1
|
Nakken CL, Berntssen MHG, Meier S, Bijlsma L, Mjøs SA, Sørhus E, Donald CE. Exposure of Polycyclic Aromatic Hydrocarbons (PAHs) and Crude Oil to Atlantic Haddock ( Melanogrammus aeglefinus): A Unique Snapshot of the Mercapturic Acid Pathway. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14855-14863. [PMID: 39101928 PMCID: PMC11340023 DOI: 10.1021/acs.est.4c05112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
Fish exposed to xenobiotics like petroleum-derived polycyclic aromatic hydrocarbons (PAHs) will immediately initiate detoxification systems through effective biotransformation reactions. Yet, there is a discrepancy between recognized metabolic pathways and the actual metabolites detected in fish following PAH exposure like oil pollution. To deepen our understanding of PAH detoxification, we conducted experiments exposing Atlantic haddock (Melanogrammus aeglefinus) to individual PAHs or complex oil mixtures. Bile extracts, analyzed by using an ion mobility quadrupole time-of-flight mass spectrometer, revealed novel metabolites associated with the mercapturic acid pathway. A dominant spectral feature recognized as PAH thiols set the basis for a screening strategy targeting (i) glutathione-, (ii) cysteinylglycine-, (iii) cysteine-, and (iv) mercapturic acid S-conjugates. Based on controlled single-exposure experiments, we constructed an interactive library of 33 metabolites originating from 8 PAHs (anthracene, phenanthrene, 1-methylphenanthrene, 1,4-dimethylphenanthrene, chrysene, benz[a]anthracene, benzo[a]pyrene, and dibenz[a,h]anthracene). By incorporation of the library in the analysis of samples from crude oil exposed fish, PAHs conjugated with glutathione and cysteinylglycine were uncovered. This qualitative study offers an exclusive glimpse into the rarely acknowledged mercapturic acid detoxification pathway in fish. Furthermore, this furnishes evidence that this metabolic pathway also succeeds for PAHs in complex pollution sources, a notable discovery not previously reported.
Collapse
Affiliation(s)
- Charlotte L. Nakken
- Department
of Chemistry, University of Bergen, Bergen 5007, Norway
- Marine
Toxicology, Institute of Marine Research, Bergen 5817, Norway
| | | | - Sonnich Meier
- Marine
Toxicology, Institute of Marine Research, Bergen 5817, Norway
| | - Lubertus Bijlsma
- Environmental
and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castellón 12071, Spain
| | - Svein A. Mjøs
- Department
of Chemistry, University of Bergen, Bergen 5007, Norway
| | - Elin Sørhus
- Marine
Toxicology, Institute of Marine Research, Bergen 5817, Norway
| | - Carey E. Donald
- Marine
Toxicology, Institute of Marine Research, Bergen 5817, Norway
| |
Collapse
|
2
|
Murray KJ, Villalta PW, Griffin TJ, Balbo S. Discovery of Modified Metabolites, Secondary Metabolites, and Xenobiotics by Structure-Oriented LC-MS/MS. Chem Res Toxicol 2023; 36:1666-1682. [PMID: 37862059 DOI: 10.1021/acs.chemrestox.3c00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Exogenous compounds and metabolites derived from therapeutics, microbiota, or environmental exposures directly interact with endogenous metabolic pathways, influencing disease pathogenesis and modulating outcomes of clinical interventions. With few spectral library references, the identification of covalently modified biomolecules, secondary metabolites, and xenobiotics is a challenging task using global metabolomics profiling approaches. Numerous liquid chromatography-coupled mass spectrometry (LC-MS) small molecule analytical workflows have been developed to curate global profiling experiments for specific compound groups of interest. These workflows exploit shared structural moiety, functional groups, or elemental composition to discover novel and undescribed compounds through nontargeted small molecule discovery pipelines. This Review introduces the concept of structure-oriented LC-MS discovery methodology and aims to highlight common approaches employed for the detection and characterization of covalently modified biomolecules, secondary metabolites, and xenobiotics. These approaches represent a combination of instrument-dependent and computational techniques to rapidly curate global profiling experiments to detect putative ions of interest based on fragmentation patterns, predictable phase I or phase II metabolic transformations, or rare elemental composition. Application of these methods is explored for the detection and identification of novel and undescribed biomolecules relevant to the fields of toxicology, pharmacology, and drug discovery. Continued advances in these methods expand the capacity for selective compound discovery and characterization that promise remarkable insights into the molecular interactions of exogenous chemicals with host biochemical pathways.
