1
|
Joshi N, Garapati K, Ghose V, Kandasamy RK, Pandey A. Recent progress in mass spectrometry-based urinary proteomics. Clin Proteomics 2024; 21:14. [PMID: 38389064 PMCID: PMC10885485 DOI: 10.1186/s12014-024-09462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
Serum or plasma is frequently utilized in biomedical research; however, its application is impeded by the requirement for invasive sample collection. The non-invasive nature of urine collection makes it an attractive alternative for disease characterization and biomarker discovery. Mass spectrometry-based protein profiling of urine has led to the discovery of several disease-associated biomarkers. Proteomic analysis of urine has not only been applied to disorders of the kidney and urinary bladder but also to conditions affecting distant organs because proteins excreted in the urine originate from multiple organs. This review provides a progress update on urinary proteomics carried out over the past decade. Studies summarized in this review have expanded the catalog of proteins detected in the urine in a variety of clinical conditions. The wide range of applications of urine analysis-from characterizing diseases to discovering predictive, diagnostic and prognostic markers-continues to drive investigations of the urinary proteome.
Collapse
Affiliation(s)
- Neha Joshi
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Kishore Garapati
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Vivek Ghose
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
| | - Richard K Kandasamy
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Akhilesh Pandey
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India.
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA.
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
2
|
Shao D, Huang L, Wang Y, Cui X, Li Y, Wang Y, Ma Q, Du W, Cui J. HBFP: a new repository for human body fluid proteome. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2021:6395039. [PMID: 34642750 PMCID: PMC8516408 DOI: 10.1093/database/baab065] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022]
Abstract
Body fluid proteome has been intensively studied as a primary source for disease
biomarker discovery. Using advanced proteomics technologies, early research
success has resulted in increasingly accumulated proteins detected in different
body fluids, among which many are promising biomarkers. However, despite a
handful of small-scale and specific data resources, current research is clearly
lacking effort compiling published body fluid proteins into a centralized and
sustainable repository that can provide users with systematic analytic tools. In
this study, we developed a new database of human body fluid proteome (HBFP) that
focuses on experimentally validated proteome in 17 types of human body fluids.
The current database archives 11 827 unique proteins reported by 164
scientific publications, with a maximal false discovery rate of 0.01 on both the
peptide and protein levels since 2001, and enables users to query, analyze and
download protein entries with respect to each body fluid. Three unique features
of this new system include the following: (i) the protein annotation page
includes detailed abundance information based on relative qualitative measures
of peptides reported in the original references, (ii) a new score is calculated
on each reported protein to indicate the discovery confidence and (iii) HBFP
catalogs 7354 proteins with at least two non-nested uniquely mapping peptides of
nine amino acids according to the Human Proteome Project Data Interpretation
Guidelines, while the remaining 4473 proteins have more than two unique peptides
without given sequence information. As an important resource for human protein
secretome, we anticipate that this new HBFP database can be a powerful tool that
facilitates research in clinical proteomics and biomarker discovery. Database URL:https://bmbl.bmi.osumc.edu/HBFP/
Collapse
Affiliation(s)
- Dan Shao
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, 122E Avery Hall, 1144 T St., Lincoln, NE 68588, USA.,Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 2699 Qianjin Street, Changchun 130012, China.,Department of Computer Science and Technology, Changchun University, 6543 Weixing Road, Changchun 130022, China
| | - Lan Huang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yan Wang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Xueteng Cui
- Department of Computer Science and Technology, Changchun University, 6543 Weixing Road, Changchun 130022, China
| | - Yufei Li
- Department of Computer Science and Technology, Changchun University, 6543 Weixing Road, Changchun 130022, China
| | - Yao Wang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 310G Lincoln tower, 1800 cannon drive, Columbus, OH 43210, USA
| | - Wei Du
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Juan Cui
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, 122E Avery Hall, 1144 T St., Lincoln, NE 68588, USA
| |
Collapse
|
3
|
Lack of APOL1 in proximal tubules of normal human kidneys and proteinuric APOL1 transgenic mouse kidneys. PLoS One 2021; 16:e0253197. [PMID: 34138902 PMCID: PMC8211208 DOI: 10.1371/journal.pone.0253197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/30/2021] [Indexed: 11/19/2022] Open
Abstract
The mechanism of pathogenesis associated with APOL1 polymorphisms and risk for non-diabetic chronic kidney disease (CKD) is not fully understood. Prior studies have minimized a causal role for the circulating APOL1 protein, thus efforts to understand kidney pathogenesis have focused on APOL1 expressed in renal cells. Of the kidney cells reported to express APOL1, the proximal tubule expression patterns are inconsistent in published reports, and whether APOL1 is synthesized by the proximal tubule or possibly APOL1 protein in the blood is filtered and reabsorbed by the proximal tubule remains unclear. Using both protein and mRNA in situ methods, the kidney expression pattern of APOL1 was examined in normal human and APOL1 bacterial artificial chromosome transgenic mice with and without proteinuria. APOL1 protein and mRNA was detected in podocytes and endothelial cells, but not in tubular epithelia. In the setting of proteinuria, plasma APOL1 protein did not appear to be filtered or reabsorbed by the proximal tubule. A side-by-side examination of commercial antibodies used in prior studies suggest the original reports of APOL1 in proximal tubules likely reflects antibody non-specificity. As such, APOL1 expression in podocytes and endothelia should remain the focus for mechanistic studies in the APOL1-mediated kidney diseases.
Collapse
|
4
|
Cui LL, Zhou CX, Han B, Wang SS, Li SY, Xie SC, Zhou DH. Urine proteomics for profiling of mouse toxoplasmosis using liquid chromatography tandem mass spectrometry analysis. Parasit Vectors 2021; 14:211. [PMID: 33879238 PMCID: PMC8056516 DOI: 10.1186/s13071-021-04713-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/31/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Toxoplasma gondii is an obligate intracellular parasite that causes toxoplasmosis. Urine is an easily obtained clinical sample that has been widely applied for diagnostic purposes. However, changes in the urinary proteome during T. gondii infection have never been investigated. METHODS Twenty four-hour urine samples were obtained from BALB/c mice with acute infection [11 days post infection (DPI)], mice with chronic infection (35 DPI) and healthy controls, and were analyzed using a label-free liquid chromatography tandem mass spectrometry analysis. RESULTS We identified a total of 13,414 peptides on 1802 proteins, of which 169 and 47 proteins were significantly differentially expressed at acute and chronic infection phases, respectively. Clustering analysis revealed obvious differences in proteome profiles among all groups. Gene ontology analysis showed that a large number of differentially expressed proteins (DEPs) detected in acute infection were associated with biological binding activity and single-organism processes. KEGG pathway enrichment analysis showed that the majority of these DEPs were involved in disease-related and metabolic pathways. CONCLUSIONS Our findings revealed global reprogramming of the urine proteome following T. gondii infection, and data obtained in this study will enhance our understanding of the host responses to T. gondii infection and lead to the identification of new diagnostic biomarkers.
Collapse
Affiliation(s)
- Lin-Lin Cui
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Chun-Xue Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, 250012, People's Republic of China.
| | - Bing Han
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, 250012, People's Republic of China
| | - Sha-Sha Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Si-Ying Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, 250012, People's Republic of China
| | - Shi-Chen Xie
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Dong-Hui Zhou
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
5
|
Swensen AC, He J, Fang AC, Ye Y, Nicora CD, Shi T, Liu AY, Sigdel TK, Sarwal MM, Qian WJ. A Comprehensive Urine Proteome Database Generated From Patients With Various Renal Conditions and Prostate Cancer. Front Med (Lausanne) 2021; 8:548212. [PMID: 33928097 PMCID: PMC8076675 DOI: 10.3389/fmed.2021.548212] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 03/18/2021] [Indexed: 01/10/2023] Open
Abstract
Urine proteins can serve as viable biomarkers for diagnosing and monitoring various diseases. A comprehensive urine proteome database, generated from a variety of urine samples with different disease conditions, can serve as a reference resource for facilitating discovery of potential urine protein biomarkers. Herein, we present a urine proteome database generated from multiple datasets using 2D LC-MS/MS proteome profiling of urine samples from healthy individuals (HI), renal transplant patients with acute rejection (AR) and stable graft (STA), patients with non-specific proteinuria (NS), and patients with prostate cancer (PC). A total of ~28,000 unique peptides spanning ~2,200 unique proteins were identified with a false discovery rate of <0.5% at the protein level. Over one third of the annotated proteins were plasma membrane proteins and another one third were extracellular proteins according to gene ontology analysis. Ingenuity Pathway Analysis of these proteins revealed 349 potential biomarkers in the literature-curated database. Forty-three percentage of all known cluster of differentiation (CD) proteins were identified in the various human urine samples. Interestingly, following comparisons with five recently published urine proteome profiling studies, which applied similar approaches, there are still ~400 proteins which are unique to this current study. These may represent potential disease-associated proteins. Among them, several proteins such as serpin B3, renin receptor, and periostin have been reported as pathological markers for renal failure and prostate cancer, respectively. Taken together, our data should provide valuable information for future discovery and validation studies of urine protein biomarkers for various diseases.
