2
|
Zhang Q, Li Z, Wang Y, Zheng Q, Li J. Mass spectrometry for protein sialoglycosylation. MASS SPECTROMETRY REVIEWS 2018; 37:652-680. [PMID: 29228471 DOI: 10.1002/mas.21555] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
Sialic acids are a family of structurally unique and negatively charged nine-carbon sugars, normally found at the terminal positions of glycan chains on glycoproteins and glycolipids. The glycosylation of proteins is a universal post-translational modification in eukaryotic species and regulates essential biological functions, in which the most common sialic acid is N-acetyl-neuraminic acid (2-keto-5-acetamido-3,5-dideoxy-D-glycero-D-galactononulopyranos-1-onic acid) (Neu5NAc). Because of the properties of sialic acids under general mass spectrometry (MS) conditions, such as instability, ionization discrimination, and mixed adducts, the use of MS in the analysis of protein sialoglycosylation is still challenging. The present review is focused on the application of MS related methodologies to the study of both N- and O-linked sialoglycans. We reviewed MS-based strategies for characterizing sialylation by analyzing intact glycoproteins, proteolytic digested glycopeptides, and released glycans. The review concludes with future perspectives in the field.
Collapse
Affiliation(s)
- Qiwei Zhang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Institute for Interdisciplinary Research, Institute of Environment and Health, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, Beijing, China
| | - Zack Li
- School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, Beijing, China
| | - Qi Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Institute for Interdisciplinary Research, Institute of Environment and Health, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, China
| | - Jianjun Li
- National Research Council Canada, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Miura Y, Kato K, Takegawa Y, Kurogochi M, Furukawa JI, Shinohara Y, Nagahori N, Amano M, Hinou H, Nishimura SI. Glycoblotting-Assisted O-Glycomics: Ammonium Carbamate Allows for Highly Efficient O-Glycan Release from Glycoproteins. Anal Chem 2010; 82:10021-9. [DOI: 10.1021/ac101599p] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yoshiaki Miura
- Ezose Sciences, Inc., 25 Riverside Drive Pine Brook, New Jersey 07058, United States, Graduate School of Life Science, and Frontier Research Center for Post-Genomic Science and Technology, Hokkaido University, N21, W11, Kita-ku, Sapporo, Japan, and Division of Quantification of Health State (Feel Fine Corporation), Graduate School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo, Japan
| | - Kentaro Kato
- Ezose Sciences, Inc., 25 Riverside Drive Pine Brook, New Jersey 07058, United States, Graduate School of Life Science, and Frontier Research Center for Post-Genomic Science and Technology, Hokkaido University, N21, W11, Kita-ku, Sapporo, Japan, and Division of Quantification of Health State (Feel Fine Corporation), Graduate School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo, Japan
| | - Yasuhiro Takegawa
- Ezose Sciences, Inc., 25 Riverside Drive Pine Brook, New Jersey 07058, United States, Graduate School of Life Science, and Frontier Research Center for Post-Genomic Science and Technology, Hokkaido University, N21, W11, Kita-ku, Sapporo, Japan, and Division of Quantification of Health State (Feel Fine Corporation), Graduate School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo, Japan
| | - Masaki Kurogochi
- Ezose Sciences, Inc., 25 Riverside Drive Pine Brook, New Jersey 07058, United States, Graduate School of Life Science, and Frontier Research Center for Post-Genomic Science and Technology, Hokkaido University, N21, W11, Kita-ku, Sapporo, Japan, and Division of Quantification of Health State (Feel Fine Corporation), Graduate School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo, Japan
| | - Jun-ichi Furukawa
- Ezose Sciences, Inc., 25 Riverside Drive Pine Brook, New Jersey 07058, United States, Graduate School of Life Science, and Frontier Research Center for Post-Genomic Science and Technology, Hokkaido University, N21, W11, Kita-ku, Sapporo, Japan, and Division of Quantification of Health State (Feel Fine Corporation), Graduate School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo, Japan