Collapse
Affiliation(s)
- Kevin J Murray
- Department of Biochemistry, Molecular Biology, and Biophysics, College of Biological Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Peter W Villalta
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Timothy J Griffin
- Department of Biochemistry, Molecular Biology, and Biophysics, College of Biological Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Silvia Balbo
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
3
|
Chu S, Letcher RJ. In vitro metabolic activation of triphenyl phosphate leading to the formation of glutathione conjugates by rat liver microsomes. CHEMOSPHERE 2019; 237:124474. [PMID: 31377596 DOI: 10.1016/j.chemosphere.2019.124474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/17/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
The present study investigated the metabolism of the flame retardant and plasticizer chemical, triphenyl phosphate (TPHP), in a rat liver microsome-based in vitro assay with glutathione (GSH) in order to elucidate metabolic pathways leading to formation of conjugates. A highly sensitive and efficient method was developed for the detection and characterization of GSH reactive metabolites using LC-Q-TOF-MS/MS both in the negative and positive electrospray ionization modes. Seven GSH conjugates formed as a result of microsomal incubation, which were identified as S-conjugates based on MS/MS spectra, and confirmed by subsequent time-dependent incubation assays. With the exception of hydrolysis reactions leading to formation of a diester metabolite, diphenyl phosphate (DPHP), the results demonstrated that Phase I epoxidation on phenyl ring of TPHP leading to mono- and di-hydroxylated TPHP metabolites, which can further conjugate with GSH. Depending on hydroxylated TPHP formation, an o-hydroquinone intermediate formed in vitro via Phase I metabolism, and the o-benzoquinone form reacted with GSH and also formed GSH conjugates. The present study showed that via hydroxylated TPHP Phase I formation that GSH conjugates are important Phase II metabolites for TPHP metabolism in vitro. Some GSH conjugates may be valuable candidate biomarkers for monitoring TPHP exposure in biota.
Collapse
Affiliation(s)
- Shaogang Chu
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, National Wildlife Research Centre, 1125 Colonel By Drive, Carleton University, Ottawa, ON, K1A 0H3, Canada
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, National Wildlife Research Centre, 1125 Colonel By Drive, Carleton University, Ottawa, ON, K1A 0H3, Canada.
| |
Collapse
|
4
|
Wang Z, Fang Y, Rock D, Ma J. Rapid screening and characterization of glutathione-trapped reactive metabolites using a polarity switch-based approach on a high-resolution quadrupole orbitrap mass spectrometer. Anal Bioanal Chem 2017; 410:1595-1606. [DOI: 10.1007/s00216-017-0814-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 11/30/2017] [Accepted: 12/06/2017] [Indexed: 12/31/2022]
|
5
|
Yip VLM, Meng X, Maggs JL, Jenkins RE, Marlot PT, Marson AG, Park BK, Pirmohamed M. Mass Spectrometric Characterization of Circulating Covalent Protein Adducts Derived from Epoxide Metabolites of Carbamazepine in Patients. Chem Res Toxicol 2017; 30:1419-1435. [DOI: 10.1021/acs.chemrestox.7b00063] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Vincent L. M. Yip
- MRC
Centre for Drug Safety Science, Department of Molecular and Clinical
Pharmacology, The University of Liverpool, Liverpool L69 3GE, United Kingdom
- The
Wolfson Centre for Personalized Medicine, Department of Molecular
and Clinical Pharmacology, The University of Liverpool, Liverpool L69 3GL, United Kingdom
| | - Xiaoli Meng
- MRC
Centre for Drug Safety Science, Department of Molecular and Clinical
Pharmacology, The University of Liverpool, Liverpool L69 3GE, United Kingdom
| | - James L. Maggs
- MRC
Centre for Drug Safety Science, Department of Molecular and Clinical
Pharmacology, The University of Liverpool, Liverpool L69 3GE, United Kingdom
| | - Rosalind E. Jenkins
- MRC
Centre for Drug Safety Science, Department of Molecular and Clinical
Pharmacology, The University of Liverpool, Liverpool L69 3GE, United Kingdom
| | - Philippe T. Marlot
- MRC
Centre for Drug Safety Science, Department of Molecular and Clinical
Pharmacology, The University of Liverpool, Liverpool L69 3GE, United Kingdom
- The
Wolfson Centre for Personalized Medicine, Department of Molecular
and Clinical Pharmacology, The University of Liverpool, Liverpool L69 3GL, United Kingdom
| | - Anthony G. Marson
