, several accelerating trypsination methods have been introduced in order to speed up the protein digestion, which is often considered a bottleneck. Traditionally and most commonly, due to sample heterogeneity, overnight digestion at 37 °C is performed in order to digest both easily and more resistant proteins. High efficiency protein identification is important in proteomics, hours with LC-MS/MS analysis is needless if the majority of the proteins are not digested. Based on preliminary experiments utilizing some of the suggested accelerating methods, the question of whether accelerating digestion methods really provide the same protein identification efficiency as the overnight digestion was asked. In the present study we have evaluated four different accelerating trypsination methods (infrared (IR) and microwave assisted, solvent aided and immobilized trypsination). The methods were compared with conventional digestion at 37 °C in the same time range using a four protein mixture. Sequence coverage and peak area of intact proteins were used for the comparison. The accelerating methods were able to digest the proteins, but none of the methods appeared to be more efficient than the conventional digestion method at 37 °C. The conventional method at 37 °C is easy to perform using commercially available instrumentation and appears to be the digestion method to use. The digestion time in targeted proteomics can be optimized for each protein, while in comprehensive proteomics the digestion time should be extended due to sample heterogeneity and influence of other proteins present. Recommendations regarding optimizing and evaluating the tryptic digestion for both targeted and comprehensive proteomics are given, and a digestion method suitable as the first method for newcomers in comprehensive proteomics is suggested.
Collapse
Affiliation(s)
- Hanne Kolsrud Hustoft
- Department of Chemistry, University of Oslo, PO Box 1033, Blindern, NO-0315 Oslo, Norway
| | | | | | | | | |
Collapse
|
15
|
Yu XC, Joe K, Zhang Y, Adriano A, Wang Y, Gazzano-Santoro H, Keck RG, Deperalta G, Ling V. Accurate determination of succinimide degradation products using high fidelity trypsin digestion peptide map analysis. Anal Chem 2011; 83:5912-9. [PMID: 21692515 DOI: 10.1021/ac200750u] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We report an efficient, high fidelity trypsin digestion method for peptide map analysis. This method minimizes artifacts caused by the sample preparation process, and we show its utility for the accurate determination of succinimide formation in a degraded monoclonal antibody product. A basic charge variant was detected by imaged capillary isoelectric focusing and was shown with reduced antigen binding and biological activity. Samples were reduced under denaturing conditions at pH 5.0, and digestion of the reduced protein with porcine trypsin was performed at pH 7.0 for 1 h. Following reversed phase high-performance liquid chromatography and online mass spectrometric analysis, succinimide formation was identified at Asp30 in the light chain. This result contrasts with the observation of only iso-Asp and Asp residues under conventional sample preparation conditions, which are therefore concluded to be artificially generated. The Asp30 residue is seen in the cocrystal structure model to participate in favorable charge interaction with an antigen molecule. Formation of succinimide and the resulting loss of negative charge are therefore hypothesized to be the degradation mechanism. After treatment of the degraded antibody sample to mildly alkaline pH conditions, we observed only Asp residue as the succinimide hydrolysis product and concurrent recovery of biological activity.