Collapse
Affiliation(s)
- Adam C Swensen
- Integrative Omics, Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA, United States
| | - Jingtang He
- Integrative Omics, Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA, United States
| | - Alexander C Fang
- Integrative Omics, Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA, United States
| | - Yinyin Ye
- Integrative Omics, Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA, United States
| | - Carrie D Nicora
- Integrative Omics, Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA, United States
| | - Tujin Shi
- Integrative Omics, Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA, United States
| | - Alvin Y Liu
- Department of Urology, University of Washington, Seattle, WA, United States
| | - Tara K Sigdel
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Minnie M Sarwal
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Wei-Jun Qian
- Integrative Omics, Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA, United States
| |
Collapse
|
6
|
Huang L, Shao D, Wang Y, Cui X, Li Y, Chen Q, Cui J. Human body-fluid proteome: quantitative profiling and computational prediction. Brief Bioinform 2021; 22:315-333. [PMID: 32020158 PMCID: PMC7820883 DOI: 10.1093/bib/bbz160] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/22/2019] [Accepted: 10/18/2019] [Indexed: 12/15/2022] Open
Abstract
Empowered by the advancement of high-throughput bio technologies, recent research on body-fluid proteomes has led to the discoveries of numerous novel disease biomarkers and therapeutic drugs. In the meantime, a tremendous progress in disclosing the body-fluid proteomes was made, resulting in a collection of over 15 000 different proteins detected in major human body fluids. However, common challenges remain with current proteomics technologies about how to effectively handle the large variety of protein modifications in those fluids. To this end, computational effort utilizing statistical and machine-learning approaches has shown early successes in identifying biomarker proteins in specific human diseases. In this article, we first summarized the experimental progresses using a combination of conventional and high-throughput technologies, along with the major discoveries, and focused on current research status of 16 types of body-fluid proteins. Next, the emerging computational work on protein prediction based on support vector machine, ranking algorithm, and protein-protein interaction network were also surveyed, followed by algorithm and application discussion. At last, we discuss additional critical concerns about these topics and close the review by providing future perspectives especially toward the realization of clinical disease biomarker discovery.
Collapse
Affiliation(s)
- Lan Huang
- College of Computer Science and Technology in the Jilin University
| | - Dan Shao
- College of Computer Science and Technology in the Jilin University
- College of Computer Science and Technology in Changchun University
| | - Yan Wang
- College of Computer Science and Technology in the Jilin University
| | - Xueteng Cui
- College of Computer Science and Technology in the Changchun University
| | - Yufei Li
- College of Computer Science and Technology in the Changchun University
| | - Qian Chen
- College of Computer Science and Technology in the Jilin University
| | - Juan Cui
- Department of Computer Science and Engineering in the University of Nebraska-Lincoln
| |
Collapse
|
7
|
Thomas SL, Thacker JB, Schug KA, Maráková K. Sample preparation and fractionation techniques for intact proteins for mass spectrometric analysis. J Sep Sci 2020; 44:211-246. [DOI: 10.1002/jssc.202000936] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Shannon L. Thomas
- Department of Chemistry & Biochemistry The University of Texas Arlington Arlington Texas USA
| | - Jonathan B. Thacker
- Department of Chemistry & Biochemistry The University of Texas Arlington Arlington Texas USA
| | - Kevin A. Schug
- Department of Chemistry & Biochemistry The University of Texas Arlington Arlington Texas USA
| | - Katarína Maráková
- Department of Pharmaceutical Analysis and Nuclear Pharmacy Faculty of Pharmacy Comenius University in Bratislava Bratislava Slovakia
| |
Collapse
|
8
|
Deng N, Chen Y, Liang Z, Bian Y, Wang B, Sui Z, Zhang X, Yang K, Zhang L, Zhang Y. Ampholine immobilized polymer microspheres for increasing coverage of human urinary proteome. Talanta 2020; 215:120931. [DOI: 10.1016/j.talanta.2020.120931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/06/2020] [Accepted: 03/12/2020] [Indexed: 10/24/2022]
|
9
|
Paul P, Antonydhason V, Gopal J, Haga SW, Hasan N, Oh JW. Bioinformatics for Renal and Urinary Proteomics: Call for Aggrandization. Int J Mol Sci 2020; 21:E961. [PMID: 32024005 PMCID: PMC7038205 DOI: 10.3390/ijms21030961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 02/07/2023] Open
Abstract
The clinical sampling of urine is noninvasive and unrestricted, whereby huge volumes can be easily obtained. This makes urine a valuable resource for the diagnoses of diseases. Urinary and renal proteomics have resulted in considerable progress in kidney-based disease diagnosis through biomarker discovery and treatment. This review summarizes the bioinformatics tools available for this area of proteomics and the milestones reached using these tools in clinical research. The scant research publications and the even more limited bioinformatic tool options available for urinary and renal proteomics are highlighted in this review. The need for more attention and input from bioinformaticians is highlighted, so that progressive achievements and releases can be made. With just a handful of existing tools for renal and urinary proteomic research available, this review identifies a gap worth targeting by protein chemists and bioinformaticians. The probable causes for the lack of enthusiasm in this area are also speculated upon in this review. This is the first review that consolidates the bioinformatics applications specifically for renal and urinary proteomics.
Collapse
Affiliation(s)
- Piby Paul
- St. Jude Childrens Cancer Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA;
| | - Vimala Antonydhason
- Department of Microbiology and Immunology, Institute for Biomedicine, Gothenburg University, 413 90 Gothenburg, Sweden;
| | - Judy Gopal
- Department of Environmental Health Sciences, Konkuk University, Seoul 143-701, Korea;
| | - Steve W. Haga
- Department of Computer Science and Engineering, National Sun Yat Sen University, Kaohsiung 804, Taiwan;
| | - Nazim Hasan
- Department of Chemistry, Faculty of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia;
| | - Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
10
|
Chen G, Chen J, Liu H, Chen S, Zhang Y, Li P, Thierry-Mieg D, Thierry-Mieg J, Mattes W, Ning B, Shi T. Comprehensive Identification and Characterization of Human Secretome Based on Integrative Proteomic and Transcriptomic Data. Front Cell Dev Biol 2019; 7:299. [PMID: 31824949 PMCID: PMC6881247 DOI: 10.3389/fcell.2019.00299] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/07/2019] [Indexed: 12/25/2022] Open
Abstract
Secreted proteins (SPs) play important roles in diverse important biological processes; however, a comprehensive and high-quality list of human SPs is still lacking. Here we identified 6,943 high-confidence human SPs (3,522 of them are novel) based on 330,427 human proteins derived from databases of UniProt, Ensembl, AceView, and RefSeq. Notably, 6,267 of 6,943 (90.3%) SPs have the supporting evidences from a large amount of mass spectrometry (MS) and RNA-seq data. We found that the SPs were broadly expressed in diverse tissues as well as human body fluid, and a significant portion of them exhibited tissue-specific expression. Moreover, 14 cancer-specific SPs that their expression levels were significantly associated with the patients’ survival of eight different tumors were identified, which could be potential prognostic biomarkers. Strikingly, 89.21% of 6,943 SPs (2,927 novel SPs) contain known protein domains. Those novel SPs we mainly enriched with the known domains regarding immunity, such as Immunoglobulin V-set and C1-set domain. Specifically, we constructed a user-friendly and freely accessible database, SPRomeDB (www.unimd.org/SPRomeDB), to catalog those SPs. Our comprehensive SP identification and characterization gain insights into human secretome and provide valuable resource for future researches.
Collapse
Affiliation(s)
- Geng Chen
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiwei Chen
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Huanlong Liu
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Shuangguan Chen
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yang Zhang
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Peng Li
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Danielle Thierry-Mieg
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| | - Jean Thierry-Mieg
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| | - William Mattes
- National Center for Toxicological Research, Food and Drug Administration, Jefferson City, AR, United States
| | - Baitang Ning
- National Center for Toxicological Research, Food and Drug Administration, Jefferson City, AR, United States
| | - Tieliu Shi
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
11
|
Qin W, Wang T, Huang H, Gao Y. Profiling of lysine-acetylated proteins in human urine. SCIENCE CHINA. LIFE SCIENCES 2019; 62:1514-1520. [PMID: 30820853 DOI: 10.1007/s11427-017-9367-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/20/2018] [Indexed: 06/09/2023]
Abstract
A biomarker is a measurable indicator associated with changes in physiological state or disease. In contrast to the blood which is under homeostatic controls, urine reflects changes in the body earlier and more sensitively, and is therefore a better biomarker source. Lysine acetylation is an abundant and highly regulated post-translational modification. It plays a pivotal role in modulating diverse biological processes and is associated with various important diseases. Enrichment or visualization of proteins with specific post-translational modifications provides a method for sampling the urinary proteome and reducing sample complexity. In this study, we used anti-acetyllysine antibody-based immunoaffinity enrichment combined with high-resolution mass spectrometry to profile lysine-acetylated proteins in normal human urine. A total of 629 acetylation sites on 315 proteins were identified, including some very low-abundance proteins. This is the first proteome-wide characterization of lysine acetylation proteins in normal human urine. Our dataset provides a useful resource for the further discovery of lysine-acetylated proteins as biomarkers in urine.