- MRC
Centre for Drug Safety Science, Department of Molecular and Clinical
Pharmacology, The University of Liverpool, Liverpool L69 3GE, United Kingdom
| | - B. Kevin Park
- MRC
Centre for Drug Safety Science, Department of Molecular and Clinical
Pharmacology, The University of Liverpool, Liverpool L69 3GE, United Kingdom
| | - Munir Pirmohamed
- MRC
Centre for Drug Safety Science, Department of Molecular and Clinical
Pharmacology, The University of Liverpool, Liverpool L69 3GE, United Kingdom
- The
Wolfson Centre for Personalized Medicine, Department of Molecular
and Clinical Pharmacology, The University of Liverpool, Liverpool L69 3GL, United Kingdom
| |
Collapse
|
6
|
Abstract
A number of drugs have been withdrawn from the market or severely restricted in their use because of unexpected toxicities that become apparent only after the launch of new drug entities. Circumstantial evidence suggests that, in most cases, reactive metabolites are responsible for these unexpected toxicities. In this review, a general overview of the types of reactive metabolites and the consequences of their formation are presented. The current approaches to evaluate bioactivation potential of new compounds with particular emphasis on the advantages and limitation of these procedures will be discussed. Reasonable reasons for the excellent safety record of certain drugs susceptible to bioactivation will also be explored and should provide valuable guidance in the use of reactive-metabolite assessments when nominating drug candidates for development. This will, in turn, help us to design and bring safer drugs to the market.
Collapse
Affiliation(s)
- Sabry M Attia
- Department of Pharmacology and Toxicology; College of Pharmacy; King Saud University; Riyadh, Saudi Arabia.
| |
Collapse
|
7
|
Lassila T, Mattila S, Turpeinen M, Pelkonen O, Tolonen A. Tandem mass spectrometric analysis of S- and N-linked glutathione conjugates of pulegone and menthofuran and identification of P450 enzymes mediating their formation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:917-926. [PMID: 26969934 DOI: 10.1002/rcm.7518] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 06/05/2023]
Abstract
RATIONALE Menthofuran is a hepatotoxin and a major metabolite of pulegone, a monoterpene found in the essential oils of many mint species. It is bioactivated by cytochrome P450 (CYP) enzymes to reactive metabolites, which may further react with glutathione to form S-linked and N-linked conjugates. The tandem mass spectrometric (MS/MS) fragmentation pathways of rarely observed N-linked conjugates, and the differences to fragmentation of S-linked conjugates, have not been reported in the literature previously, although this information is essential to enable comprehensive MS/MS-based screening methods covering the both types of conjugates. METHODS (R)-(+)-Pulegone, (S)-(-)-pulegone, and menthofuran were incubated with a human liver S9 fraction with glutathione (GSH) as the trapping agent. Conjugates were searched with ultra-performance liquid chromatography (UPLC)/orbitrap MS and their MS/MS spectra were measured both in the negative and positive ionization polarities. Menthofuran was also incubated with recombinant human CYP enzymes and GSH to elucidate the CYPs responsible for the formation of the reactive metabolites. RESULTS Four GSH conjugates of menthofuran were detected and identified as S- and N-linked conjugates based on MS/MS spectra. N-linked conjugates lacked the characteristic fragments of S-linked conjugates and commonly produced fragments that retained parts of glutamic acid. CYP1A2, 2B6 and 3A4 were observed to produce more GSH conjugates than other CYP isoforms. CONLUSIONS Furans can form reactive aldehydes that react in Schiff-base fashion with the free glutamyl-amine of GSH to form N-linked conjugates that have distinct MS/MS spectra from S-linked adducts. This should be taken into account when setting up LC/MS/MS-based detection of glutathione conjugates to screen for reactive metabolites, at least for compounds with a furan moiety. Neutral loss scanning of 178.0412 Da and 290.0573 Da in the positive ionization mode, or neutral loss scanning of 256.0695 Da and 290.0573 Da and precursor ion scanning of m/z 143.0462 in the negative ionization mode, is recommended. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Toni Lassila
- Department of Chemistry, University of Oulu, P.O. Box 3000, 90014, Oulu, Finland
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology and Medical Research Center Oulu, P.O. Box 5000, 90014, University of Oulu, Finland
