1
|
Gallarotti N, Barthel M, Verhoeven E, Pereira EIP, Bauters M, Baumgartner S, Drake TW, Boeckx P, Mohn J, Longepierre M, Mugula JK, Makelele IA, Ntaboba LC, Six J. In-depth analysis of N 2O fluxes in tropical forest soils of the Congo Basin combining isotope and functional gene analysis. THE ISME JOURNAL 2021; 15:3357-3374. [PMID: 34035444 PMCID: PMC8528805 DOI: 10.1038/s41396-021-01004-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 04/14/2021] [Accepted: 04/30/2021] [Indexed: 02/04/2023]
Abstract
Primary tropical forests generally exhibit large gaseous nitrogen (N) losses, occurring as nitric oxide (NO), nitrous oxide (N2O) or elemental nitrogen (N2). The release of N2O is of particular concern due to its high global warming potential and destruction of stratospheric ozone. Tropical forest soils are predicted to be among the largest natural sources of N2O; however, despite being the world's second-largest rainforest, measurements of gaseous N-losses from forest soils of the Congo Basin are scarce. In addition, long-term studies investigating N2O fluxes from different forest ecosystem types (lowland and montane forests) are scarce. In this study we show that fluxes measured in the Congo Basin were lower than fluxes measured in the Neotropics, and in the tropical forests of Australia and South East Asia. In addition, we show that despite different climatic conditions, average annual N2O fluxes in the Congo Basin's lowland forests (0.97 ± 0.53 kg N ha-1 year-1) were comparable to those in its montane forest (0.88 ± 0.97 kg N ha-1 year-1). Measurements of soil pore air N2O isotope data at multiple depths suggests that a microbial reduction of N2O to N2 within the soil may account for the observed low surface N2O fluxes and low soil pore N2O concentrations. The potential for microbial reduction is corroborated by a significant abundance and expression of the gene nosZ in soil samples from both study sites. Although isotopic and functional gene analyses indicate an enzymatic potential for complete denitrification, combined gaseous N-losses (N2O, N2) are unlikely to account for the missing N-sink in these forests. Other N-losses such as NO, N2 via Feammox or hydrological particulate organic nitrogen export could play an important role in soils of the Congo Basin and should be the focus of future research.
Collapse
Affiliation(s)
- Nora Gallarotti
- grid.5801.c0000 0001 2156 2780Department of Environmental Systems Science, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Matti Barthel
- grid.5801.c0000 0001 2156 2780Department of Environmental Systems Science, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Elizabeth Verhoeven
- grid.4391.f0000 0001 2112 1969College of Agricultural Sciences, Oregon State University, Corvallis, OR USA
| | - Engil Isadora Pujol Pereira
- grid.449717.80000 0004 5374 269XSchool of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Edinburg, TX USA
| | - Marijn Bauters
- grid.5342.00000 0001 2069 7798Isotope Bioscience Laboratory, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium ,grid.5342.00000 0001 2069 7798Computational and Applied Vegetation Ecology Lab, Department of Environment, Ghent University, Ghent, Belgium
| | - Simon Baumgartner
- grid.5801.c0000 0001 2156 2780Department of Environmental Systems Science, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland ,grid.7942.80000 0001 2294 713XEarth and Life Institute, Université Catholique de Louvain, Louvain, Belgium
| | - Travis W. Drake
- grid.5801.c0000 0001 2156 2780Department of Environmental Systems Science, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Pascal Boeckx
- grid.5342.00000 0001 2069 7798Isotope Bioscience Laboratory, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Joachim Mohn
- grid.7354.50000 0001 2331 3059Laboratory for Air Pollution/Environmental Technology, Swiss Federal Laboratories of Materials Science and Technology, Empa Dubendorf, Switzerland
| | - Manon Longepierre
- grid.5801.c0000 0001 2156 2780Department of Environmental Systems Science, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - John Kalume Mugula
- grid.442836.f0000 0004 7477 7760Département de Biologie, Université Officielle de Bukavu, Bukavu, Democratic Republic of Congo
| | - Isaac Ahanamungu Makelele
- grid.442836.f0000 0004 7477 7760Département de Biologie, Université Officielle de Bukavu, Bukavu, Democratic Republic of Congo ,grid.5342.00000 0001 2069 7798Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Landry Cizungu Ntaboba
- grid.442834.d0000 0004 6011 4325Département d’ Agronomie, Université Catholique de Bukavu, Bukavu, Democratic Republic of Congo
| | - Johan Six
- grid.5801.c0000 0001 2156 2780Department of Environmental Systems Science, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Yu L, Harris E, Lewicka-Szczebak D, Barthel M, Blomberg MRA, Harris SJ, Johnson MS, Lehmann MF, Liisberg J, Müller C, Ostrom NE, Six J, Toyoda S, Yoshida N, Mohn J. What can we learn from N 2 O isotope data? - Analytics, processes and modelling. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8858. [PMID: 32548934 DOI: 10.1002/rcm.8858] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 05/21/2023]
Abstract