Collapse
Affiliation(s)
- Weiwei Qin
- Department of Biochemistry and Molecular Biology, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing, 100875, China
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, 266071, China
| | - Ting Wang
- Department of Biochemistry and Molecular Biology, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing, 100875, China
| | - He Huang
- Department of Biochemistry and Molecular Biology, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Youhe Gao
- Department of Biochemistry and Molecular Biology, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
12
|
Vinaiphat A, Charngkaew K, Thongboonkerd V. More complete polarization of renal tubular epithelial cells by artificial urine. Cell Death Discov 2018; 4:47. [PMID: 30323952 PMCID: PMC6180081 DOI: 10.1038/s41420-018-0112-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/30/2018] [Accepted: 09/26/2018] [Indexed: 02/06/2023] Open
Abstract
Cell polarization using Transwell is a common method employed to study renal tubular epithelial cells. However, this conventional protocol does not precisely recapitulate renal tubular epithelial cell phenotypes. In this study, we simulated renal physiological microenvironment by replacing serum-containing culture medium in upper chamber of the Transwell with physiologic artificial urine (AU) (to mimic renal tubular fluid), whereas the lower chamber still contained serum-containing medium (to mimic plasma-enriched renal interstitium). Comparing to the conventional protocol (control), the AU-assisted protocol offered more complete polarization of MDCK renal tubular cells as indicated by higher transepithelial electrical resistance (TER) and greater levels of tight junction (TJ) proteins (ZO-1 and occludin). Transmission electron microscopy (TEM) showed greater densities of TJ and desmosome, narrower intercellular spaces, greater cell height, and longer microvilli in the AU-treated cells. Secretome analysis revealed that the AU-treated cells secreted greater proportion of the proteins matched to normal human urinary proteome via both classical and non-classical secretory pathways. Finally, modifying/omitting each component of AU (one at a time) followed by validation revealed that urea was responsible for such property of AU to improve cell polarization. These data indicate that replacing AU on the upper chamber of Transwell can improve or optimize renal cell polarization for more precise investigations of renal physiology and cell biology in vitro.
Collapse
Affiliation(s)
- Arada Vinaiphat
- 1Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,2Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Komgrid Charngkaew
- 3Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- 1Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,4Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
13
|
Wu X, Li L, Iliuk A, Tao WA. Highly Efficient Phosphoproteome Capture and Analysis from Urinary Extracellular Vesicles. J Proteome Res 2018; 17:3308-3316. [PMID: 30080416 PMCID: PMC7236337 DOI: 10.1021/acs.jproteome.8b00459] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Analysis of protein phosphorylation in extracellular vesicles (EVs) offers an unprecedented potential for understanding cancer signaling and early stage disease diagnosis. However, prior to the phosphoproteome analysis step, the isolation of EVs from biofluids remains a challenging issue to overcome due to the low yield and impurity from current isolation methods. Here, we carry out an extensive assessment of several EV isolation methods including a novel rapid isolation method EVTRAP for highly efficient capture of extracellular vesicles from human urine sample. We demonstrate that over 95% recovery yield can be consistently achieved by EVTRAP, a significant improvement over current standard techniques. We then applied EVTRAP to identify over 16 000 unique peptides representing 2000 unique EV proteins from 200 μL urine sample, including all known EV markers with substantially increased recovery levels over ultracentrifugation. Most importantly, close to 2000 unique phosphopeptides were identified from more than 860 unique phosphoproteins using 10 mL of urine. The data demonstrated that EVTRAP is a highly effective and potentially widely implementable clinical isolation method for analysis of EV protein phosphorylation.
Collapse
Affiliation(s)
- Xiaofeng Wu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Li Li
- Tymora Analytical Operations, West Lafayette, Indiana 47906, United States
| | - Anton Iliuk
- Tymora Analytical Operations, West Lafayette, Indiana 47906, United States
| | - W. Andy Tao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
- Tymora Analytical Operations, West Lafayette, Indiana 47906, United States
| |
Collapse
|
14
|
Recent progress in mass spectrometry proteomics for biomedical research. SCIENCE CHINA-LIFE SCIENCES 2017; 60:1093-1113. [DOI: 10.1007/s11427-017-9175-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 09/15/2017] [Indexed: 12/30/2022]
|
15
|
Harpole M, Davis J, Espina V. Current state of the art for enhancing urine biomarker discovery. Expert Rev Proteomics 2017; 13:609-26. [PMID: 27232439 DOI: 10.1080/14789450.2016.1190651] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Urine is a highly desirable biospecimen for biomarker analysis because it can be collected recurrently by non-invasive techniques, in relatively large volumes. Urine contains cellular elements, biochemicals, and proteins derived from glomerular filtration of plasma, renal tubule excretion, and urogenital tract secretions that reflect, at a given time point, an individual's metabolic and pathophysiologic state. AREAS COVERED High-resolution mass spectrometry, coupled with state of the art fractionation systems are revealing the plethora of diagnostic/prognostic proteomic information existing within urinary exosomes, glycoproteins, and proteins. Affinity capture pre-processing techniques such as combinatorial peptide ligand libraries and biomarker harvesting hydrogel nanoparticles are enabling measurement/identification of previously undetectable urinary proteins. Expert commentary: Future challenges in the urinary proteomics field include a) defining either single or multiple, universally applicable data normalization methods for comparing results within and between individual patients/data sets, and b) defining expected urinary protein levels in healthy individuals.
Collapse
Affiliation(s)
- Michael Harpole
- a Center for Applied Proteomics and Molecular Medicine , George Mason University , Manassas , VA , USA
| | - Justin Davis
- b Department of Chemistry/Biochemistry , George Mason University , Manassas , VA , USA
| | - Virginia Espina
- a Center for Applied Proteomics and Molecular Medicine , George Mason University , Manassas , VA , USA
| |
Collapse
|
16
|
Bekiares N, Krueger CG, Meudt JJ, Shanmuganayagam D, Reed JD. Effect of Sweetened Dried Cranberry Consumption on Urinary Proteome and Fecal Microbiome in Healthy Human Subjects. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 22:145-153. [PMID: 28618237 PMCID: PMC5810433 DOI: 10.1089/omi.2016.0167] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The relationship among diet, human health, and disease is an area of growing interest in biomarker research. Previous studies suggest that the consumption of cranberries (Vaccinium macrocarpon) could beneficially influence urinary and digestive health. The present study sought to determine if daily consumption of sweetened dried cranberries (SDC) changes the urinary proteome and fecal microbiome, as determined in a prospective sample of 10 healthy individuals. Baseline urine and fecal samples were collected from the subjects in the fasted (8-12 h) state. The subjects then consumed one serving (42 g) of SDC daily with lunch for 2 weeks. Urine and fecal samples were collected again the day after 2 weeks of SDC consumption. Orbitrap Q-Exactive mass spectrometry of urinary proteins showed that consumption of SDC resulted in changes to 22 urinary proteins. Multiplex sequencing of 16S ribosomal RNA genes in fecal samples indicated changes in relative abundance of several bacterial taxonomic units after consumption of SDC. There was a shift in the Firmicutes:Bacteroidetes ratio, increases in commensal bacteria, and decreases or the absence of bacteria associated with negative health effects. A decrease in uromodulin in all subjects and an increase in Akkermansia bacteria in most subjects were observed and warrant further investigation. Future larger clinical studies with multiomics and multitissue sampling designs are required to determine the effects of SDC consumption on nutrition and health.
Collapse
Affiliation(s)
- Nell Bekiares
- 1 Department of Animal Sciences, Reed Research Group, University of Wisconsin-Madison , Madison, Wisconsin
| | - Christian G Krueger
- 1 Department of Animal Sciences, Reed Research Group, University of Wisconsin-Madison , Madison, Wisconsin
| | - Jennifer J Meudt
- 2 Department of Animal Sciences, Biomedical and Genomic Research Group, University of Wisconsin-Madison , Madison, Wisconsin
| | - Dhanansayan Shanmuganayagam
- 2 Department of Animal Sciences, Biomedical and Genomic Research Group, University of Wisconsin-Madison , Madison, Wisconsin
| | - Jess D Reed
- 1 Department of Animal Sciences, Reed Research Group, University of Wisconsin-Madison , Madison, Wisconsin
| |
Collapse
|
17
|
A comprehensive analysis and annotation of human normal urinary proteome. Sci Rep 2017; 7:3024. [PMID: 28596590 PMCID: PMC5465101 DOI: 10.1038/s41598-017-03226-6] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/25/2017] [Indexed: 12/14/2022] Open
Abstract
Biomarkers are measurable changes associated with the disease. Urine can reflect the changes of the body while blood is under control of the homeostatic mechanisms; thus, urine is considered an important source for early and sensitive disease biomarker discovery. A comprehensive profile of the urinary proteome will provide a basic understanding of urinary proteins. In this paper, we present an in-depth analysis of the urinary proteome based on different separation strategies, including direct one dimensional liquid chromatography–tandem mass spectrometry (LC/MS/MS), two dimensional LC/MS/MS, and gel-eluted liquid fraction entrapment electrophoresis/liquid-phase isoelectric focusing followed by two dimensional LC/MS/MS. A total of 6085 proteins were identified in healthy urine, of which 2001 were not reported in previous studies and the concentrations of 2571 proteins were estimated (spanning a magnitude of 106) with an intensity-based absolute quantification algorithm. The urinary proteins were annotated by their tissue distribution. Detailed information can be accessed at the “Human Urine Proteome Database” (www.urimarker.com/urine).
