1
|
Wesdemiotis C, Williams-Pavlantos KN, Keating AR, McGee AS, Bochenek C. Mass spectrometry of polymers: A tutorial review. MASS SPECTROMETRY REVIEWS 2024; 43:427-476. [PMID: 37070280 DOI: 10.1002/mas.21844] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/03/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Ever since the inception of synthetic polymeric materials in the late 19th century, the number of studies on polymers as well as the complexity of their structures have only increased. The development and commercialization of new polymers with properties fine-tuned for specific technological, environmental, consumer, or biomedical applications requires powerful analytical techniques that permit the in-depth characterization of these materials. One such method with the ability to provide chemical composition and structure information with high sensitivity, selectivity, specificity, and speed is mass spectrometry (MS). This tutorial review presents and exemplifies the various MS techniques available for the elucidation of specific structural features in a synthetic polymer, including compositional complexity, primary structure, architecture, topology, and surface properties. Key to every MS analysis is sample conversion to gas-phase ions. This review describes the fundamentals of the most suitable ionization methods for synthetic materials and provides relevant sample preparation protocols. Most importantly, structural characterizations via one-step as well as hyphenated or multidimensional approaches are introduced and demonstrated with specific applications, including surface sensitive and imaging techniques. The aim of this tutorial review is to illustrate the capabilities of MS for the characterization of large, complex polymers and emphasize its potential as a powerful compositional and structural elucidation tool in polymer chemistry.
Collapse
Affiliation(s)
| | | | - Addie R Keating
- Department of Chemistry, The University of Akron, Akron, Ohio, USA
| | - Andrew S McGee
- Department of Chemistry, The University of Akron, Akron, Ohio, USA
| | - Calum Bochenek
- Department of Chemistry, The University of Akron, Akron, Ohio, USA
| |
Collapse
|
2
|
Saller KM, Pernusch DC, Schwarzinger C. MALINTO: A New MALDI Interpretation Tool for Enhanced Peak Assignment and Semiquantitative Studies of Complex Synthetic Polymers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:293-303. [PMID: 36599090 PMCID: PMC9896554 DOI: 10.1021/jasms.2c00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
The newly developed MALDI interpretation tool ("MALINTO") allows for the accelerated characterization of complex synthetic polymers via MALDI mass spectrometry. While existing software provides solutions for simple polymers like poly(ethylene glycol), polystyrene, etc., they are limited in their application on polycondensates synthesized from two different kinds of monomers (e.g., diacid and diol in polyesters). In addition to such A2 + B2 polycondensates, MALINTO covers branched and even multicyclic polymer systems. Since the MALINTO software works based on input data of monomers/repeating units, end groups, and adducts, it can be applied on polymers whose components are previously known or elucidated. Using these input data, a list with theoretically possible polymer compositions and resulting m/z values is calculated, which is further compared to experimental mass spectrometry data. For optional semiquantitative studies, peak areas are allocated according to their assigned polymer composition to evaluate both comonomer and terminating group ratios. Several tools are implemented to avoid mistakes, for example, during peak assignment. In the present publication, the functions of MALINTO are described in detail and its broad applicability on different linear polymers as well as branched and multicyclic polycondensates is demonstrated. Fellow researchers will benefit from the accelerated peak assignment using the freely available MALINTO software and might be encouraged to explore the potential of MALDI mass spectrometry for (semi)quantitative applications.