The isotopic composition of nitrous oxide (N2 O) provides useful information for evaluating N2 O sources and budgets. Due to the co-occurrence of multiple N2 O transformation pathways, it is, however, challenging to use isotopic information to quantify the contribution of distinct processes across variable spatiotemporal scales. Here, we present an overview of recent progress in N2 O isotopic studies and provide suggestions for future research, mainly focusing on: analytical techniques; production and consumption processes; and interpretation and modelling approaches. Comparing isotope-ratio mass spectrometry (IRMS) with laser absorption spectroscopy (LAS), we conclude that IRMS is a precise technique for laboratory analysis of N2 O isotopes, while LAS is more suitable for in situ/inline studies and offers advantages for site-specific analyses. When reviewing the link between the N2 O isotopic composition and underlying mechanisms/processes, we find that, at the molecular scale, the specific enzymes and mechanisms involved determine isotopic fractionation effects. In contrast, at plot-to-global scales, mixing of N2 O derived from different processes and their isotopic variability must be considered. We also find that dual isotope plots are effective for semi-quantitative attribution of co-occurring N2 O production and reduction processes. More recently, process-based N2 O isotopic models have been developed for natural abundance and 15 N-tracing studies, and have been shown to be effective, particularly for data with adequate temporal resolution. Despite the significant progress made over the last decade, there is still great need and potential for future work, including development of analytical techniques, reference materials and inter-laboratory comparisons, further exploration of N2 O formation and destruction mechanisms, more observations across scales, and design and validation of interpretation and modelling approaches. Synthesizing all these efforts, we are confident that the N2 O isotope community will continue to advance our understanding of N2 O transformation processes in all spheres of the Earth, and in turn to gain improved constraints on regional and global budgets.
Collapse
Affiliation(s)
- Longfei Yu
- Laboratory for Air Pollution & Environmental Technology, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf, CH-8600, Switzerland
- Institute of Groundwater and Earth Sciences, Jinan University, Guangzhou, 510632, China
| | - Eliza Harris
- Department of Ecology, University of Innsbruck, Sternwartestrasse 15, Innsbruck, A-6020, Austria
| | - Dominika Lewicka-Szczebak
- Centre for Stable Isotope Research and Analysis (KOSI), Büsgen Institute, Georg-August University of Göttingen, Germany
| | - Matti Barthel
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Margareta R A Blomberg
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, SE-10691, Sweden
| | - Stephen J Harris
- School of Biological, Earth and Environmental Sciences, UNSW, Sydney, NSW, Australia
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Matthew S Johnson
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø, DK-2100, Denmark
| | - Moritz F Lehmann
- Department of Environmental Science, University of Basel, Basel, Switzerland
| | - Jesper Liisberg
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Christoph Müller
- Institute of Plant Ecology (IFZ), Justus-Liebig University Giessen, Heinrich-Buff-Ring 26, Giessen, 35392, Germany
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Nathaniel E Ostrom
- Department of Integrative Biology and DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Johan Six
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Sakae Toyoda
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama, 226-8502, Japan
| | - Naohiro Yoshida
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama, 226-8502, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Joachim Mohn
- Laboratory for Air Pollution & Environmental Technology, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf, CH-8600, Switzerland
| |
Collapse
|
3
|
Zhang Y, Ma M, Fang H, Qin D, Cheng S, Yuan W. Impacts of nitrogen addition on nitrous oxide emission: Comparison of five nitrous oxide modules or algorithms. Ecol Modell 2020. [DOI: 10.1016/j.ecolmodel.2020.108963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Dos Santos VHJM, Laroque DO, Baum CI, de M Engelmann P, Lourega RV, Rodrigues LF. Evaluation of different samplers and storage temperature effect on the methane carbon stable isotope analysis. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:573. [PMID: 30191325 DOI: 10.1007/s10661-018-6934-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
The present work evaluates the efficiency of some low-cost sampler container for a reliable carbon stable isotope analysis of methane. The procedure efficiency was evaluated for five containers, through 91 days, under two storage temperatures (4 °C and 25 °C) and the results are compared against a reference sampler by using univariate and multivariate statistical methods. Based on the univariate (ANOVA and comparison statistical methods) and multivariate (PCA and HCA) statistical methods, it was identified that (i) the isotopic value changes with time and, in this way, must be taken in account when choosing the appropriate sampler and (ii) the lower temperature reduces the isotopic fractionation process and is preferable for the gas sample storage. Among the storage systems, two options were found to be statistically equivalent to the reference container (IsoJar) for a time horizon of 91 days. We found that the exetainer (4 °C and 25 °C) storage systems are statistically equivalent to the reference container IsoJar and, in this way, it could be an alternative for the methane isotopic studies.