Collapse
|
18
|
Di Meo A, Batruch I, Yousef AG, Pasic MD, Diamandis EP, Yousef GM. An integrated proteomic and peptidomic assessment of the normal human urinome. Clin Chem Lab Med 2017; 55:237-247. [PMID: 27394047 DOI: 10.1515/cclm-2016-0390] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/09/2016] [Indexed: 01/05/2023]
Abstract
BACKGROUND Urine represents an ideal source of clinically relevant biomarkers as it contains a large number of proteins and low molecular weight peptides. The comprehensive characterization of the normal urinary proteome and peptidome can serve as a reference for future biomarker discovery. Proteomic and peptidomic analysis of urine can also provide insight into normal physiology and disease pathology, especially for urogenital diseases. METHODS We developed an integrated proteomic and peptidomic analytical protocol in normal urine. We employed ultrafiltration to separate protein and peptide fractions, which were analyzed separately using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) on the Q-Exactive mass spectrometer. RESULTS By analyzing six urines from healthy individuals with advanced age, we identified 1754 proteins by proteomic analysis and 4543 endogenous peptides, arising from 566 proteins by peptidomic analysis. Overall, we identified 2091 non-redundant proteins by this integrated approach. In silico protease activity analysis indicated that metalloproteases are predominantly involved in the generation of the endogenous peptide signature. In addition, a number of proteins that were detected in normal urine have previously been implicated in various urological malignancies, including bladder cancer and renal cell carcinoma (RCC). CONCLUSIONS We utilized a highly sensitive proteomics approach that enabled us to identify one of the largest sets of protein identifications documented in normal human urine. The raw proteomics and peptidomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD003595.
Collapse
|
19
|
Giorgianni F, Beranova-Giorgianni S. Phosphoproteome Discovery in Human Biological Fluids. Proteomes 2016; 4:proteomes4040037. [PMID: 28248247 PMCID: PMC5260970 DOI: 10.3390/proteomes4040037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 11/11/2016] [Accepted: 11/23/2016] [Indexed: 01/07/2023] Open
Abstract
Phosphorylation plays a critical role in regulating protein function and thus influences a vast spectrum of cellular processes. With the advent of modern bioanalytical technologies, examination of protein phosphorylation on a global scale has become one of the major research areas. Phosphoproteins are found in biological fluids and interrogation of the phosphoproteome in biological fluids presents an exciting opportunity for discoveries that hold great potential for novel mechanistic insights into protein function in health and disease, and for translation to improved diagnostic and therapeutic approaches for the clinical setting. This review focuses on phosphoproteome discovery in selected human biological fluids: serum/plasma, urine, cerebrospinal fluid, saliva, and bronchoalveolar lavage fluid. Bioanalytical workflows pertinent to phosphoproteomics of biological fluids are discussed with emphasis on mass spectrometry-based approaches, and summaries of studies on phosphoproteome discovery in major fluids are presented.
Collapse
Affiliation(s)
- Francesco Giorgianni
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Sarka Beranova-Giorgianni
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
20
|
Santucci L, Bruschi M, Candiano G, Lugani F, Petretto A, Bonanni A, Ghiggeri GM. Urine Proteome Biomarkers in Kidney Diseases. I. Limits, Perspectives, and First Focus on Normal Urine. Biomark Insights 2016; 11:41-8. [PMID: 26997865 PMCID: PMC4795486 DOI: 10.4137/bmi.s26229] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 11/05/2022] Open
Abstract
Urine proteome is a potential source of information in renal diseases, and it is considered a natural area of investigation for biomarkers. Technology developments have markedly increased the power analysis on urinary proteins, and it is time to confront methodologies and results of major studies on the topics. This is a first part of a series of reviews that will focus on the urine proteome as a site for detecting biomarkers of renal diseases; the theme of the first review concerns methodological aspects applied to normal urine. Main issues are techniques for urine pretreatment, separation of exosomes, use of combinatorial peptide ligand libraries, mass spectrometry approaches, and analysis of data sets. Available studies show important differences, suggesting a major confounding effect of the technologies utilized for analysis. The objective is to obtain consensus about which approaches should be utilized for studying urine proteome in renal diseases.
Collapse
Affiliation(s)
- Laura Santucci
- Laboratory on Physiopathology of Uremia, Istituto Giannina Gaslini, Genova, Italy
| | - Maurizio Bruschi
- Laboratory on Physiopathology of Uremia, Istituto Giannina Gaslini, Genova, Italy
| | - Giovanni Candiano
- Laboratory on Physiopathology of Uremia, Istituto Giannina Gaslini, Genova, Italy
| | - Francesca Lugani
- Nephrology, Dialysis and Transplantation, Istituto Giannina Gaslini, Genova, Italy
| | - Andrea Petretto
- Laboratory of Mass Spectrometry - Core Facility, Istituto Giannina Gaslini, Genova, Italy
| | - Alice Bonanni
- Nephrology, Dialysis and Transplantation, Istituto Giannina Gaslini, Genova, Italy
| | - Gian Marco Ghiggeri
- Laboratory on Physiopathology of Uremia, Istituto Giannina Gaslini, Genova, Italy.; Nephrology, Dialysis and Transplantation, Istituto Giannina Gaslini, Genova, Italy
| |
Collapse
|
21
|
Wu C, Duan J, Liu T, Smith RD, Qian WJ. Contributions of immunoaffinity chromatography to deep proteome profiling of human biofluids. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1021:57-68. [PMID: 26868616 DOI: 10.1016/j.jchromb.2016.01.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 01/06/2016] [Accepted: 01/08/2016] [Indexed: 02/07/2023]
Abstract
Human biofluids, especially blood plasma or serum, hold great potential as the sources of candidate biomarkers for various diseases; however, the enormous dynamic range of protein concentrations in biofluids represents a significant analytical challenge for detecting promising low-abundance proteins. Over the last decade, various immunoaffinity chromatographic methods have been developed and routinely applied for separating low-abundance proteins from the high- and moderate-abundance proteins, thus enabling much more effective detection of low-abundance proteins. Herein, we review the advances of immunoaffinity separation methods and their contributions to the proteomic applications in human biofluids. The limitations and future perspectives of immunoaffinity separation methods are also discussed.
Collapse
Affiliation(s)
- Chaochao Wu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Jicheng Duan
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States.
| |
Collapse
|
22
|
Khristenko NA, Larina IM, Domon B. Longitudinal Urinary Protein Variability in Participants of the Space Flight Simulation Program. J Proteome Res 2015; 15:114-24. [DOI: 10.1021/acs.jproteome.5b00594] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nina A. Khristenko
- Luxembourg
Clinical Proteomics Center (LCP), Luxembourg Institute of Health, Strassen 1445, Luxembourg
- University of Luxembourg, Esch-sur-Alzette 4365, Luxembourg
| | | | - Bruno Domon
- Luxembourg
Clinical Proteomics Center (LCP), Luxembourg Institute of Health, Strassen 1445, Luxembourg
- University of Luxembourg, Esch-sur-Alzette 4365, Luxembourg
| |
Collapse
|
23
|
Human Urine Proteomics: Analytical Techniques and Clinical Applications in Renal Diseases. INTERNATIONAL JOURNAL OF PROTEOMICS 2015; 2015:782798. [PMID: 26693351 PMCID: PMC4677025 DOI: 10.1155/2015/782798] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/09/2015] [Indexed: 12/14/2022]
Abstract
Urine has been in the center of attention among scientists of clinical proteomics in the past decade, because it is valuable source of proteins and peptides with a relative stable composition and easy to collect in large and repeated quantities with a noninvasive procedure. In this review, we discuss technical aspects of urinary proteomics in detail, including sample preparation, proteomic technologies, and their advantage and disadvantages. Several recent experiments are presented which applied urinary proteome for biomarker discovery in renal diseases including diabetic nephropathy, immunoglobulin A (IgA) nephropathy, focal segmental glomerulosclerosis, lupus nephritis, membranous nephropathy, and acute kidney injury. In addition, several available databases in urinary proteomics are also briefly introduced.
Collapse
|
24
|
Profiling of urinary proteins in Karan Fries cows reveals more than 1550 proteins. J Proteomics 2015; 127:193-201. [PMID: 26021477 DOI: 10.1016/j.jprot.2015.05.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/18/2015] [Accepted: 05/21/2015] [Indexed: 12/15/2022]
Abstract
Urine is a non-invasive source of biological fluid, which reflects the physiological status of the mammals. We have profiled the cow urinary proteome and analyzed its functional significance. The urine collected from three healthy cows was concentrated by diafiltration (DF) followed by protein extraction using three methods, namely methanol, acetone, and ammonium sulphate (AS) precipitation and Proteo Spin urine concentration kit (PS). The quality of the protein was assessed by two-dimensional gel electrophoresis (2DE). In-gel digestion method revealed more proteins (1191) in comparison to in-solution digestion method (541). Collectively, 938, 606 and 444 proteins were identified in LC-MS/MS after in-gel and in-solution tryptic digestion of proteins prepared by AS, PS and DF methods, respectively resulting in identification of a total of 1564 proteins. Gene ontology (GO) using Panther7.0 grouped the majority of the proteins into cytoplasmic (location), catalytic activity (function), and metabolism (biological processes), while Cytoscape grouped proteins into complement and coagulation cascades; protease inhibitor activity and wound healing. Functional significance of few selected proteins seems to play important role in their physiology. Comparative analysis with human urine revealed 315 overlapping proteins. This study reports for the first time evidence of more than 1550 proteins in urine of healthy cow donors. This article is part of a Special Issue entitled: Proteomics in India.