Collapse
Affiliation(s)
- Klara M. Saller
- Institute
for Chemical Technology of Organic Materials, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040Linz, Austria
| | - Daniel C. Pernusch
- Institute
for Chemical Technology of Organic Materials, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040Linz, Austria
| | - Clemens Schwarzinger
- Institute
for Chemical Technology of Organic Materials, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040Linz, Austria
| |
Collapse
|
3
|
Morgan TE, Floyd TG, Marzullo BP, Wootton CA, Barrow MP, Bristow AWT, Perrier S, O'Connor PB. Stochasticity of poly(2-oxazoline) oligomer hydrolysis determined by tandem mass spectrometry. Polym Chem 2022; 13:4162-4169. [PMID: 35923808 PMCID: PMC9294869 DOI: 10.1039/d2py00437b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022]
Abstract
Understanding modification of synthetic polymer structures is necessary for their accurate synthesis and potential applications. In this contribution, a series of partially hydrolyzed poly(2-oxazoline) species were produced forming poly[(2-polyoxazoline)-co-(ethylenimine)] (P(EtOx-co-EI)) copolymers; EI being the hydrolyzed product of Ox. Bulk mass spectrometry (MS) measurements accurately measured the EI content. Tandem mass spectrometry analysis of the EI content in the copolymer samples determined the distribution of each monomer within the copolymer and corresponded to a theoretically modelled random distribution. The EI distribution across the polymers was shown to be effected by the choice of terminus, with a permanent hydrolysis event observed at an OH terminus. A neighbouring group effect wasn't observed at the polymer length analysed (approximately 25-mer species), suggesting that previously observed neighbouring group effects require a larger polymer chain. Although clearly useful for random polymer distribution this approach may be applied to many systems containing non-specific modifications to determine if they are directed or random locations across peptides, proteins, polymers, and nucleic acids. Tandem mass spectrometry can be used to better understand modification sites of synthetic polymer structures providing more complete chemical knowledge which is necessary for their accurate synthesis and potential applications.![]()
Collapse
Affiliation(s)
- Tomos E Morgan
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Thomas G Floyd
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Bryan P Marzullo
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | | | - Mark P Barrow
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Anthony W T Bristow
- Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca Charter Way Macclesfield SK102NA UK
| | - Sébastien Perrier
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
- Warwick Medical School, University of Warwick Coventry CV4 7AL UK
- Faculty of Pharmaceutical Sciences, Monash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Peter B O'Connor
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
4
|
Morgan TE, Wootton CA, Marzullo B, Paris J, Kerr A, Ellacott SH, van Agthoven MA, Barrow MP, Bristow AWT, Perrier S, O'Connor PB. Characterization Across a Dispersity: Polymer Mass Spectrometry in the Second Dimension. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2153-2161. [PMID: 34264672 DOI: 10.1021/jasms.1c00106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Due to the natural dispersity that is present in synthetic polymers, an added complexity is always present in the analysis of polymeric species. Tandem mass spectrometry analysis requires the isolation of individual precursors before a fragmentation event to allow the unambiguous characterization of these species and is not viable at certain levels of complexity due to achievable isolation widths. Two-dimensional mass spectrometry (2DMS) fragments ions and correlates fragments with their corresponding precursors without the need for isolation. In this study, 2DMS electron capture dissociation (ECD) fragmentation of a polyoxazoline and polyacrylamide species was carried out, resulting in the analysis of byproducts and individual polymer species without the use of chromatographic techniques. This study shows that 2DMS ECD is a powerful tool for the analysis of polyacrylamide and polyoxazoline species and offers a new dimension in the characterization of polymers.
Collapse
Affiliation(s)
- Tomos E Morgan
- Department of Chemistry, University of Warwick, Coventry, West Midlands CV4 7AL, United Kingdom
| | - Christopher A Wootton
- Department of Chemistry, University of Warwick, Coventry, West Midlands CV4 7AL, United Kingdom
| | - Bryan Marzullo
- Department of Chemistry, University of Warwick, Coventry, West Midlands CV4 7AL, United Kingdom
| | - Johanna Paris
- Department of Chemistry, University of Warwick, Coventry, West Midlands CV4 7AL, United Kingdom
| | - Andrew Kerr
- Department of Chemistry, University of Warwick, Coventry, West Midlands CV4 7AL, United Kingdom
| | - Sean H Ellacott
- Department of Chemistry, University of Warwick, Coventry, West Midlands CV4 7AL, United Kingdom
| | - Maria A van Agthoven
- Department of Chemistry, University of Warwick, Coventry, West Midlands CV4 7AL, United Kingdom
| | - Mark P Barrow
- Department of Chemistry, University of Warwick, Coventry, West Midlands CV4 7AL, United Kingdom
| | - Anthony W T Bristow
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, United Kingdom
| | - Sebastien Perrier
- Department of Chemistry, University of Warwick, Coventry, West Midlands CV4 7AL, United Kingdom
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Peter B O'Connor
- Department of Chemistry, University of Warwick, Coventry, West Midlands CV4 7AL, United Kingdom
| |
Collapse
|
5
|
Desport JS, Frache G, Patiny L. MSPolyCalc: A web-based App for polymer mass spectrometry data interpretation. The case study of a pharmaceutical excipient. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 2:e8652. [PMID: 31715638 DOI: 10.1002/rcm.8652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE In contrast to biological polymers, synthetic macromolecules consist of distributions of sizes, chemical compositions, functionalities and eventually architectures. The mass spectrum of a synthetic polymer may exhibit a tremendous number of signals. The availability of suitable IT tools to support interpretation is key. METHODS A web-based tool is presented: MSPolyCalc. It offers a set of functionalities, including the calculation of polymer distributions, molecular formulae and a match evaluation for peak assignment based on both mass and spectral accuracy (similarity score). The software was successfully tested with mass spectra exhibiting resolutions ranging from 10,000 to 240,000. RESULTS The molecular characterization of a synthetic poly(ethylene glycol)-based excipient was achieved. MSPolyCalc allowed the discrimination of six polymer compositions of variable relative abundance. Secondary ionization adducts with very low intensity consisting of matrix-analyte clusters were also successfully identified. CONCLUSIONS MSPolyCalc offers assisted data interpretation to target the needs of polymer chemists. It facilitates structure characterization, ionization adduct identification, and end-group determination together with visual result reporting.
