1
|
Huo Y, Liu K, Lou X. Strong additive and synergistic effects of polyoxyethylene nonionic surfactant-assisted protein MALDI imaging mass spectrometry. Talanta 2020; 222:121524. [PMID: 33167234 DOI: 10.1016/j.talanta.2020.121524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 10/23/2022]
Abstract
Protein MALDI imaging mass spectrometry (MALDI-IMS) holds a great promise to acquire spatial distribution information of proteins on biological tissue, but it suffers from the small number of proteins detected by direct MALDI-IMS detection. Ionic surfactants have been extensively used for protein extraction to improve the number of proteins detected in tissue samples by LC-MS analysis, but seldom by direct MALDI-IMS detection. Nonionic surfactants are milder than ionic surfactants and protein native structures are remained after extraction, which favors the spatial resolution of direct MALDI-IMS. However, nonionic surfactants are less effective than ionic surfactants. In this report, we utilized polyoxyethylene nonionic surfactants (PNS) to pre-incubate the tissue section, followed by the on-tissue trypsin digestion and then direct MALDI detection of in-situ formed peptides. For the first time, we observed that the additive effect of PNS and the synergistic effect of the mixed PNS in improving the number of peptides detected. Specifically, the peptides detected were 73.0-90.7% distinct when the different PNS (Tween 80 or Triton X-100 alone or their mixture) was used. Taking advantage of this additive effect, the 96 proteins including 12 transmembrane proteins were detected, corresponding to a ~10-fold improvement compared to MALDI-IMS without surfactant. When the mixed surfactants were used to replace Tween 80 and Triton X-100 alone, the optimized surfactant concentration decreased 20-100-fold and the number of peptides detected with m/z > 2500 Da was improved 15-fold. The additive and synergistic effects of PNS suggested that the interaction mode between each PNS and proteins is highly variable. Benefiting from the strong additive effect and diversity of PNS, further improvement of the number of proteins detected by MALDI-IMS is clearly feasible.
Collapse
Affiliation(s)
- Yumeng Huo
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Kehui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xinhui Lou
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
2
|
Kulbe H, Klein O, Wu Z, Taube ET, Kassuhn W, Horst D, Darb-Esfahani S, Jank P, Abobaker S, Ringel F, du Bois A, Heitz F, Sehouli J, Braicu EI. Discovery of Prognostic Markers for Early-Stage High-Grade Serous Ovarian Cancer by Maldi-Imaging. Cancers (Basel) 2020; 12:cancers12082000. [PMID: 32707805 PMCID: PMC7463791 DOI: 10.3390/cancers12082000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 12/31/2022] Open
Abstract
With regard to relapse and survival, early-stage high-grade serous ovarian (HGSOC) patients comprise a heterogeneous group and there is no clear consensus on first-line treatment. Currently, no prognostic markers are available for risk assessment by standard targeted immunohistochemistry and novel approaches are urgently required. Here, we applied MALDI-imaging mass spectrometry (MALDI-IMS), a new method to identify distinct mass profiles including protein signatures on paraffin-embedded tissue sections. In search of prognostic biomarker candidates, we compared proteomic profiles of primary tumor sections from early-stage HGSOC patients with either recurrent (RD) or non-recurrent disease (N = 4; each group) as a proof of concept study. In total, MALDI-IMS analysis resulted in 7537 spectra from the malignant tumor areas. Using receiver operating characteristic (ROC) analysis, 151 peptides were able to discriminate between patients with RD and non-RD (AUC > 0.6 or < 0.4; p < 0.01), and 13 of them could be annotated to proteins. Strongest expression levels of specific peptides linked to Keratin type1 and Collagen alpha-2(I) were observed and associated with poor prognosis (AUC > 0.7). These results confirm that in using IMS, we could identify new candidates to predict clinical outcome and treatment extent for patients with early-stage HGSOC.
Collapse
Affiliation(s)
- Hagen Kulbe
- Tumorbank Ovarian Cancer Network, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (H.K.); (W.K.); (S.A.); (F.R.); (J.S.)
- Department of Gynecology, European Competence Center for Ovarian Cancer, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Oliver Klein
- BIH Center for Regenerative Therapies BCRT, Charité – Universitätsmedizin Berlin, 10117 Berlin, Germany; (O.K.); (Z.W.)
| | - Zhiyang Wu
- BIH Center for Regenerative Therapies BCRT, Charité – Universitätsmedizin Berlin, 10117 Berlin, Germany; (O.K.); (Z.W.)
| | - Eliane T. Taube
- Institute of Pathology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (E.T.T.); (D.H.); (P.J.)
| | - Wanja Kassuhn
- Tumorbank Ovarian Cancer Network, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (H.K.); (W.K.); (S.A.); (F.R.); (J.S.)