Collapse
Affiliation(s)
- X Christopher Yu
- Protein Analytical Chemistry and Biological Technologies, Genentech, a Member of the Roche Group, South San Francisco, California 94080-4990, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sun L, Zhao Q, Zhu G, Zhou Y, Wang T, Shan Y, Yang K, Liang Z, Zhang L, Zhang Y. Octyl-functionalized hybrid magnetic mesoporous microspheres for enrichment of low-concentration peptides prior to direct analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:1257-1265. [PMID: 21488124 DOI: 10.1002/rcm.4986] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Octyl-functionalized hybrid magnetic mesoporous (Fe(3)O(4)·nSiO(2)·meso-hybrid-C8) microspheres were synthesized and applied in the isolation and pre-concentration of low-concentration peptides prior to direct analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Such microspheres possess high surface area (324 m(2)/g), hydrophobic group (C8), relatively large pore volume (0.304 cm(3)/g), uniform pore diameter (~3.7 nm), and magnetic responsivity, which make them a simple and efficient kind of adsorbent for the enrichment of low-concentration peptides. For bovine serum albumin (BSA, 15 fmol μL(-1)) digest, after concentration by Fe(3)O(4)·nSiO(2)·meso-hybrid-C8 microspheres, the enrichment performance was evidently better than those obtained by solvent evaporation and C8-functionalized magnetic particles, and comparable to those obtained by commercial Anchor chip target and ZipTipC18 pipette tip. Such microspheres were further applied in the enrichment of the tryptic digests of rat cerebellum proteins and endogenous peptides of crude human serum, and more peaks with higher signal-to-noise (S/N) ratio were obtained than before pre-concentration. Furthermore, the pre-concentration reproducibility of magnetic microspheres for biological samples was good, and the limit of detection (LOD) for BSA digests by MALDI-TOF MS was decreased by at least one order of magnitude compared with that obtained without pre-concentration. All the above-mentioned results indicate that the synthesized Fe(3)O(4)·nSiO(2)·meso-hybrid-C8 microspheres are promising for the enrichment of low-concentration peptides from complex biosamples.
Collapse
Affiliation(s)
- Liangliang Sun
- National Chromatographic R & A Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Xu F, Wang WH, Tan YJ, Bruening ML. Facile trypsin immobilization in polymeric membranes for rapid, efficient protein digestion. Anal Chem 2010; 82:10045-51. [PMID: 21087034 PMCID: PMC3052767 DOI: 10.1021/ac101857j] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sequential adsorption of poly(styrene sulfonate) and trypsin in nylon membranes provides a simple, inexpensive method to create stable, microporous reactors for fast protein digestion. The high local trypsin concentration and short radial diffusion distances in membrane pores facilitate proteolysis in residence times of a few seconds, and the minimal pressure drop across the thin membranes allows their use in syringe filters. Membrane digestion and subsequent MS analysis of bovine serum albumin provide 84% sequence coverage, which is higher than the 71% coverage obtained with in-solution digestion for 16 h or the <50% sequence coverages of other methods that employ immobilized trypsin. Moreover, trypsin-modified membranes digest protein in the presence of 0.05 wt % sodium dodecyl sulfate (SDS), whereas in-solution digestion under similar conditions yields no peptide signals in mass spectra even after removal of SDS. These membrane reactors, which can be easily prepared in any laboratory, have a shelf life of several months and continuously digest protein for at least 33 h without significant loss of activity.
Collapse
Affiliation(s)
| | | | - Yu-Jing Tan
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| | - Merlin L. Bruening
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
18
|
Kim J, Kim BC, Lopez-Ferrer D, Petritis K, Smith RD. Nanobiocatalysis for protein digestion in proteomic analysis. Proteomics 2010; 10:687-99. [PMID: 19953546 DOI: 10.1002/pmic.200900519] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The process of protein digestion is a critical step for successful protein identification in bottom-up proteomic analyses. To substitute the present practice of in-solution protein digestion, which is long, tedious, and difficult to automate, many efforts have been dedicated for the development of a rapid, recyclable and automated digestion system. Recent advances of nanobiocatalytic approaches have improved the performance of protein digestion by using various nanomaterials such as nanoporous materials, magnetic nanoparticles, and polymer nanofibers. Especially, the unprecedented success of trypsin stabilization in the form of trypsin-coated nanofibers, showing no activity decrease under repeated uses for 1 year and retaining good resistance to proteolysis, has demonstrated its great potential to be employed in the development of automated, high-throughput, and on-line digestion systems. This review discusses recent developments of nanobiocatalytic approaches for the improved performance of protein digestion in speed, detection sensitivity, recyclability, and trypsin stability. In addition, we also introduce approaches for protein digestion under unconventional energy input for protein denaturation and the development of microfluidic enzyme reactors that can benefit from recent successes of these nanobiocatalytic approaches.