Collapse
|
25
|
Adeola HA, Soares NC, Paccez JD, Kaestner L, Blackburn JM, Zerbini LF. Discovery of novel candidate urinary protein biomarkers for prostate cancer in a multiethnic cohort of South African patients via label-free mass spectrometry. Proteomics Clin Appl 2015; 9:597-609. [PMID: 25708745 DOI: 10.1002/prca.201400197] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/29/2015] [Accepted: 02/18/2015] [Indexed: 01/10/2023]
Abstract
PURPOSE Improvement in diagnostic accuracy of prostate cancer (PCa) progression using MS-based methods to analyze biomarkers in our African, Caucasian, and Mixed Ancestry patients can advance early detection and treatment monitoring. EXPERIMENTAL DESIGN MS-based proteomic analysis of pooled (N = 36) and individual samples (N = 45) of PCa, benign prostatic hyperplasia, normal healthy controls, and patients with other uropathies was used to identify differences in proteomics profile. Samples were analyzed for potential biomarkers and proteome coverage in African, Caucasian, and Mixed Ancestry PCa patients. RESULTS A total of 1102 and 5595 protein groups and nonredundant peptides, respectively, were identified in the pooling experiments (FDR = 0.01). Twenty potential biomarkers in PCa were identified and fold differences ± 2SD were observed in 17 proteins using intensity-based absolute quantification. Analysis of 45 individual samples yielded 1545 and 9991 protein groups and nonredundant peptides, respectively. Seventy-three (73) proteins groups, including existing putative PCa biomarkers, were found to be potential biomarkers of PCa by label-free quantification and demonstrated ethnic trends within our PCa cohort. CONCLUSION AND CLINICAL RELEVANCE Urinary proteomics is a promising route to PCa biomarker discovery and may serve as source of ethnic-related biomarkers of PCa.
Collapse
Affiliation(s)
- Henry A Adeola
- International Centre for Genetic Engineering and Biotechnology, University of Cape Town, Cape Town, South Africa.,Faculty of Health Sciences, Division of Medical Biochemistry, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Nelson C Soares
- Faculty of Health Sciences, Division of Medical Biochemistry, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Juliano D Paccez
- International Centre for Genetic Engineering and Biotechnology, University of Cape Town, Cape Town, South Africa.,Faculty of Health Sciences, Division of Medical Biochemistry, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Lisa Kaestner
- Urology Department, Grootes Schuur Hospital, Cape Town, South Africa
| | - Jonathan M Blackburn
- Faculty of Health Sciences, Division of Medical Biochemistry, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Luiz F Zerbini
- International Centre for Genetic Engineering and Biotechnology, University of Cape Town, Cape Town, South Africa.,Faculty of Health Sciences, Division of Medical Biochemistry, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
26
|
Candiano G, Santucci L, Petretto A, Lavarello C, Inglese E, Bruschi M, Ghiggeri GM, Boschetti E, Righetti PG. Widening and Diversifying the Proteome Capture by Combinatorial Peptide Ligand Libraries via Alcian Blue Dye Binding. Anal Chem 2015; 87:4814-20. [DOI: 10.1021/acs.analchem.5b00218] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Giovanni Candiano
- Nephrology, Dialysis,
Transplantation Unit and Laboratory on Pathophysiology of Uremia, Istituto Giannina Gaslini, Genoa 16148, Italy
| | - Laura Santucci
- Nephrology, Dialysis,
Transplantation Unit and Laboratory on Pathophysiology of Uremia, Istituto Giannina Gaslini, Genoa 16148, Italy
| | - Andrea Petretto
- Core Facilities—Proteomics
Laboratory, Istituto Giannina Gaslini, Genoa 16148, Italy
| | - Chiara Lavarello
- Core Facilities—Proteomics
Laboratory, Istituto Giannina Gaslini, Genoa 16148, Italy
| | - Elvira Inglese
- Core Facilities—Proteomics
Laboratory, Istituto Giannina Gaslini, Genoa 16148, Italy
| | - Maurizio Bruschi
- Nephrology, Dialysis,
Transplantation Unit and Laboratory on Pathophysiology of Uremia, Istituto Giannina Gaslini, Genoa 16148, Italy
| | - Gian Marco Ghiggeri
- Nephrology, Dialysis,
Transplantation Unit and Laboratory on Pathophysiology of Uremia, Istituto Giannina Gaslini, Genoa 16148, Italy
| | | | - Pier Giorgio Righetti
- Department
of Chemistry, Materials and Chemical Engineering, “Giulio
Natta”, Politecnico di Milano, Via Mancinelli 7, Milano 20131, Italy
| |
Collapse
|
27
|
Fougère B, Vellas B, van Kan GA, Cesari M. Identification of biological markers for better characterization of older subjects with physical frailty and sarcopenia. Transl Neurosci 2015; 6:103-110. [PMID: 28123793 PMCID: PMC4936618 DOI: 10.1515/tnsci-2015-0009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/28/2015] [Indexed: 12/16/2022] Open
Abstract
Population aging is rapidly accelerating worldwide; however, longer life expectancy is not the only public health goal. Indeed, extended lifetime involves maintaining function and the capacity of living independently. Sarcopenia and physical frailty are both highly relevant entities with regards to functionality and autonomy of older adults. The concepts and definitions of frailty and sarcopenia have largely been revised over the years. Sarcopenia is an age-related progressive and generalized loss of skeletal muscle mass and strength. On the other hand, frailty is a state of increased vulnerability to stressors, responsible for exposing the older person to enhanced risk of adverse outcomes. Physical frailty and sarcopenia substantially overlap and several adverse outcomes of frailty are likely mediated by sarcopenia. Indeed, the concepts of sarcopenia and physical frailty can be perceived as related to the same target organ (i.e., skeletal muscle) and it may be possible to combine them into a unique definition. The biological background of such a close relationship needs to be explored and clarified as it can potentially provide novel and pivotal insights for the assessment and treatment of these conditions in old age. The aim of this paper is to indicate and discuss possible biological markers to be considered in the framing of physical frailty and sarcopenia.
Collapse
Affiliation(s)
- Bertrand Fougère
- Gérontopôle, Centre Hospitalier Universitaire de Toulouse, Toulouse, France; Inserm UMR1027, Université de Toulouse III Paul Sabatier, Toulouse, France
| | - Bruno Vellas
- Gérontopôle, Centre Hospitalier Universitaire de Toulouse, Toulouse, France; Inserm UMR1027, Université de Toulouse III Paul Sabatier, Toulouse, France
| | - Gabor Abellan van Kan
- Gérontopôle, Centre Hospitalier Universitaire de Toulouse, Toulouse, France; Inserm UMR1027, Université de Toulouse III Paul Sabatier, Toulouse, France
| | - Matteo Cesari
- Gérontopôle, Centre Hospitalier Universitaire de Toulouse, Toulouse, France; Inserm UMR1027, Université de Toulouse III Paul Sabatier, Toulouse, France
| |
Collapse
|
28
|
Dynamic changes of urinary proteins in focal segmental glomerulosclerosis model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 845:167-73. [PMID: 25355579 DOI: 10.1007/978-94-017-9523-4_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Compare to blood, which has mechanisms to maintain homeostasis, urine is more likely to reflect changes in the body. As urine accumulates all types of changes, identifying the precise cause of changes in the urine proteome is challenging and crucial in biomarker discovery. To reduce the confounding factors to minimal, some studies used animal model resembling human diseases. This chapter highlights the importance of animal models and introduces a strategic research which focused on adriamycin-induced nephropathy. In this study, urine samples were collected at before adriamycin administration and days 3, 7, 11, 15, and 23 after, urinary proteins were profiled by LC-MS/MS. Of 23 changed proteins with disease development, 13 proteins were identified as stable in normal human urine, meaning that changes in these proteins are more likely to reflect disease. We think this stage-dependent dynamic changes of urine proteome in animal models will help to support the role of urine as key source in biomarker discovery especially in kidney diseases and help to identify corresponding biomarkers for clinical validation.
Collapse
|
29
|
Urinary Proteins with Post-translational Modifications. URINE PROTEOMICS IN KIDNEY DISEASE BIOMARKER DISCOVERY 2015; 845:59-65. [DOI: 10.1007/978-94-017-9523-4_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
30
|
Comparing Plasma and Urinary Proteomes to Understand Kidney Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 845:187-93. [DOI: 10.1007/978-94-017-9523-4_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
31
|
Zou L, Sun W. Human Urine Proteome: A Powerful Source for Clinical Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 845:31-42. [DOI: 10.1007/978-94-017-9523-4_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Su Z, Wang X, Gao X, Liu Y, Pan C, Hu H, Beyer RP, Shi M, Zhou J, Zhang J, Serra AL, Wüthrich RP, Mei C. Excessive activation of the alternative complement pathway in autosomal dominant polycystic kidney disease. J Intern Med 2014; 276:470-85. [PMID: 24494798 DOI: 10.1111/joim.12214] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The complement system is involved in many immune complex-mediated kidney diseases, yet its role in the pathogenesis of autosomal dominant polycystic kidney disease (ADPKD) has not been examined in detail. METHODS AND RESULTS Screening of the glycoproteome of urine samples from ADPKD patients revealed that levels of complement factor B (CFB), serpin peptidase inhibitor, complement component 1 inhibitor (SERPING1) and complement component 9 (C9) increased, whereas complement component 1, r subcomponent-like (C1RL), CD55 and CD59 levels decreased with disease progression. Immunostaining and Western blot analysis confirmed the enhanced expression of CFB and C9 in cystic kidneys from ADPKD patients. Immunostaining also showed that the expressions of CFB and C9 in renal biopsy tissues from patients with other types of chronic kidney disease were lower than in tissues from ADPKD patients. The effect of the complement inhibitor rosmarinic acid (RMA) was evaluated in Pkd1(-/-) mice and Han:SPRD Cy/+ rats. Compared with vehicle-treated Pkd1(-/-) animals, RMA-treated mice had significantly lower serum creatinine (-50%) and blood urea nitrogen (-78%) levels, two kidneys/body weight ratio (-60%) and renal cystic index (-60%). Similar results were found in Cy/+ rats. Lower numbers of Ki67-positive nuclei and inflammatory cells and reduced fibrosis were observed in both animal models upon treatment with RMA. CONCLUSIONS These results suggest that excessive activation of the alternative complement pathway is associated with ADPKD progression, probably mediated by cyst-lining epithelial cell proliferation, tubulointerstitial inflammatory cell infiltration and fibrosis. Targeting the complement system might represent a new therapeutic strategy for ADPKD.