| | - Sampo Mattila
- Department of Chemistry, University of Oulu, P.O. Box 3000, 90014, Oulu, Finland
| | - Miia Turpeinen
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology and Medical Research Center Oulu, P.O. Box 5000, 90014, University of Oulu, Finland
- Oulu University Hospital, P.O. Box 10, 90029, OYS, Finland
| | - Olavi Pelkonen
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology and Medical Research Center Oulu, P.O. Box 5000, 90014, University of Oulu, Finland
| | - Ari Tolonen
- Admescope Ltd, Typpitie 1, 90620, Oulu, Finland
| |
Collapse
|
8
|
Wen B, Zhu M. Applications of mass spectrometry in drug metabolism: 50 years of progress. Drug Metab Rev 2015; 47:71-87. [DOI: 10.3109/03602532.2014.1001029] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Mezine I, Bode C, Raughley B, Bhoopathy S, Roberts KJ, Owen AJ, Hidalgo IJ. Application of exogenous mixture of glutathione and stable isotope labeled glutathione for trapping reactive metabolites in cryopreserved human hepatocytes. Detection of the glutathione conjugates using high resolution accurate mass spectrometry. Chem Biol Interact 2013; 204:173-84. [DOI: 10.1016/j.cbi.2013.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/23/2013] [Accepted: 05/24/2013] [Indexed: 11/27/2022]
|
10
|
Elliott EC, Regan SL, Maggs JL, Bowkett ER, Parry LJ, Williams DP, Park BK, Stachulski AV. Haloarene Derivatives of Carbamazepine with Reduced Bioactivation Liabilities: 2-Monohalo and 2,8-Dihalo Derivatives. J Med Chem 2012; 55:9773-84. [DOI: 10.1021/jm301013n] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Sophie L. Regan
- MRC Centre for Drug Safety Science,
Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, U.K
| | - James L. Maggs
- MRC Centre for Drug Safety Science,
Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, U.K
| | | | - Laura J. Parry
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Dominic P. Williams
- MRC Centre for Drug Safety Science,
Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, U.K
| | - B. Kevin Park
- MRC Centre for Drug Safety Science,
Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, U.K
| | | |
Collapse
|
11
|
Zhu X, Hayashi M, Subramanian R. Enhanced Detection and Characterization of Glutathione-Trapped Reactive Metabolites by Pseudo-MS3 Transition Using a Linear Ion Trap Mass Spectrometer. Chem Res Toxicol 2012; 25:1839-41. [DOI: 10.1021/tx300339u] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaochun Zhu
- Pharmacokinetics and Drug Metabolism, Amgen Inc., Thousand Oaks, California 91320, United
States
| | - Mike Hayashi
- Pharmacokinetics and Drug Metabolism, Amgen Inc., Thousand Oaks, California 91320, United
States
| | - Raju Subramanian
- Pharmacokinetics and Drug Metabolism, Amgen Inc., Thousand Oaks, California 91320, United
States
| |
Collapse
|
12
|
Lin SL, Bai HY, Lin TY, Fuh MR. Microfluidic chip-based liquid chromatography coupled to mass spectrometry for determination of small molecules in bioanalytical applications. Electrophoresis 2012; 33:635-43. [PMID: 22451056 DOI: 10.1002/elps.201100380] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The development and integration of microfabricated liquid chromatography (LC) microchips have increased dramatically in the last decade due to the needs of enhanced sensitivity and rapid analysis as well as the rising concern on reducing environmental impacts of chemicals used in various types of chemical and biochemical analyses. Recent development of microfluidic chip-based LC mass spectrometry (chip-based LC-MS) has played an important role in proteomic research for high throughput analysis. To date, the use of chip-based LC-MS for determination of small molecules, such as biomarkers, active pharmaceutical ingredients (APIs), and drugs of abuse and their metabolites, in clinical and pharmaceutical applications has not been thoroughly investigated. This mini-review summarizes the utilization of commercial chip-based LC-MS systems for determination of small molecules in bioanalytical applications, including drug metabolites and disease/tumor-associated biomarkers in clinical samples as well as adsorption, distribution, metabolism, and excretion studies of APIs in drug discovery and development. The different types of commercial chip-based interfaces for LC-MS analysis are discussed first and followed by applications of chip-based LC-MS on biological samples as well as the comparison with other LC-MS techniques.