Collapse
Affiliation(s)
- Jungbae Kim
- Department of Chemical and Biological Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea.
| | | | | | | | | |
Collapse
|
19
|
Kulkarni KP, Ramarathinam SH, Friend J, Yeo L, Purcell AW, Perlmutter P. Rapid microscale in-gel processing and digestion of proteins using surface acoustic waves. LAB ON A CHIP 2010; 10:1518-20. [PMID: 20517556 DOI: 10.1039/c001501f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A new method for in-gel sample processing and tryptic digestion of proteins is described. Sample preparation, rehydration, in situ digestion and peptide extraction from gel slices are dramatically accelerated by treating the gel slice with surface acoustic waves (SAWs). Only 30 minutes total workflow time is required for this new method to produce base peak chromatograms (BPCs) of similar coverage and intensity to those observed for traditional processing and overnight digestion. Simple set up, good reproducibility, excellent peptide recoveries, rapid turnover of samples and high confidence protein identifications put this technology at the fore-front of the next generation of proteomics sample processing tools.
Collapse
Affiliation(s)
- Ketav P Kulkarni
- School of Chemistry, Monash University, PO Box 23, Melbourne, 3800, Australia
| | | | | | | | | | | |
Collapse
|
20
|
Yang HJ, Hong J, Lee S, Shin S, Kim J, Kim J. Pressure-assisted tryptic digestion using a syringe. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:901-908. [PMID: 20196188 DOI: 10.1002/rcm.4467] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A simple and effective digestion method was developed using a syringe. A 3 mL syringe was used to apply a pressure of 6 atm to expedite tryptic digestion. Application of a pressure of 6 atm during digestion resulted in better digestion efficiency than digestion under atmospheric pressure. The protein peaks in the matrix-assisted laser desorption/ionization mass spectra of three model proteins (cytochrome c, horse heart myoglobin, and bovine serum albumin (BSA)) completely disappeared within 30 min at 37 degrees C under a pressure of 6 atm, with greater numbers of peptides observed in 30 min pressure-assisted digestion than in overnight atmospheric pressure digestion. This is mostly due to the miscleaved peptides. Similar sequence coverages were obtained for 30 min pressure-assisted digestion and overnight atmospheric pressure digestion of the three model proteins (92% vs. 88% for cytochrome c, 100% vs. 97% for horse heart myoglobin, and 53% vs. 53% for BSA).
Collapse
Affiliation(s)
- Hyo-Jik Yang
- Department of Chemistry, Chungnam National University, Daejeon, South Korea
| | | | | | | | | | | |
Collapse
|
21
|
Hasan N, Wu HF, Li YH, Nawaz M. Two-step on-particle ionization/enrichment via a washing- and separation-free approach: multifunctional TiO2 nanoparticles as desalting, accelerating, and affinity probes for microwave-assisted tryptic digestion of phosphoproteins in ESI-MS and MALDI-MS: comparison with microscale TiO2. Anal Bioanal Chem 2010; 396:2909-19. [PMID: 20232060 DOI: 10.1007/s00216-010-3573-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 02/08/2010] [Accepted: 02/11/2010] [Indexed: 10/19/2022]
Abstract
We introduce a simplified sample preparation method using bare TiO(2) nanoparticles (NPs) to serve as multifunctional nanoprobes (desalting, accelerating, and affinity probes) for effective enrichment of phosphopeptides from microwave-assisted tryptic digestion of phosphoproteins (alpha-casein, beta-casein and milk) in Electrospray Ionization Mass Spectrometry (ESI-MS) and Matrix Assisted Laser Desorption Ionization Mass Spectrometry (MALDI-MS). The results demonstrate that TiO(2) NPs can effectively enrich and accelerate the digestion reactions of phosphoproteins in aqueous solutions and also from complex real samples. After the microwave experiments, we directly injected the resulting solutions into the ESI-MS and MALDI-MS systems for analysis, and excellent sensitivity was achieved without the need for any washing procedure or separation process. The reasons are attributed to the high binding affinity and selectivity of TiO(2) NPs toward phosphopeptides. Thus, phosphopeptides can be adsorbed onto the TiO(2) NP surface. The digested or partially digested phosphoproteins can be concentrated