- Department of Gynecology, European Competence Center for Ovarian Cancer, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - David Horst
- Institute of Pathology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (E.T.T.); (D.H.); (P.J.)
| | | | - Paul Jank
- Institute of Pathology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (E.T.T.); (D.H.); (P.J.)
- Institute of Pathology, Philipps-University Marburg, 35032 Marburg, Germany
| | - Salem Abobaker
- Tumorbank Ovarian Cancer Network, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (H.K.); (W.K.); (S.A.); (F.R.); (J.S.)
- Department of Gynecology, European Competence Center for Ovarian Cancer, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Frauke Ringel
- Tumorbank Ovarian Cancer Network, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (H.K.); (W.K.); (S.A.); (F.R.); (J.S.)
- Department of Gynecology, European Competence Center for Ovarian Cancer, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Andreas du Bois
- Evangelische Kliniken Essen-Mitte Klinik für Gynäkologie und gynäkologische Onkologie, 45136 Essen, Germany (F.H.)
| | - Florian Heitz
- Evangelische Kliniken Essen-Mitte Klinik für Gynäkologie und gynäkologische Onkologie, 45136 Essen, Germany (F.H.)
| | - Jalid Sehouli
- Tumorbank Ovarian Cancer Network, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (H.K.); (W.K.); (S.A.); (F.R.); (J.S.)
- Department of Gynecology, European Competence Center for Ovarian Cancer, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Elena I. Braicu
- Tumorbank Ovarian Cancer Network, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (H.K.); (W.K.); (S.A.); (F.R.); (J.S.)
- Department of Gynecology, European Competence Center for Ovarian Cancer, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- Correspondence: ; Tel.: +49-(0)30-450-664469
| |
Collapse
|
3
|
Schmitt ND, Rawlins CM, Randall EC, Wang X, Koller A, Auclair JR, Kowalski JM, Kowalski PJ, Luther E, Ivanov AR, Agar NY, Agar JN. Genetically Encoded Fluorescent Proteins Enable High-Throughput Assignment of Cell Cohorts Directly from MALDI-MS Images. Anal Chem 2019; 91:3810-3817. [PMID: 30839199 PMCID: PMC6827431 DOI: 10.1021/acs.analchem.8b03454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) provides a unique in situ chemical profile that can include drugs, nucleic acids, metabolites, lipids, and proteins. MSI of individual cells (of a known cell type) affords a unique insight into normal and disease-related processes and is a prerequisite for combining the results of MSI and other single-cell modalities (e.g. mass cytometry and next-generation sequencing). Technological barriers have prevented the high-throughput assignment of MSI spectra from solid tissue preparations to their cell type. These barriers include obtaining a suitable cell-identifying image (e.g. immunohistochemistry) and obtaining sufficiently accurate registration of the cell-identifying and MALDI-MS images. This study introduces a technique that overcame these barriers by assigning cell type directly from mass spectra. We hypothesized that, in MSI from mice with a defined fluorescent protein expression pattern, the fluorescent protein's molecular ion could be used to identify cell cohorts. A method was developed for the purification of enhanced yellow fluorescent protein (EYFP) from mice. To determine EYFP's molecular mass for MSI studies, we performed intact mass analysis and characterized the protein's primary structure and post-translational modifications through various techniques. MALDI-MSI methods were developed to enhance the detection of EYFP in situ, and by extraction of EYFP's molecular ion from MALDI-MS images, automated, whole-image assignment of cell cohorts was achieved. This method was validated using a well-characterized mouse line that expresses EYFP in motor and sensory neurons and should be applicable to hundreds of commercially available mice (and other animal) strains comprising a multitude of cell-specific fluorescent labels.