Collapse
Affiliation(s)
- Z Su
- Kidney Institute, Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Using isolated rat kidney to discover kidney origin biomarkers in urine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 845:175-85. [PMID: 25355580 DOI: 10.1007/978-94-017-9523-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The use of targeted proteomics to identify urinary biomarkers of kidney disease in urine can avoid the interference of serum proteins. It may provide better sample throughput, higher sensitivity, and specificity. Knowing which urinary proteins to target is essential for targeted proteomics. In perfusates, there were proteins not found in normal human urine which may become biomarkers with zero background. There were proteins not found in normal human plasma which will not be influenced by other normal organs and will be kidney specific. When compared with existing candidate biomarkers, over 90 % of the kidney origin proteins in urine identified in this study have not been examined as candidate biomarkers of kidney diseases.
Collapse
|
34
|
Olszowy P, Buszewski B. Urine sample preparation for proteomic analysis. J Sep Sci 2014; 37:2920-8. [PMID: 25132110 DOI: 10.1002/jssc.201400331] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 07/08/2014] [Accepted: 07/18/2014] [Indexed: 12/22/2022]
Abstract
Sample preparation for both environmental and more importantly biological matrices is a bottleneck of all kinds of analytical processes. In the case of proteomic analysis this element is even more important due to the amount of cross-reactions that should be taken into consideration. The incorporation of new post-translational modifications, protein hydrolysis, or even its degradation is possible as side effects of proteins sample processing. If protocols are evaluated appropriately, then identification of such proteins does not bring difficulties. However, if structural changes are provided without sufficient attention then protein sequence coverage will be reduced or even identification of such proteins could be impossible. This review summarizes obstacles and achievements in protein sample preparation of urine for proteome analysis using different tools for mass spectrometry analysis. The main aim is to present comprehensively the idea of urine application as a valuable matrix. This article is dedicated to sample preparation and application of urine mainly in novel cancer biomarkers discovery.
Collapse
Affiliation(s)
- Pawel Olszowy
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Torun, Poland; Interdisciplinary Centre for Modern Technologies, Nicolaus Copernicus University, Torun, Poland
| | | |
Collapse
|
35
|
Santucci L, Candiano G, Petretto A, Bruschi M, Lavarello C, Inglese E, Giorgio Righetti P, Marco Ghiggeri G. From hundreds to thousands: Widening the normal human Urinome. Data Brief 2014. [PMID: 26217681 PMCID: PMC4459867 DOI: 10.1016/j.dib.2014.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The limits on protein detection in urine are unknown. Improving the analytical approach to detection would increase the number of identified proteins and potentially strengthen their predictive potential in diseases. Here, we present the data that resulted from a combination of analytical procedures for maximizing sensitivity and reproducibility of normal human urinary proteome analysis. These procedures are ultracentrifugation, vesicle separation, combinatorial peptide ligand libraries (CPLL) and solvent removal of pigments. Proteins were identified by an Orbitrap Velos Mass Spectrometry. 3429 proteins are characterized, 1724 of which are novel discoveries. The data are related to Santucci et al. (in press) [1] and available both here and at ChorusProject.org under project name “From hundreds to thousands: widening the normal human Urinome”. The material supplied to Chorus Progect.org includes technical MS spectra data only.
Collapse
Affiliation(s)
- Laura Santucci
- Nephrology, Dialysis, Transplantation Unit and Laboratory on Pathophysiology of Uremia, Istituto Giannina Gaslini, 16148 Genova, Italy
| | - Giovanni Candiano
- Nephrology, Dialysis, Transplantation Unit and Laboratory on Pathophysiology of Uremia, Istituto Giannina Gaslini, 16148 Genova, Italy
| | - Andrea Petretto
- Laboratory of Mass Spectrometry - Core Facility, Istituto Giannina Gaslini, 16148 Genova, Italy
| | - Maurizio Bruschi
- Nephrology, Dialysis, Transplantation Unit and Laboratory on Pathophysiology of Uremia, Istituto Giannina Gaslini, 16148 Genova, Italy
| | - Chiara Lavarello
- Laboratory of Mass Spectrometry - Core Facility, Istituto Giannina Gaslini, 16148 Genova, Italy
| | - Elvira Inglese
- Laboratory of Mass Spectrometry - Core Facility, Istituto Giannina Gaslini, 16148 Genova, Italy
| | - Pier Giorgio Righetti
- Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Via Mancinelli 7, 20131 Milano, Italy
| | - Gian Marco Ghiggeri
- Nephrology, Dialysis, Transplantation Unit and Laboratory on Pathophysiology of Uremia, Istituto Giannina Gaslini, 16148 Genova, Italy
| |
Collapse
|
36
|
Mapping and Identification of the Urine Proteome of Prostate Cancer Patients by 2D PAGE/MS. INTERNATIONAL JOURNAL OF PROTEOMICS 2014; 2014:594761. [PMID: 25215235 PMCID: PMC4158146 DOI: 10.1155/2014/594761] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/01/2014] [Accepted: 08/02/2014] [Indexed: 12/03/2022]
Abstract
Proteome analysis of the urine has shown that urine contains disease-specific information for a variety of urogenital system disorders, including prostate cancer (PCa). The aim of this study was to determine the protein components of urine from PCa patients. Urine from 8 patients with clinically and histologically confirmed PCa was analyzed by conventional 2D PAGE. The MS identification of the most prominent 125 spots from the urine map revealed 45 distinct proteins. According to Gene Ontology, the identified proteins are involved in a variety of biological processes, majority of them are secreted (71%), and half of them are enzymes or transporters. Comparison with the normal urine proteome revealed 11 proteins distinctive for PCa. Using Ingenuity Pathways Analysis, we have found 3 proteins (E3 ubiquitin-protein ligase rififylin, tumor protein D52, and thymidine phosphorylase) associated with cellular growth and proliferation (p = 8.35 × 10−4 − 3.41 × 10−2). The top network of functional associations between 11 proteins was Cell Death and Survival, Cell-To-Cell Signaling and Interaction, and System Development and Function (p = 10−30). In summary, we have created an initial proteomic map of PCa patient's urine. The results from this study provide some leads to understand the molecular bases of prostate cancer.
Collapse
|
37
|
From hundreds to thousands: Widening the normal human Urinome (1). J Proteomics 2014; 112:53-62. [PMID: 25123350 DOI: 10.1016/j.jprot.2014.07.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 11/22/2022]
Abstract
UNLABELLED It is currently unknown how many proteins can be detected in urine. Improving the analytical approach would increase their number and potentially strengthen their predictive potential in diseases. We developed a combination of analytical procedures for maximizing sensitivity and reproducibility of normal human urinary proteome analysis based on ultracentrifugation, vesicles separation, combinatorial peptide ligand libraries (CPLL) and solvent removal of pigments. Proteins were identified by an Orbitrap Velos Mass Spectrometry. Overall, 3429 proteins were characterized: most components (1615) were contained in vesicles while the remaining 1794 were equally distributed among CPLL and butanol insoluble fractions. Several proteins were detected exclusively in one of the phases of the procedure, suggesting that each step is crucial in the fractionation strategy. Many (1724) proteins are described here whose presence in urine has never been reported and represents a potential source of information considering that urine is the unique site of excretion of products of interaction of metabolic processes. Improving the characterization of normal urinary proteome would also represent the basis for the analysis of urine biomarkers in human diseases. BIOLOGICAL SIGNIFICANCE Sub-fractionating normal urine by successive steps (vesicle separation, CPLL and solvent treatments) allowed the identification of 3429 proteins, a relevant part (1724) being detected for the first time in urine. Several proteins of new description have been implicated in physiology pathways and in pathologies thus representing a potential source of new information on both metabolic processes and diseases.