onto the TiO(2) NP surface. This results in the effective or complete digestion of phosphoproteins in a short period of time (45 s). In addition, high sensitivity and sequence coverage of phosphopeptide can be obtained using TiO(2) NPs as microwave absorbers and affinity probes in MALDI-MS and ESI-MS. This is due to the photocatalytic nature of the TiO(2) NPs because the absorption of microwave radiation that can accelerate the activation of trypsin for efficient digestion of phosphoproteins and enhances the ionization of phosphopeptides. The lowest concentrations detected for ESI-MS and MALDI-MS were 0.1 microM and 10 fmol, respectively, for alpha-casein. Comparing the two-step approach of TiO(2) NPs with microscale TiO(2) particles, the microscale TiO(2) particles shows no effect on the microwave-assisted tryptic digestion of phosphoproteins. The current approach offers multiple advantages, such as great simplicity, high sensitivity and selectivity, straightforward and separation/washing-free technique for phosphopeptide enrichment analysis.
Collapse
Affiliation(s)
- Nazim Hasan
- Department of Chemistry, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung 80424, Taiwan
| | | | | | | |
Collapse
|
22
|
Remily-Wood E, Dirscherl H, Koomen JM. Acid hydrolysis of proteins in matrix assisted laser desorption ionization matrices. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:2106-2115. [PMID: 19679491 DOI: 10.1016/j.jasms.2009.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 07/01/2009] [Accepted: 07/07/2009] [Indexed: 05/28/2023]
Abstract
Sample preparation is crucial to the success of experiments in biological mass spectrometry. In proteomics, digestion of the proteins into peptides is a key step for "bottom-up" approaches. Often, the use of enzymes requires physiological conditions, producing peptides that must be extracted or further purified before mass analysis. Chemical cleavage reagents offer more flexibility and can be more compatible with downstream mass analysis. Expanding on prior work using acid hydrolysis, proteolysis with matrix-assisted laser desorption ionization (MALDI) matrices is presented. This sample preparation can be performed rapidly with a minimum of reagents and sample handling, but it must first be evaluated in terms of digestion efficiency, missed cleavages, and side reactions before implementation for in-gel digestion and in-solution digestion using minimal volumes of protein. Time courses of acid hydrolysis are shown for protein standards, illustrating the sensitivity of this type of sample preparation, minimization of side reactions, and performance for proteins in mixtures. To illustrate the potential for sensitive detection of a specific protein, MALDI matrix hydrolysis is used to digest a protein immunoprecipitated from cell lysate.
Collapse
Affiliation(s)
- Elizabeth Remily-Wood
- Molecular Oncology and Proteomics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | | | | |
Collapse
|
23
|
Gao M, Zhang P, Hong G, Guan X, Yan G, Deng C, Zhang X. Novel monolithic enzymatic microreactor based on single-enzyme nanoparticles for highly efficient proteolysis and its application in multidimensional liquid chromatography. J Chromatogr A 2009; 1216:7472-7. [DOI: 10.1016/j.chroma.2009.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 04/25/2009] [Accepted: 05/04/2009] [Indexed: 10/20/2022]
|
24
|
Hahn HW, Rainer M, Ringer T, Huck CW, Bonn GK. Ultrafast Microwave-Assisted In-Tip Digestion of Proteins. J Proteome Res 2009; 8:4225-30. [DOI: 10.1021/pr900188x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hans W. Hahn
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 52a, 6020 Innsbruck, Austria
| | - Matthias Rainer
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 52a, 6020 Innsbruck, Austria
| | - Thomas Ringer
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 52a, 6020 Innsbruck, Austria
| | - Christian W. Huck
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 52a, 6020 Innsbruck, Austria
| | - Günther K. Bonn
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 52a, 6020 Innsbruck, Austria
| |
Collapse
|
25
|