Collapse
Affiliation(s)
- Nicholas D. Schmitt
- Department of Chemistry and Chemical Biology, and Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA
- These authors contributed equally to this work
| | - Catherine M. Rawlins
- Department of Chemistry and Chemical Biology, and Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA
- These authors contributed equally to this work
| | - Elizabeth C. Randall
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xianzhe Wang
- Department of Chemistry and Chemical Biology, and Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA
| | - Antonius Koller
- Department of Chemistry and Chemical Biology, and Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA
| | - Jared R. Auclair
- Department of Chemistry and Chemical Biology, and Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA
- Biopharmaceutical Analysis Training Laboratory (BATL), Northeastern University Innovation Campus, Burlington, MA, 01803, USA
| | | | | | - Ed Luther
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Alexander R. Ivanov
- Department of Chemistry and Chemical Biology, and Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA
| | - Nathalie Y.R. Agar
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Jeffrey N. Agar
- Department of Chemistry and Chemical Biology, and Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
4
|
Systematic assessment of surfactants for matrix-assisted laser desorption/ionization mass spectrometry imaging. Anal Chim Acta 2017; 963:76-82. [DOI: 10.1016/j.aca.2017.01.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/02/2017] [Accepted: 01/13/2017] [Indexed: 11/18/2022]
|
5
|
Angel PM, Baldwin HS, Gottlieb Sen D, Su YR, Mayer JE, Bichell D, Drake RR. Advances in MALDI imaging mass spectrometry of proteins in cardiac tissue, including the heart valve. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:927-935. [PMID: 28341601 DOI: 10.1016/j.bbapap.2017.03.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 02/15/2017] [Accepted: 03/20/2017] [Indexed: 01/01/2023]
Abstract
Significant progress has been made for tissue imaging of proteins using matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI IMS). These advancements now facilitate mapping of a wide range of proteins, peptides, and post-translational modifications in a wide variety of tissues; however, the use of MALDI IMS to detect proteins from cardiac tissue is limited. This review discusses the most recent advances in protein imaging and demonstrates application to cardiac tissue, including the heart valve. Protein imaging by MALDI IMS allows multiplexed histological mapping of proteins and protein components that are inaccessible by antibodies and should be considered an important tool for basic and clinical cardiovascular research. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.
Collapse
Affiliation(s)
- Peggi M Angel
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, USA; Medical University of South Carolina Proteomics Center, Medical University of South Carolina, Charleston, USA.
| | - H Scott Baldwin
- Department of Pediatrics and Cell Development and Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Yan Ru Su
- Department of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John E Mayer
- Department of Cardiac Surgery, Boston Children's Hospital & Harvard Medical School, Boston, MA, USA
| | - David Bichell
- Division of Pediatric Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, USA; Medical University of South Carolina Proteomics Center, Medical University of South Carolina, Charleston, USA
| |
Collapse
|
6
|
Martin-Lorenzo M, Alvarez-Llamas G, McDonnell LA, Vivanco F. Molecular histology of arteries: mass spectrometry imaging as a novelex vivotool to investigate atherosclerosis. Expert Rev Proteomics 2015; 13:69-81. [DOI: 10.1586/14789450.2016.1116944] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Gessel M, Spraggins JM, Voziyan P, Hudson BG, Caprioli RM. Decellularization of intact tissue enables MALDI imaging mass spectrometry analysis of the extracellular matrix. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:1288-93. [PMID: 26505774 PMCID: PMC5320948 DOI: 10.1002/jms.3696] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 05/22/2023]
Abstract
Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) is a powerful molecular mapping technology that offers unbiased visualization of the spatial arrangement of biomolecules in tissue. Although there has been a significant increase in the number of applications employing this technology, the extracellular matrix (ECM) has received little attention, likely because ECM proteins are mostly large, insoluble and heavily cross-linked. We have developed a new sample preparation approach to enable MALDI IMS analysis of ECM proteins in tissue. Prior to freezing and sectioning, intact tissues are decellularized by incubation in sodium dodecyl sulfate. Decellularization removes the highly abundant, soluble species that dominate a MALDI IMS spectrum while preserving the structural integrity of the ECM. In situ tryptic hydrolysis and imaging of tryptic peptides are then carried out to accommodate the large sizes of ECM proteins. This new approach allows the use of MALDI IMS for identification of spatially specific changes in ECM protein expression and modification in tissue.