Collapse
|
38
|
Dynamic changes of urinary proteins in a focal segmental glomerulosclerosis rat model. Proteome Sci 2014; 12:42. [PMID: 25061428 PMCID: PMC4109389 DOI: 10.1186/1477-5956-12-42] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/14/2014] [Indexed: 12/20/2022] Open
Abstract
Background In contrast to blood, which has mechanisms to maintain a homeostatic internal environment, urine is more likely to reflect changes in the body. As urine accumulates all types of changes, identifying the precise cause of changes in the urine proteome is challenging and crucial in biomarker discovery. To reduce the effects of both genetic and environmental factors on the urinary proteome, this study used a rat model of adriamycin-induced nephropathy resembling human focal segmental glomerulosclerosis (FSGS) development. Results Urine samples were collected at before adriamycin administration and day3, 7, 11, 15 and 23 after. Urinary proteins were profiled by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Of 23 changed proteins with disease development, 20 have human orthologs, and 13 proteins were identified as stable in normal human urine, meaning that changes in these proteins are more likely to reflect disease. Fifteen of the identified proteins have not been established to function in FSGS development. Seven proteins were selected for verification in ten more rats as markers closely associated with disease severity by western blot. Conclusion We identified proteins changed in different stages of FSGS in rat models, which may aid in biomarker development and the understanding of FSGS pathogenesis.
Collapse
|
39
|
Carneiro LG, Nouh H, Salih E. Quantitative gingival crevicular fluid proteome in health and periodontal disease using stable isotope chemistries and mass spectrometry. J Clin Periodontol 2014; 41:733-47. [PMID: 24738839 DOI: 10.1111/jcpe.12262] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2014] [Indexed: 12/27/2022]
Abstract
AIM Application of quantitative stable isotope-labelling chemistries and mass spectrometry (MS) to determine alterations in gingival crevicular fluid (GCF) proteome in periodontal disease. MATERIAL AND METHODS Quantitative proteome of GCF from 40 healthy individuals versus 40 patients with periodontal disease was established using 320 GCF samples and stable isotope-labelling reagents, ICAT and mTRAQ, with MS technology and validated by enzyme-linked immunosorbent methods. RESULTS We have identified 238 distinct proteins of which 180 were quantified in GCF of both healthy and periodontal patients with additional 26 and 32 distinct proteins that were found only in GCF of healthy or periodontal patients. In addition, 42 pathogenic bacterial proteins and 11 yeast proteins were quantified. The data highlighted a series of proteins not quantified previously by large-scale MS approaches in GCF with relevance to periodontal disease, such as host-derived Ig alpha-2 chain C, Kallikrein-4, S100-A9, transmembrane proteinase 13, peptidase S1 domain, several collagen types and pathogenic bacterial proteins, e.g. formamidase, leucine aminopeptidase and virulence factor OMP85. CONCLUSIONS The innovative analytical approaches provided detailed novel changes in both host and microbial derived GCF proteomes of periodontal patients. The study defined 50 host and 16 pathogenic bacterial proteins significantly elevated in periodontal disease most of which were novel with significant potential for application in the clinical arena of periodontal disease.
Collapse
Affiliation(s)
- Leandro G Carneiro
- Department of Periodontology and Oral Biology, School of Dental Medicine, Boston University, Boston, MA, USA
| | | | | |
Collapse
|
40
|
Feng J, He W, Song Y, Wang Y, Simpson RJ, Zhang X, Luo G, Wu J, Huang C. Platelet-derived growth factor receptor beta: a novel urinary biomarker for recurrence of non-muscle-invasive bladder cancer. PLoS One 2014; 9:e96671. [PMID: 24801713 PMCID: PMC4011858 DOI: 10.1371/journal.pone.0096671] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 04/10/2014] [Indexed: 01/18/2023] Open
Abstract
Non-muscle-invasive bladder cancer (NMIBC) is one of the most common malignant tumors in the urological system with a high risk of recurrence, and effective non-invasive biomarkers for NMIBC relapse are still needed. The human urinary proteome can reflect the status of the microenvironment of the urinary system and is an ideal source for clinical diagnosis of urinary system diseases. Our previous work used proteomics to identify 1643 high-confidence urinary proteins in the urine from a healthy population. Here, we used bioinformatics to construct a cancer-associated protein-protein interaction (PPI) network comprising 16 high-abundance urinary proteins based on the urinary proteome database. As a result, platelet-derived growth factor receptor beta (PDGFRB) was selected for further validation as a candidate biomarker for NMIBC diagnosis and prognosis. Although the levels of urinary PDGFRB showed no significant difference between patients pre- and post-surgery (n = 185, P>0.05), over 3 years of follow-up, urinary PDGFRB was shown to be significantly higher in relapsed patients (n = 68) than in relapse-free patients (n = 117, P<0.001). The levels of urinary PDGFRB were significantly correlated with the risk of 3-year recurrence of NMIBC, and these levels improved the accuracy of a NMIBC recurrence risk prediction model that included age, tumor size, and tumor number (area under the curve, 0.862; 95% CI, 0.809 to 0.914) compared to PDGFR alone. Therefore, we surmise that urinary PDGFRB could serve as a non-invasive biomarker for predicting NMIBC recurrence.
Collapse
Affiliation(s)
- Jiayu Feng
- Department of Urology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Weifeng He
- Chongqing Key Laboratory for Disease Proteomics; State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yajun Song
- Department of Urology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Ying Wang
- Chongqing Key Laboratory for Disease Proteomics; State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Richard J. Simpson
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Xiaorong Zhang
- Chongqing Key Laboratory for Disease Proteomics; State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Gaoxing Luo
- Chongqing Key Laboratory for Disease Proteomics; State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jun Wu
- Chongqing Key Laboratory for Disease Proteomics; State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
- * E-mail: (JW); (CH)
| | - Chibing Huang
- Department of Urology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
- * E-mail: (JW); (CH)
| |
Collapse
|
41
|
Rodríguez-Suárez E, Siwy J, Zürbig P, Mischak H. Urine as a source for clinical proteome analysis: From discovery to clinical application. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:884-98. [DOI: 10.1016/j.bbapap.2013.06.016] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/10/2013] [Accepted: 06/20/2013] [Indexed: 01/03/2023]
|
42
|
Mullen W. The human urinary proteome: combinational approaches to comprehensive mapping. Expert Rev Proteomics 2014; 9:375-7. [DOI: 10.1586/epr.12.36] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Sampson DL, Broadbent JA, Parker AW, Upton Z, Parker TJ. Urinary biomarkers of physical activity: candidates and clinical utility. Expert Rev Proteomics 2013; 11:91-106. [DOI: 10.1586/14789450.2014.859527] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Farrah T, Deutsch EW, Omenn GS, Sun Z, Watts JD, Yamamoto T, Shteynberg D, Harris MM, Moritz RL. State of the human proteome in 2013 as viewed through PeptideAtlas: comparing the kidney, urine, and plasma proteomes for the biology- and disease-driven Human Proteome Project. J Proteome Res 2013; 13:60-75. [PMID: 24261998 DOI: 10.1021/pr4010037] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The kidney, urine, and plasma proteomes are intimately related: proteins and metabolic waste products are filtered from the plasma by the kidney and excreted via the urine, while kidney proteins may be secreted into the circulation or released into the urine. Shotgun proteomics data sets derived from human kidney, urine, and plasma samples were collated and processed using a uniform software pipeline, and relative protein abundances were estimated by spectral counting. The resulting PeptideAtlas builds yielded 4005, 2491, and 3553 nonredundant proteins at 1% FDR for the kidney, urine, and plasma proteomes, respectively - for kidney and plasma, the largest high-confidence protein sets to date. The same pipeline applied to all available human data yielded a 2013 Human PeptideAtlas build containing 12,644 nonredundant proteins and at least one peptide for each of ∼14,000 Swiss-Prot entries, an increase over 2012 of ∼7.5% of the predicted human proteome. We demonstrate that abundances are correlated between plasma and urine, examine the most abundant urine proteins not derived from either plasma or kidney, and consider the biomarker potential of proteins associated with renal decline. This analysis forms part of the Biology and Disease-driven Human Proteome Project (B/D-HPP) and is a contribution to the Chromosome-centric Human Proteome Project (C-HPP) special issue.
Collapse
|
45
|
Zheng J, Liu L, Wang J, Jin Q. Urinary proteomic and non-prefractionation quantitative phosphoproteomic analysis during pregnancy and non-pregnancy. BMC Genomics 2013; 14:777. [PMID: 24215720 PMCID: PMC3832905 DOI: 10.1186/1471-2164-14-777] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 10/28/2013] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Progress in the fields of protein separation and identification technologies has accelerated research into biofluids proteomics for protein biomarker discovery. Urine has become an ideal and rich source of biomarkers in clinical proteomics. Here we performed a proteomic analysis of urine samples from pregnant and non-pregnant patients using gel electrophoresis and high-resolution mass spectrometry. Furthermore, we also apply a non-prefractionation quantitative phosphoproteomic approach using mTRAQ labeling to evaluate the expression of specific phosphoproteins during pregnancy comparison with non-pregnancy. RESULTS In total, 2579 proteins (10429 unique peptides) were identified, including 1408 from the urine of pregnant volunteers and 1985 from the urine of non-pregnant volunteers. One thousand and twenty-three proteins were not reported in previous studies at the proteome level and were unique to our study. Furthermore, we obtained 237 phosphopeptides, representing 105 phosphoproteins. Among these phosphoproteins, 16 of them were found to be significantly differentially expressed, of which 14 were up-regulated and two were down-regulated in urine samples from women just before vaginal delivery. CONCLUSION Taken together, these results offer a comprehensive urinary proteomic profile of healthy women during before and after vaginal delivery and novel information on the phosphoproteins that are differentially regulated during the maintenance of normal pregnancy. Our results may provide a better understanding of the mechanisms of pregnancy maintenance, potentially leading to the development of biomarker-based sensitive assays for understanding pregnancy.