Shastri LA, Kailasa SK, Wu HF. Cysteine-capped ZnSe quantum dots as affinity and accelerating probes for microwave enzymatic digestion of proteins via direct matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:2247-2252. [PMID: 19562823 DOI: 10.1002/rcm.4137] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Fluorescent semiconductor quantum dots (QDs) exhibit great potential and capability for many biological and biochemical applications. We report a simple strategy for the synthesis of aqueous stable ZnSe QDs by using cysteine as the capping agent (ZnSe-Cys QDs). The ZnSe QDs can act as affinity probes to enrich peptides and proteins via direct matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) analysis. This nanoprobe could significantly enhance protein signals (insulin, ubiquitin, cytochrome c, myoglobin and lysozyme) in MALDI-TOFMS by 2.5-12 times compared with the traditional method. Additionally, the ZnSe-Cys QDs can be applied as heat absorbers (as accelerating probes) to speed up microwave-assisted enzymatic digestion reactions and also as affinity probes to enrich lysozyme-digested products in MALDI-TOFMS. Furthermore, after the enrichment experiments, the solutions of ZnSe-Cys QDs mixed with proteins can be directly deposited onto the MALDI plates for rapid analysis. This approach shows a simple, rapid, efficient and straightforward method for direct analysis of proteins or peptides by MALDI-TOFMS without the requirement for further time-consuming separation processes, tedious washing steps or laborious purification procedures. The present study has demonstrated that ZnSe-Cys QDs are reliable and potential materials for rapid, selective separation and enrichment of proteins as well as accelerating probes for microwave-digested reactions for proteins than the regular MALDI-MS tools. Additionally, we also believe that this work may also inspire investigations for applications of QDs in the field of MALDI-MS for proteomics.
Collapse
Affiliation(s)
- Lokesh A Shastri
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | | | | |
Collapse
|
26
|
Superparamagnetic maghemite nanoparticles from solid-state synthesis – Their functionalization towards peroral MRI contrast agent and magnetic carrier for trypsin immobilization. Biomaterials 2009; 30:2855-63. [DOI: 10.1016/j.biomaterials.2009.02.023] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 02/12/2009] [Indexed: 11/24/2022]
|
27
|
Wang S, Liu T, Zhang L, Chen G. Efficient Chymotryptic Proteolysis Enhanced by Infrared Radiation for Peptide Mapping. J Proteome Res 2008; 7:5049-54. [DOI: 10.1021/pr800476s] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sheng Wang
- School of Pharmacy and Department of Chemistry, Fudan University, Shanghai 200032, China
| | - Ting Liu
- School of Pharmacy and Department of Chemistry, Fudan University, Shanghai 200032, China
| | - Luyan Zhang
- School of Pharmacy and Department of Chemistry, Fudan University, Shanghai 200032, China
| | - Gang Chen
- School of Pharmacy and Department of Chemistry, Fudan University, Shanghai 200032, China
| |
Collapse
|
28
|
Wang S, Bao H, Liu T, Zhang L, Yang P, Chen G. Accelerated proteolysis in alternating electric fields for peptide mapping. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:3225-3232. [PMID: 18803334 DOI: 10.1002/rcm.3715] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Sinusoidal alternating voltages (typically 5 V) were employed to enhance the efficiency of proteolysis for peptide mapping in this work. Protein solutions containing trypsin were allowed to digest with the assistance of alternating electric fields (AEFs) between a pair of platinum wire electrodes in Eppendorf tubes. The feasibility and performance of the novel proteolysis approach were investigated by the digestion of several standard proteins. It was demonstrated that AEFs significantly accelerated in-solution proteolysis and the digestion time was substantially reduced to 5 min. The digests were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) with sequence coverages that were comparable to those obtained by using conventional 12-h in-solution proteolysis. The suitability of AEF-assisted proteolysis to real protein samples was demonstrated by digesting and identifying human serum albumin in gel separated from human serum by sodium dodecyl sulphate/polyacrylamide gel electrophoresis (SDS-PAGE). The present proteolysis strategy is simple and efficient and will find a wide range of applications in protein identification.