Collapse
Affiliation(s)
- Jessica S Desport
- Material, Research and Technology Department, LIST - Luxembourg Institute of Science and Technology, 41 rue du Brill, L-4422, Belvaux, Luxembourg
| | - Gilles Frache
- Material, Research and Technology Department, LIST - Luxembourg Institute of Science and Technology, 41 rue du Brill, L-4422, Belvaux, Luxembourg
| | - Luc Patiny
- Zakodium Sàrl, chemin des Plantaz 10, CH-1440, Montagny-Chamard, Switzerland
| |
Collapse
|
6
|
Morgan TE, Ellacott SH, Wootton CA, Barrow MP, Bristow AWT, Perrier S, O’Connor PB. Coupling Electron Capture Dissociation and the Modified Kendrick Mass Defect for Sequencing of a Poly(2-ethyl-2-oxazoline) Polymer. Anal Chem 2018; 90:11710-11715. [DOI: 10.1021/acs.analchem.8b03591] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tomos E. Morgan
- Department of Chemistry, University of Warwick, Coventry, Midlands CV4 7AL, U.K
| | - Sean H. Ellacott
- Department of Chemistry, University of Warwick, Coventry, Midlands CV4 7AL, U.K
| | | | - Mark P. Barrow
- Department of Chemistry, University of Warwick, Coventry, Midlands CV4 7AL, U.K
| | | | - Sebastien Perrier
- Department of Chemistry, University of Warwick, Coventry, Midlands CV4 7AL, U.K
| | - Peter B. O’Connor
- Department of Chemistry, University of Warwick, Coventry, Midlands CV4 7AL, U.K
| |
Collapse
|
7
|
Polymer architectures via mass spectrometry and hyphenated techniques: A review. Anal Chim Acta 2016; 932:1-21. [DOI: 10.1016/j.aca.2016.05.024] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 04/07/2016] [Accepted: 05/16/2016] [Indexed: 11/22/2022]
|
8
|
“Polymeromics”: Mass spectrometry based strategies in polymer science toward complete sequencing approaches: A review. Anal Chim Acta 2014; 808:56-69. [DOI: 10.1016/j.aca.2013.10.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 10/07/2013] [Accepted: 10/11/2013] [Indexed: 11/23/2022]
|
9
|
Comparison of ESI, APCI and MALDI for the (tandem) mass analysis of poly(2-ethyl-2-oxazoline)s with various end-groups. Eur Polym J 2013. [DOI: 10.1016/j.eurpolymj.2013.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Scheubert K, Hufsky F, Böcker S. Computational mass spectrometry for small molecules. J Cheminform 2013; 5:12. [PMID: 23453222 PMCID: PMC3648359 DOI: 10.1186/1758-2946-5-12] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 02/01/2013] [Indexed: 12/29/2022] Open
Abstract
: The identification of small molecules from mass spectrometry (MS) data remains a major challenge in the interpretation of MS data. This review covers the computational aspects of identifying small molecules, from the identification of a compound searching a reference spectral library, to the structural elucidation of unknowns. In detail, we describe the basic principles and pitfalls of searching mass spectral reference libraries. Determining the molecular formula of the compound can serve as a basis for subsequent structural elucidation; consequently, we cover different methods for molecular formula identification, focussing on isotope pattern analysis. We then discuss automated methods to deal with mass spectra of compounds that are not present in spectral libraries, and provide an insight into de novo analysis of fragmentation spectra using fragmentation trees. In addition, this review shortly covers the reconstruction of metabolic networks using MS data. Finally, we list available software for different steps of the analysis pipeline.
Collapse
Affiliation(s)
- Kerstin Scheubert
- Chair of Bioinformatics, Friedrich Schiller University, Ernst-Abbe-Platz 2, Jena, Germany.
| | | | | |
Collapse
|
11
|
Altuntaş E, Krieg A, Baumgaertel A, Crecelius AC, Schubert US. ESI, APCI, and MALDI tandem mass spectrometry of poly(methyl acrylate)s: A comparison study for the structural characterization of polymers synthesized via CRP techniques and the software application to analyze MS/MS data. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26529] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Soeriyadi AH, R.Whittaker M, Boyer C, Davis TP. Soft ionization mass spectroscopy: Insights into the polymerization mechanism. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26536] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|