Collapse
Affiliation(s)
| | | | | | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, No,6, Rongjing East Street, BDA, Beijing 100176, China.
| |
Collapse
|
46
|
Kupcova Skalnikova H. Proteomic techniques for characterisation of mesenchymal stem cell secretome. Biochimie 2013; 95:2196-211. [PMID: 23880644 DOI: 10.1016/j.biochi.2013.07.015] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 07/13/2013] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells with a substantial potential in human regenerative medicine due to their ability to migrate to sites of injury, capability to suppress immune response and accessibility in large amount from patient's own bone marrow or fat tissue. It has been increasingly observed that the transplanted MSCs did not necessarily engraft and differentiate at the site of injury but might exert their therapeutic effects through secreted trophic signals. The MSCs secrete a variety of autocrine/paracrine factors, called secretome, that support regenerative processes in the damaged tissue, induce angiogenesis, protect cells from apoptotic cell death and modulate immune system. The cell culture medium conditioned by MSCs or osteogenic, chondrogenic as well as adipogenic precursors derived from MSCs has become a subject of intensive proteomic profiling in the search for and identification of released factors and microvesicles that might be applicable in regenerative medicine. Jointly with the methods for MSC isolation, expansion and differentiation, proteomic analysis of MSC secretome was enabled recently mainly due to the extensive development in protein separation techniques, mass spectrometry, immunological methods and bioinformatics. This review describes proteomic techniques currently applied or prospectively applicable in MSC secretomics, with a particular focus on preparation of the secretome sample, protein/peptide separation, mass spectrometry and protein quantification techniques, analysis of posttranslational modifications, immunological techniques, isolation and characterisation of secreted vesicles and exosomes, analysis of cytokine-encoding mRNAs and bioinformatics.
Collapse
Affiliation(s)
- Helena Kupcova Skalnikova
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, v.v.i., Rumburska 89, 277 21 Libechov, Czech Republic.
| |
Collapse
|
47
|
Jia L, Li X, Shao C, Wei L, Li M, Guo Z, Liu Z, Gao Y. Using an isolated rat kidney model to identify kidney origin proteins in urine. PLoS One 2013; 8:e66911. [PMID: 23825584 PMCID: PMC3692545 DOI: 10.1371/journal.pone.0066911] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 05/11/2013] [Indexed: 01/26/2023] Open
Abstract
The use of targeted proteomics to identify urinary biomarkers of kidney disease in urine can avoid the interference of serum proteins. It may provide better sample throughput, higher sensitivity, and specificity. Knowing which urinary proteins to target is essential. By analyzing the urine from perfused isolated rat kidneys, 990 kidney origin proteins with human analogs were identified in urine. Of these proteins, 128 were not found in normal human urine and may become biomarkers with zero background. A total of 297 proteins were not found in normal human plasma. These proteins will not be influenced by other normal organs and will be kidney specific. The levels of 33 proteins increased during perfusion with an oxygen-deficient solution compared to those perfused with oxygen. The 75 proteins in the perfusion-driven urine have a significantly increased abundance ranking compared to their ranking in normal human urine. When compared with existing candidate biomarkers, over ninety percent of the kidney origin proteins in urine identified in this study have not been examined as candidate biomarkers of kidney diseases.
Collapse
Affiliation(s)
- Lulu Jia
- Department of Physiology and Pathophysiology, National Key Laboratory of Medical Molecular Biology. Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Xundou Li
- Department of Physiology and Pathophysiology, National Key Laboratory of Medical Molecular Biology. Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Chen Shao
- Department of Physiology and Pathophysiology, National Key Laboratory of Medical Molecular Biology. Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Lilong Wei
- Department of Physiology and Pathophysiology, National Key Laboratory of Medical Molecular Biology. Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Menglin Li
- Department of Physiology and Pathophysiology, National Key Laboratory of Medical Molecular Biology. Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Zhengguang Guo
- Department of Physiology and Pathophysiology, National Key Laboratory of Medical Molecular Biology. Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Zhihong Liu
- Research Institute of Nephrology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Youhe Gao
- Department of Physiology and Pathophysiology, National Key Laboratory of Medical Molecular Biology. Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
- * E-mail:
| |
Collapse
|
48
|
Liu L, Liu X, Sun W, Li M, Gao Y. Unrestrictive identification of post-translational modifications in the urine proteome without enrichment. Proteome Sci 2013; 11:1. [PMID: 23317149 PMCID: PMC3585864 DOI: 10.1186/1477-5956-11-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 01/10/2013] [Indexed: 12/21/2022] Open
Abstract
Background Research on the human urine proteome may lay the foundation for the discovery of relevant disease biomarkers. Post-translational modifications (PTMs) have important effects on the functions of protein biomarkers. Identifying PTMs without enrichment adds no extra steps to conventional identification procedures for urine proteomics. The only difference is that this method requires software that can conduct unrestrictive identifications of PTMs. In this study, routine urine proteomics techniques were used to identify urine proteins. Unspecified PTMs were searched by MODa and PEAKS 6 automated software, followed by a manual search to screen out in vivo PTMs by removing all in vitro PTMs and amino acid substitutions. Results There were 75 peptides with 6 in vivo PTMs that were found by both MODa and PEAKS 6. Of these, 34 peptides in 18 proteins have novel in vivo PTMs compared with the annotation information of these proteins on the Universal Protein Resource website. These new in vivo PTMs had undergone methylation, dehydration, oxidation, hydroxylation, phosphorylation, or dihydroxylation. Conclusions In this study, we identified PTMs of urine proteins without the need for enrichment. Our investigation may provide a useful reference for biomarker discovery in the future.
Collapse
Affiliation(s)
- Liu Liu
- National Key Laboratory of Medical Molecular Biology, Department of Physiology and Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, 5 Dong Dan San Tiao, Beijing, China
| | - Xuejiao Liu
- Department of Nephrology, Peking Union Medical College Hospital, 1 Dongcheng District Shuai Fu Yuan, Beijing, China
| | - Wei Sun
- Department of Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Mingxi Li
- Department of Nephrology, Peking Union Medical College Hospital, 1 Dongcheng District Shuai Fu Yuan, Beijing, China
| | - Youhe Gao
- National Key Laboratory of Medical Molecular Biology, Department of Physiology and Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, 5 Dong Dan San Tiao, Beijing, China
| |
Collapse
|
49
|
Yalak G, Vogel V. Extracellular phosphorylation and phosphorylated proteins: not just curiosities but physiologically important. Sci Signal 2012; 5:re7. [PMID: 23250399 DOI: 10.1126/scisignal.2003273] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mining of the literature and high-throughput mass spectrometry data from both healthy and diseased tissues and from body fluids reveals evidence that various extracellular proteins can exist in phosphorylated states. Extracellular kinases and phosphatases (ectokinases and ectophosphatases) are active in extracellular spaces during times of sufficiently high concentrations of adenosine triphosphate. There is evidence for a role of extracellular phosphorylation in various physiological functions, including blood coagulation, immune cell activation, and the formation of neuronal networks. Ectokinase activity is increased in some diseases, including cancer, Alzheimer's disease, and some microbial infections. We summarize the literature supporting the physiological and pathological roles of extracellularly localized protein kinases, protein phosphatases, and phosphorylated proteins and provide an analysis of the available mass spectrometry data to annotate potential extracellular phosphorylated proteins.
Collapse
Affiliation(s)
- Garif Yalak
- Department of Health Sciences and Technology, ETH Zurich, Wolfgang Pauli Strasse 10, HCI F443, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
50
|
Bakun M, Niemczyk M, Domanski D, Jazwiec R, Perzanowska A, Niemczyk S, Kistowski M, Fabijanska A, Borowiec A, Paczek L, Dadlez M. Urine proteome of autosomal dominant polycystic kidney disease patients. Clin Proteomics 2012; 9:13. [PMID: 23228063 PMCID: PMC3607978 DOI: 10.1186/1559-0275-9-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 11/29/2012] [Indexed: 02/06/2023] Open
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) is responsible for 10% of cases of the end stage renal disease. Early diagnosis, especially of potential fast progressors would be of benefit for efficient planning of therapy. Urine excreted proteome has become a promising field of the search for marker patterns of renal diseases including ADPKD. Up to now however, only the low molecular weight fraction of ADPKD proteomic fingerprint was studied. The aim of our study was to characterize the higher molecular weight fraction of urinary proteome of ADPKD population in comparison to healthy controls as a part of a general effort aiming at exhaustive characterization of human urine proteome in health and disease, preceding establishment of clinically useful disease marker panel. Results We have analyzed the protein composition of urine retentate (>10 kDa cutoff) from 30 ADPKD patients and an appropriate healthy control group by means of a gel-free relative quantitation of a set of more than 1400 proteins. We have identified an ADPKD-characteristic footprint of 155 proteins significantly up- or downrepresented in the urine of ADPKD patients. We have found changes in proteins of complement system, apolipoproteins, serpins, several growth factors in addition to known collagens and extracellular matrix components. For a subset of these proteins we have confirmed the results using an alternative analytical technique. Conclusions Obtained results provide basis for further characterization of pathomechanism underlying the observed differences and establishing the proteomic prognostic marker panel.
Collapse
Affiliation(s)
- Magda Bakun
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|