Collapse
Affiliation(s)
- Sheng Wang
- School of Pharmacy & Department of Chemistry, Fudan University, Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|
29
|
Wang S, Zhang L, Yang P, Chen G. Infrared-assisted tryptic proteolysis for peptide mapping. Proteomics 2008; 8:2579-82. [DOI: 10.1002/pmic.200800086] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Turapov OA, Mukamolova GV, Bottrill AR, Pangburn MK. Digestion of native proteins for proteomics using a thermocycler. Anal Chem 2008; 80:6093-9. [PMID: 18578500 DOI: 10.1021/ac702527b] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Efficient protein digestion is a critical step for successful mass spectrometry analysis. Here we describe simultaneous tryptic digestion and gradual unfolding of native proteins by application of a temperature gradient using a single cycle of 5 min or less in a PCR thermocycler. Chemicals typically used for chromatographic techniques did not affect the digestion efficiency. Tryptic digestion was performed in a small volume (3 microL) with 1.5 microg of trypsin without denaturing agents. This rapid procedure yielded more peptides than conventional methods utilizing chemical denaturation for 18 proteins out of 20. Samples were directly spotted on the MALDI-TOF target plate, without additional purification, thus reducing losses on reversed-phase resins.
Collapse
Affiliation(s)
- Obolbek A Turapov
- Department of Biochemistry, Center for Biomedical Research, University of Texas Health Science Center, Tyler, Texas 75708, USA.
| | | | | | | |
Collapse
|
31
|
Wang S, Bao H, Zhang L, Yang P, Chen G. Infrared-Assisted On-Plate Proteolysis for MALDI-TOF-MS Peptide Mapping. Anal Chem 2008; 80:5640-7. [DOI: 10.1021/ac800349u] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sheng Wang
- School of Pharmacy, Department of Chemistry, Fudan University, Shanghai 200032, China
| | - Huimin Bao
- School of Pharmacy, Department of Chemistry, Fudan University, Shanghai 200032, China
| | - Luyan Zhang
- School of Pharmacy, Department of Chemistry, Fudan University, Shanghai 200032, China
| | - Pengyuan Yang
- School of Pharmacy, Department of Chemistry, Fudan University, Shanghai 200032, China
| | - Gang Chen
- School of Pharmacy, Department of Chemistry, Fudan University, Shanghai 200032, China
| |
Collapse
|
32
|
Yao N, Chen H, Lin H, Deng C, Zhang X. Enrichment of peptides in serum by C(8)-functionalized magnetic nanoparticles for direct matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis. J Chromatogr A 2008; 1185:93-101. [PMID: 18262195 DOI: 10.1016/j.chroma.2008.01.047] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 01/16/2008] [Accepted: 01/17/2008] [Indexed: 11/27/2022]
Abstract
Human serum contains a complex array of proteolytically derived peptides (serum peptidome), which contain biomarkers of preclinical screening and disease diagnosis. Recently, commercial C(8)-functionalized magnetic beads (1-10 microm) were widely applied to the separation and enrichment of peptides in human serum, prior to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis. In this work, laboratory-prepared C(8)-functionalized magnetic nanoparticles (about 50 nm) were prepared and applied to the fast separation and the enrichment of peptides from serum. At first, the C(8)-magnetic nanoparticles were synthesized by modifying amine-functionalized magnetic nanoparticles with chlorodimethyloctylsilane. These synthesized C(8)-amine-functionalized magnetic particles have excellent magnetic responsibility, high dispersibility and large surface area. Finally, the C(8)-magnetic nanoparticles were successfully applied to fast and efficient enrichment of low-abundance peptides from protein tryptic digestion and human serum followed by MALDI-TOF-MS analysis.
Collapse
Affiliation(s)
- Ning Yao
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | | | | | | | | |
Collapse
|