Collapse
Affiliation(s)
- Megan Gessel
- Chemistry Department, University of Puget Sound, 1500 N Warner St., Tacoma, WA, 1015, USA
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Paul Voziyan
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Billy G Hudson
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Richard M Caprioli
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA
- Departments of Medicine and Biochemistry, Vanderbilt University Medical Center, Nashville, TN, USA
- Correspondence to: Richard M Caprioli, Departments of Medicine and Biochemistry, Vanderbilt University Medical Center, Nashville, TN, USA.,
| |
Collapse
|
8
|
Zavalin A, Yang J, Hayden K, Vestal M, Caprioli RM. Tissue protein imaging at 1 μm laser spot diameter for high spatial resolution and high imaging speed using transmission geometry MALDI TOF MS. Anal Bioanal Chem 2015; 407:2337-42. [PMID: 25673247 DOI: 10.1007/s00216-015-8532-6] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/29/2014] [Accepted: 01/04/2015] [Indexed: 11/27/2022]
Abstract
We have achieved protein imaging mass spectrometry capabilities at sub-cellular spatial resolution and at high acquisition speed by integrating a transmission geometry ion source with time of flight mass spectrometry. The transmission geometry principle allowed us to achieve a 1-μm laser spot diameter on target. A minimal raster step size of the instrument was 2.5 μm. Use of 2,5-dihydroxyacetophenone robotically sprayed on top of a tissue sample as a matrix together with additional sample preparation steps resulted in single pixel mass spectra from mouse cerebellum tissue sections having more than 20 peaks in a range 3-22 kDa. Mass spectrometry images were acquired in a standard step raster microprobe mode at 5 pixels/s and in a continuous raster mode at 40 pixels/s.
Collapse
Affiliation(s)
- Andre Zavalin
- The Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | | | | | | | | |
Collapse
|
9
|
Mainini V, Lalowski M, Gotsopoulos A, Bitsika V, Baumann M, Magni F. MALDI-imaging mass spectrometry on tissues. Methods Mol Biol 2015; 1243:139-64. [PMID: 25384744 DOI: 10.1007/978-1-4939-1872-0_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF)-profiling and imaging mass spectrometry (MSI) are promising technologies for measuring hundreds of different molecules directly on tissues. For instance, small molecules, drugs and their metabolites, endogenous lipids, carbohydrates and complex peptides/proteins can be measured at the same time. In the most advanced instruments, it is achieved without significant disruption of sample integrity. MSI is a unique approach for assessing the spatial distribution of molecules using graphical multidimensional maps of their constituent analytes, which may for instance be correlated with histopathological alterations in patient tissues. MALDI-TOF-MSI technology has been implemented in hospitals of several countries, where it is routinely used for quick pathogen(s) identification, a task formerly accomplished by laborious and expensive DNA/RNA-based PCR (polymerase chain reaction) screening.In this chapter, we describe how MSI is performed, what is required from the researcher, the instrument vendors and finally what can be achieved with MSI. We restrict our descriptions only to MALDI-MSI although several other MS techniques of ionization can easily be linked to MSI.
Collapse
Affiliation(s)
- Veronica Mainini
- Department of Health Sciences, University Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Enriched by a decade of remarkable developments, matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI IMS) has witnessed a phenomenal expansion. Initially introduced for the mapping of peptides and intact proteins from mammalian tissue sections, MALDI IMS applications now extend to a wide range of molecules including peptides, lipids, metabolites and xenobiotics. Technology and methodology are quickly evolving to push the limits of the technique forward. Within a short period of time, numerous protocols and concepts have been developed and introduced in tissue section preparation, nonexhaustively including in situ tissue chemistries and solvent-free matrix depositions. Considering the past progress and current capabilities, this Review aims to cover the different aspects and challenges of tissue section preparation for MALDI IMS.
Collapse
|
11
|
Mainini V, Bovo G, Chinello C, Gianazza E, Grasso M, Cattoretti G, Magni F. Detection of high molecular weight proteins by MALDI imaging mass spectrometry. MOLECULAR BIOSYSTEMS 2014; 9:1101-7. [PMID: 23340489 DOI: 10.1039/c2mb25296a] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MALDI imaging mass spectrometry (IMS) is a unique technology to explore the spatial distribution of biomolecules directly on tissues. It allows the in situ investigation of a large number of small proteins and peptides. Detection of high molecular weight proteins through MALDI IMS still represents an important challenge, as it would allow the direct investigation of the distribution of more proteins involved in biological processes, such as cytokines, enzymes, neuropeptide precursors and receptors. In this work we compare the traditional method performed with sinapinic acid with a comparable protocol using ferulic acid as the matrix. Data show a remarkable increase of signal acquisition in the mass range of 20k to 150k Th. Moreover, we report molecular images of biomolecules above 70k Th, demonstrating the possibility of expanding the application of this technology both in clinical investigations and basic science.