Collapse
Affiliation(s)
- Shu-Ling Lin
- Department of Chemistry, Soochow University, Taipei, Taiwan
| | | | | | | |
Collapse
|
13
|
Zhu X, Kalyanaraman N, Subramanian R. Enhanced screening of glutathione-trapped reactive metabolites by in-source collision-induced dissociation and extraction of product ion using UHPLC-high resolution mass spectrometry. Anal Chem 2011; 83:9516-23. [PMID: 22077671 DOI: 10.1021/ac202280f] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A selective and sensitive approach, called extraction of product ion (XoPI) method, was developed for the detection of l-glutathione (GSH)-trapped reactive metabolites employing an Orbitrap high resolution mass spectrometer. Fragmentation of GSH conjugates in the negative ion mode leads to a product ion, deprotonated γ-glutamyl-dehydroalanyl-glycine (m/z 272.0888). As a means of utilizing this property, negative ion high resolution MS data were collected from in vitro incubations by monitoring ions from m/z 269.5 to 274.5 under in-source collision-induced dissociation. Extraction of product ions at m/z 272.0888 ± 5 ppm from this data resulted in a chromatogram exhibiting deprotonated γ-glutamyl-dehydroalanyl-glycine as the major peaks with no or very few interferences. Therefore, peaks in this extracted product ion chromatogram potentially came from GSH-trapped reactive metabolites. The GSH conjugate parent ions were then confirmed in the corresponding full scan MS data, and their structures were identified from their MS(2) fragmentation patterns. The effectiveness of the approach was assessed with four model compounds, amodiaquine, clozapine, diclofenac, and fipexide, all well-known to form GSH-trapped reactive metabolites, following incubation in human liver microsomes supplemented with β-nicotinamide adenine dinucleotide 2'-phosphate reduced tetrasodium salt (NADPH) and GSH. The results from XoPI method were compared to two other commonly employed liquid chromatography-mass spectrometry (LC-MS) methods: precursor ion scan method and mass defect filter method. Overall, the XoPI method was more selective and sensitive in detecting the GSH conjugates. Many GSH conjugates previously not reported were detected and characterized in this study.
Collapse
Affiliation(s)
- Xiaochun Zhu
- Pharmacokinetics and Drug Metabolism, Amgen Inc., Thousand Oaks, California 91320, United States.
| | | | | |
Collapse
|
14
|
Barbara JE, Castro-Perez JM. High-resolution chromatography/time-of-flight MSE with in silico data mining is an information-rich approach to reactive metabolite screening. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:3029-3040. [PMID: 21953957 DOI: 10.1002/rcm.5197] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Electrophilic reactive metabolite screening by liquid chromatography/mass spectrometry (LC/MS) is commonly performed during drug discovery and early-stage drug development. Accurate mass spectrometry has excellent utility in this application, but sophisticated data processing strategies are essential to extract useful information. Herein, a unified approach to glutathione (GSH) trapped reactive metabolite screening with high-resolution LC/TOF MS(E) analysis and drug-conjugate-specific in silico data processing was applied to rapid analysis of test compounds without the need for stable- or radio-isotope-labeled trapping agents. Accurate mass defect filtering (MDF) with a C-heteroatom dealkylation algorithm dynamic with mass range was compared to linear MDF and shown to minimize false positive results. MS(E) data-filtering, time-alignment and data mining post-acquisition enabled detection of 53 GSH conjugates overall formed from 5 drugs. Automated comparison of sample and control data in conjunction with the mass defect filter enabled detection of several conjugates that were not evident with mass defect filtering alone. High- and low-energy MS(E) data were time-aligned to generate in silico product ion spectra which were successfully applied to structural elucidation of detected GSH conjugates. Pseudo neutral loss and precursor ion chromatograms derived post-acquisition demonstrated 50.9% potential coverage, at best, of the detected conjugates by any individual precursor or neutral loss scan type. In contrast with commonly applied neutral loss and precursor-based techniques, the unified method has the advantage of applicability across different classes of GSH conjugates. The unified method was also successfully applied to cyanide trapping analysis and has potential for application to alternate trapping agents.