Collapse
Affiliation(s)
- Victor H J M Dos Santos
- Institute of Petroleum and Natural Resources, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga, 6681 - Building 96J, Porto Alegre, 90619-900, Brazil
| | - Diane O Laroque
- Institute of Petroleum and Natural Resources, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga, 6681 - Building 96J, Porto Alegre, 90619-900, Brazil
| | - Caroline I Baum
- Institute of Petroleum and Natural Resources, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga, 6681 - Building 96J, Porto Alegre, 90619-900, Brazil
| | - Pâmela de M Engelmann
- Institute of Petroleum and Natural Resources, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga, 6681 - Building 96J, Porto Alegre, 90619-900, Brazil
| | - Rogério V Lourega
- Institute of Petroleum and Natural Resources, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga, 6681 - Building 96J, Porto Alegre, 90619-900, Brazil
| | - Luiz F Rodrigues
- Institute of Petroleum and Natural Resources, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga, 6681 - Building 96J, Porto Alegre, 90619-900, Brazil.
| |
Collapse
|
5
|
Lewicka-Szczebak D, Well R, Bol R, Gregory AS, Matthews GP, Misselbrook T, Whalley WR, Cardenas LM. Isotope fractionation factors controlling isotopocule signatures of soil-emitted N₂O produced by denitrification processes of various rates. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:269-282. [PMID: 26411625 DOI: 10.1002/rcm.7102] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/14/2014] [Accepted: 11/17/2014] [Indexed: 06/05/2023]
Abstract
RATIONALE This study aimed (i) to determine the isotopic fractionation factors associated with N2O production and reduction during soil denitrification and (ii) to help specify the factors controlling the magnitude of the isotope effects. For the first time the isotope effects of denitrification were determined in an experiment under oxic atmosphere and using a novel approach where N2O production and reduction occurred simultaneously. METHODS Soil incubations were performed under a He/O2 atmosphere and the denitrification product ratio [N2O/(N2 + N2O)] was determined by direct measurement of N2 and N2O fluxes. N2O isotopocules were analyzed by mass spectrometry to determine δ(18)O, δ(15)N and (15)N site preference within the linear N2O molecule (SP). An isotopic model was applied for the simultaneous determination of net isotope effects (η) of both N2O production and reduction, taking into account emissions from two distinct soil pools. RESULTS A clear relationship was observed between (15)N and (18)O isotope effects during N2O production and denitrification rates. For N2O reduction, diverse isotope effects were observed for the two distinct soil pools characterized by different product ratios. For moderate product ratios (from 0.1 to 1.0) the range of isotope effects given by previous studies was confirmed and refined, whereas for very low product ratios (below 0.1) the net isotope effects were much smaller. CONCLUSIONS The fractionation factors associated with denitrification, determined under oxic incubation, are similar to the factors previously determined under anoxic conditions, hence potentially applicable for field studies. However, it was shown that the η(18)O/η(15)N ratios, previously accepted as typical for N2O reduction processes (i.e., higher than 2), are not valid for all conditions.
Collapse
Affiliation(s)
- Dominika Lewicka-Szczebak
- Thünen Institute of Climate-Smart Agriculture, Federal Research Institute for Rural Areas, Forestry and Fisheries, Bundesallee 50, D-38116, Braunschweig, Germany
- Institute of Geological Sciences, University of Wrocław, Cybulskiego 30, PL-50-205, Wroclaw, Poland
| | - Reinhard Well
- Thünen Institute of Climate-Smart Agriculture, Federal Research Institute for Rural Areas, Forestry and Fisheries, Bundesallee 50, D-38116, Braunschweig, Germany
| | - Roland Bol
- Forschungszentrum Jülich IBG-3, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | | | - G Peter Matthews
- Faculty of Science & Environment, University of Plymouth, Plymouth, PL4 8AA, UK
| | | | | | | |
Collapse
|
6
|
Koster van Groos PG, Esser BK, Williams RW, Hunt JR. Isotope effect of mercury diffusion in air. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:227-33. [PMID: 24364380 PMCID: PMC3947406 DOI: 10.1021/es4033666] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Identifying and reducing impacts from mercury sources in the environment remains a considerable challenge and requires process based models to quantify mercury stocks and flows. The stable isotope composition of mercury in environmental samples can help address this challenge by serving as a tracer of specific sources and processes. Mercury isotope variations are small and result only from isotope fractionation during transport, equilibrium, and transformation processes. Because these processes occur in both industrial and environmental settings, knowledge of their associated isotope effects is required to interpret mercury isotope data. To improve the mechanistic modeling of mercury isotope effects during gas phase diffusion, an experimental program tested the applicability of kinetic gas theory. Gas-phase elemental mercury diffusion through small bore needles from finite sources demonstrated mass dependent diffusivities leading to isotope fractionation described by a Rayleigh distillation model. The measured relative atomic diffusivities among mercury isotopes in air are large and in agreement with kinetic gas theory. Mercury diffusion in air offers a reasonable explanation of recent field results reported in the literature.