Collapse
Affiliation(s)
- Veronica Mainini
- Department of Health Science, University of Milano-Bicocca, Monza, Italy.
| | | | | | | | | | | | | |
Collapse
|
12
|
Mainini V, Pagni F, Ferrario F, Pieruzzi F, Grasso M, Stella A, Cattoretti G, Magni F. MALDI imaging mass spectrometry in glomerulonephritis: feasibility study. Histopathology 2014; 64:901-6. [DOI: 10.1111/his.12337] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/25/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Veronica Mainini
- Proteomics Unit; Department of Health Sciences; University Milano-Bicocca; Monza Italy
| | - Fabio Pagni
- Department of Pathology; University Milano-Bicocca; San Gerardo Hospital; Monza Italy
| | - Franco Ferrario
- Department of Pathology; University Milano-Bicocca; San Gerardo Hospital; Monza Italy
| | - Federico Pieruzzi
- Department of Nephrology; University Milano-Bicocca; San Gerardo Hospital; Monza Italy
| | - Marco Grasso
- Department of Urology; San Gerardo Hospital; Monza Italy
| | - Andrea Stella
- Department of Nephrology; University Milano-Bicocca; San Gerardo Hospital; Monza Italy
| | - Giorgio Cattoretti
- Department of Pathology; University Milano-Bicocca; San Gerardo Hospital; Monza Italy
| | - Fulvio Magni
- Proteomics Unit; Department of Health Sciences; University Milano-Bicocca; Monza Italy
| |
Collapse
|
13
|
Neubert P, Walch A. Current frontiers in clinical research application of MALDI imaging mass spectrometry. Expert Rev Proteomics 2014; 10:259-73. [DOI: 10.1586/epr.13.19] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
MALDI Mass Spectrometry Imaging of 1-Methyl-4-phenylpyridinium (MPP+) in Mouse Brain. Neurotox Res 2013; 25:135-45. [DOI: 10.1007/s12640-013-9449-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 11/24/2013] [Accepted: 12/05/2013] [Indexed: 12/01/2022]
|
15
|
Angel PM, Caprioli RM. Matrix-assisted laser desorption ionization imaging mass spectrometry: in situ molecular mapping. Biochemistry 2013; 52:3818-28. [PMID: 23259809 PMCID: PMC3864574 DOI: 10.1021/bi301519p] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Matrix-assisted laser desorption ionization imaging mass spectrometry (IMS) is a relatively new imaging modality that allows mapping of a wide range of biomolecules within a thin tissue section. The technology uses a laser beam to directly desorb and ionize molecules from discrete locations on the tissue that are subsequently recorded in a mass spectrometer. IMS is distinguished by the ability to directly measure molecules in situ ranging from small metabolites to proteins, reporting hundreds to thousands of expression patterns from a single imaging experiment. This article reviews recent advances in IMS technology, applications, and experimental strategies that allow it to significantly aid in the discovery and understanding of molecular processes in biological and clinical samples.
Collapse
Affiliation(s)
- Peggi M. Angel
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University Medical Center, 465 21st Avenue South, MRB III Suite 9160, Nashville, Tennessee 37232, United States
| | - Richard M. Caprioli
- Mass Spectrometry Research Center and Department of Biochemistry, Medicine, Pharmacology, and Chemistry, Vanderbilt University Medical Center, 465 21st Avenue South, MRB III Suite 9160, Nashville, Tennessee 37232, United States
| |
Collapse
|
16
|
Norris JL, Caprioli RM. Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem Rev 2013; 113:2309-42. [PMID: 23394164 PMCID: PMC3624074 DOI: 10.1021/cr3004295] [Citation(s) in RCA: 518] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jeremy L. Norris
- National Research Resource for Imaging Mass Spectrometry, Mass Spectrometry Research Center, and Department of Biochemistry, Vanderbilt University School of Medicine, 9160 Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8575
| | - Richard M. Caprioli
- National Research Resource for Imaging Mass Spectrometry, Mass Spectrometry Research Center, and Department of Biochemistry, Vanderbilt University School of Medicine, 9160 Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8575
| |
Collapse
|
17
|
Harris GA, Nicklay JJ, Caprioli RM. Localized in situ hydrogel-mediated protein digestion and extraction technique for on-tissue analysis. Anal Chem 2013; 85:2717-23. [PMID: 23402265 DOI: 10.1021/ac3031493] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A simultaneous on-tissue proteolytic digestion and extraction method is described for the in situ analysis of proteins from spatially distinct areas of a tissue section. The digestion occurs on-tissue within a hydrogel network, and peptides extracted from this gel are identified with liquid chromatography tandem MS (LC-MS/MS). The hydrogels are compatible with solubility agents (e.g., chaotropes and detergents) known to improve enzymatic digestion of proteins. Additionally, digestions and extractions are compatible with imaging mass spectrometry (IMS) experiments. As an example application, an initial IMS experiment was conducted to profile lipid species using a traveling wave ion mobility mass spectrometer. On-tissue MS/MS was also performed on the same tissue section to identify lipid ions that showed spatial differences. Subsequently, the section underwent an on-tissue hydrogel digestion to reveal 96 proteins that colocalized to the rat brain cerebellum. Hematoxylin and eosin (H & E) staining was then performed to provide additional histological information about the tissue structure. This technology provides a versatile workflow that can be used to correlate multiple complementary analytical approaches in the analysis of a single tissue section.