Collapse
|
15
|
Bahlmann A, Weller MG, Panne U, Schneider RJ. Monitoring carbamazepine in surface and wastewaters by an immunoassay based on a monoclonal antibody. Anal Bioanal Chem 2009; 395:1809-20. [PMID: 19633964 DOI: 10.1007/s00216-009-2958-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 06/19/2009] [Accepted: 07/07/2009] [Indexed: 11/25/2022]
Abstract
The pharmaceutical compound carbamazepine (CBZ) is an emerging pollutant in the aquatic environment and may potentially be used as a wastewater marker. In this work, an enzyme-linked immunosorbent assay (ELISA) for the detection of carbamazepine in surface and sewage waters has been developed. The heterogeneous immunoassay is based on a commercially available monoclonal antibody and a novel enzyme conjugate (tracer) that links the hapten via a hydrophilic peptide (triglycine) spacer to horseradish peroxidase. The assay achieves a limit of detection of 24 ng/L and a quantitation range of 0.05-50 microg/L. The analytical performance and figure of merits were compared to liquid chromatography-tandem mass spectrometry after solid-phase extraction. For nine Berlin surface water samples and one wastewater sample, a close correlation of results was observed. A constant overestimation relative to the CBZ concentration of approximately 30% by ELISA is probably caused by the presence of 10,11-epoxy-CBZ and 2-hydroxy-CBZ in the samples. The ELISA displayed cross-reactivities for these compounds of 83% and 14%, respectively. In a first screening of 27 surface water samples, CBZ was detected in every sample with concentrations between 0.05 and 3.2 microg/L. Since no sample cleanup is required, the assay allowed for the determination of carbamazepine with high sensitivity at low costs and with much higher throughput than with conventional methods.
Collapse
Affiliation(s)
- Arnold Bahlmann
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | | | | | | |
Collapse
|
16
|
Wen B, Fitch WL. Analytical strategies for the screening and evaluation of chemically reactive drug metabolites. Expert Opin Drug Metab Toxicol 2009; 5:39-55. [PMID: 19236228 DOI: 10.1517/17425250802665706] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Metabolic activation leading to formation of chemically reactive drug metabolites is a long-standing issue for drug development inasmuch as some, but not all, reactive intermediates play a role as mediators of drug-induced toxicities. The risk assessment profile/decision-making guide requires a comprehensive understanding of bioactivation mechanism(s), quantitative magnitude and cellular consequences of this principal and continued safety attrition. OBJECTIVE To evaluate analytical methodologies with improved sensitivity, selectivity and throughput for the analysis of reactive metabolites. CONCLUSIONS Identification and quantification of short-lived electrophilic intermediates through appropriate trapping experiments have become relatively straightforward. Minimizing the bioactivation potential of drug candidates during the discovery/lead optimization phase has been adopted as a default strategy. Together with advances of proteomics, metabolomics and toxicogenomics, an integrated multitier approach possibly provides a deeper insight into mechanistic aspects of drug-induced toxicities, and contributes to bridging the relationships between metabolic activation, drug-protein adduct formation and their toxicological consequences.
Collapse
Affiliation(s)
- Bo Wen
- Department of Drug Metabolism and Pharmacokinetics, Roche Palo Alto, Palo Alto, CA 94304, USA.
| | | |
Collapse
|
17
|
Recent advances in applications of liquid chromatography–tandem mass spectrometry to the analysis of reactive drug metabolites. Chem Biol Interact 2009; 179:25-37. [DOI: 10.1016/j.cbi.2008.09.014] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2008] [Revised: 09/09/2008] [Accepted: 09/10/2008] [Indexed: 01/09/2023]
|