Collapse
Affiliation(s)
- Paul G. Koster van Groos
- Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, California, 94720 USA
- Corresponding Author:
| | - Bradley K. Esser
- Chemical Sciences Division, Lawrence Livermore National Laboratory, P.O. Box 808, L-231, Livermore, California, 94551 USA
| | - Ross W. Williams
- Chemical Sciences Division, Lawrence Livermore National Laboratory, P.O. Box 808, L-231, Livermore, California, 94551 USA
| | - James R. Hunt
- Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, California, 94720 USA
| |
Collapse
|
7
|
Isotopic signatures of N2O produced by ammonia-oxidizing archaea from soils. ISME JOURNAL 2013; 8:1115-25. [PMID: 24225887 DOI: 10.1038/ismej.2013.205] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 10/01/2013] [Accepted: 10/09/2013] [Indexed: 11/09/2022]
Abstract
N2O gas is involved in global warming and ozone depletion. The major sources of N2O are soil microbial processes. Anthropogenic inputs into the nitrogen cycle have exacerbated these microbial processes, including nitrification. Ammonia-oxidizing archaea (AOA) are major members of the pool of soil ammonia-oxidizing microorganisms. This study investigated the isotopic signatures of N2O produced by soil AOA and associated N2O production processes. All five AOA strains (I.1a, I.1a-associated and I.1b clades of Thaumarchaeota) from soil produced N2O and their yields were comparable to those of ammonia-oxidizing bacteria (AOB). The levels of site preference (SP), δ(15)N(bulk) and δ(18)O -N2O of soil AOA strains were 13-30%, -13 to -35% and 22-36%, respectively, and strains MY1-3 and other soil AOA strains had distinct isotopic signatures. A (15)N-NH4(+)-labeling experiment indicated that N2O originated from two different production pathways (that is, ammonia oxidation and nitrifier denitrification), which suggests that the isotopic signatures of N2O from AOA may be attributable to the relative contributions of these two processes. The highest N2O production yield and lowest site preference of acidophilic strain CS may be related to enhanced nitrifier denitrification for detoxifying nitrite. Previously, it was not possible to detect N2O from soil AOA because of similarities between its isotopic signatures and those from AOB. Given the predominance of AOA over AOB in most soils, a significant proportion of the total N2O emissions from soil nitrification may be attributable to AOA.
Collapse
|
8
|
Sasaki Y, Koba K, Yamamoto M, Makabe A, Ueno Y, Nakagawa M, Toyoda S, Yoshida N, Yoh M. Biogeochemistry of nitrous oxide in Lake Kizaki, Japan, elucidated by nitrous oxide isotopomer analysis. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jg001589] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Nickerson N, Risk D. A numerical evaluation of chamber methodologies used in measuring the delta(13)C of soil respiration. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:2802-2810. [PMID: 19653202 DOI: 10.1002/rcm.4189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Measurement of the delta(13)C value of soil-respired CO(2) (delta(r)) has become a commonplace method through which ecosystem function and C dynamics can be better understood. Despite its proven utility there is currently no consensus on the most robust method with which to measure delta(r). Static and dynamic chamber systems are both commonly used for this purpose; however, the literature on these methods provides evidence suggesting that measurements of delta(r) made with these chamber systems are neither repeatable (self-consistent) nor comparable across methodologies. Here we use a three-dimensional (3-D) numerical soil-atmosphere-chamber model to test these chamber systems in a 'surrogate reality'. Our simulations show that each chamber methodology is inherently biased and that no chamber methodology can accurately predict the true delta(r) signature under field conditions. If researchers intend to use delta(r) to study in situ ecosystem processes, the issues with these chamber systems need to be corrected either by using diffusive theory or by designing a new, unbiased delta(r) measurement system.
Collapse
Affiliation(s)
- Nick Nickerson
- Department of Earth Sciences, St. Francis Xavier University, P.O. Box 5000, Antigonish, Nova Scotia, Canada, B2G 2W5.
| | | |
Collapse
|