Collapse
Affiliation(s)
- Glenn A Harris
- Department of Biochemistry and the Mass Spectrometry Research Center, Vanderbilt University, 9160 MRB3, 465 21st Avenue South, Nashville, Tennessee 37235, United States
| | | | | |
Collapse
|
18
|
Thomas A, Patterson NH, Laveaux Charbonneau J, Chaurand P. Orthogonal organic and aqueous-based washes of tissue sections to enhance protein sensitivity by MALDI imaging mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:42-48. [PMID: 23303746 DOI: 10.1002/jms.3114] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 06/01/2023]
Abstract
Imaging mass spectrometry (IMS) is an emergent and innovative approach for measuring the composition, abundance and regioselectivity of molecules within an investigated area of fixed dimension. Although providing unprecedented molecular information compared with conventional MS techniques, enhancement of protein signature by IMS is still necessary and challenging. This paper demonstrates the combination of conventional organic washes with an optimized aqueous-based buffer for tissue section preparation before matrix-assisted laser desorption/ionization (MALDI) IMS of proteins. Based on a 500 mM ammonium formate in water-acetonitrile (9:1; v/v, 0.1% trifluororacetic acid, 0.1% Triton) solution, this buffer wash has shown to significantly enhance protein signature by profiling and IMS (~fourfold) when used after organic washes (70% EtOH followed by 90% EtOH), improving the quality and number of ion images obtained from mouse kidney and a 14-day mouse fetus whole-body tissue sections, while maintaining a similar reproducibility with conventional tissue rinsing. Even if some protein losses were observed, the data mining has demonstrated that it was primarily low abundant signals and that the number of new peaks found is greater with the described procedure. The proposed buffer has thus demonstrated to be of high efficiency for tissue section preparation providing novel and complementary information for direct on-tissue MALDI analysis compared with solely conventional organic rinsing.
Collapse
Affiliation(s)
- Aurélien Thomas
- Department of Chemistry, University of Montreal, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
19
|
Lagarrigue M, Lavigne R, Guével B, Com E, Chaurand P, Pineau C. Matrix-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry: A Promising Technique for Reproductive Research1. Biol Reprod 2012; 86:74. [DOI: 10.1095/biolreprod.111.094896] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
20
|
Le Faouder J, Laouirem S, Chapelle M, Albuquerque M, Belghiti J, Degos F, Paradis V, Camadro JM, Bedossa P. Imaging Mass Spectrometry Provides Fingerprints for Distinguishing Hepatocellular Carcinoma from Cirrhosis. J Proteome Res 2011; 10:3755-65. [DOI: 10.1021/pr200372p] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Julie Le Faouder
- Institut Fédératif de Recherche Claude Bernard, Université Paris-Diderot, Paris, France
- - INSERM U773, Université Paris-Diderot, Paris, France
| | | | - Manuel Chapelle
- Mass Spectrometry Facility, Jacques Monod Institute, UMR7592 Université Paris-Diderot - CNRS, Paris, France
| | | | - Jacques Belghiti
- Department of Liver Surgery, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris and Université Paris-Diderot, France
| | - Françoise Degos
- Department of Hepatology, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris and Université Paris-Diderot, France
| | - Valérie Paradis
- - INSERM U773, Université Paris-Diderot, Paris, France
- Department of Pathology, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris and Université Paris-Diderot, France
| | - Jean-Michel Camadro
- Mass Spectrometry Facility, Jacques Monod Institute, UMR7592 Université Paris-Diderot - CNRS, Paris, France
- Molecular and Cellular Pathology Program, Jacques Monod Institute, UMR7592 Université Paris-Diderot - CNRS, Paris, France
| | - Pierre Bedossa
- - INSERM U773, Université Paris-Diderot, Paris, France
- Department of Pathology, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris and Université Paris-Diderot, France
| |
Collapse
|