| | - Yasuro Shinohara
- Ezose Sciences, Inc., 25 Riverside Drive Pine Brook, New Jersey 07058, United States, Graduate School of Life Science, and Frontier Research Center for Post-Genomic Science and Technology, Hokkaido University, N21, W11, Kita-ku, Sapporo, Japan, and Division of Quantification of Health State (Feel Fine Corporation), Graduate School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo, Japan
| | - Noriko Nagahori
- Ezose Sciences, Inc., 25 Riverside Drive Pine Brook, New Jersey 07058, United States, Graduate School of Life Science, and Frontier Research Center for Post-Genomic Science and Technology, Hokkaido University, N21, W11, Kita-ku, Sapporo, Japan, and Division of Quantification of Health State (Feel Fine Corporation), Graduate School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo, Japan
| | - Maho Amano
- Ezose Sciences, Inc., 25 Riverside Drive Pine Brook, New Jersey 07058, United States, Graduate School of Life Science, and Frontier Research Center for Post-Genomic Science and Technology, Hokkaido University, N21, W11, Kita-ku, Sapporo, Japan, and Division of Quantification of Health State (Feel Fine Corporation), Graduate School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo, Japan
| | - Hiroshi Hinou
- Ezose Sciences, Inc., 25 Riverside Drive Pine Brook, New Jersey 07058, United States, Graduate School of Life Science, and Frontier Research Center for Post-Genomic Science and Technology, Hokkaido University, N21, W11, Kita-ku, Sapporo, Japan, and Division of Quantification of Health State (Feel Fine Corporation), Graduate School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo, Japan
| | - Shin-Ichiro Nishimura
- Ezose Sciences, Inc., 25 Riverside Drive Pine Brook, New Jersey 07058, United States, Graduate School of Life Science, and Frontier Research Center for Post-Genomic Science and Technology, Hokkaido University, N21, W11, Kita-ku, Sapporo, Japan, and Division of Quantification of Health State (Feel Fine Corporation), Graduate School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo, Japan
| |
Collapse
|
10
|
Woo HK, Go EP, Hoang L, Trauger SA, Bowen B, Siuzdak G, Northen TR. Phosphonium labeling for increasing metabolomic coverage of neutral lipids using electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:1849-1855. [PMID: 19449318 PMCID: PMC3052201 DOI: 10.1002/rcm.4076] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Mass spectrometry has become an indispensable tool for the global study of metabolites (metabolomics), primarily using electrospray ionization mass spectrometry (ESI-MS). However, many important classes of molecules such as neutral lipids do not ionize well by ESI and go undetected. Chemical derivatization of metabolites can enhance ionization for increased sensitivity and metabolomic coverage. Here we describe the use of tris(2,4,6,-trimethoxyphenyl)phosphonium acetic acid (TMPP-AA) to improve liquid chromatography (LC)/ESI-MS detection of hydroxylated metabolites (i.e. lipids) from serum extracts. Cholesterol which is not normally detected from serum using ESI is observed with attomole sensitivity. This approach was applied to identify four endogenous lipids (hexadecanoyl-sn-glycerol, dihydrotachysterol, octadecanol, and alpha-tocopherol) from human serum. Overall, this approach extends the types of metabolites which can be detected using standard ESI-MS instrumentation and demonstrates the potential for targeted metabolomics analysis.
Collapse
Affiliation(s)
- Hin-Koon Woo
- Department of Molecular Biology, Scripps Center for Mass Spectrometry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Eden P. Go
- Department of Molecular Biology, Scripps Center for Mass Spectrometry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Linh Hoang
- Department of Molecular Biology, Scripps Center for Mass Spectrometry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sunia A. Trauger
- Department of Molecular Biology, Scripps Center for Mass Spectrometry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Benjamin Bowen
- Harrington Department of Bioengineering, Arizona State University, PO Box 879709, Tempe, AZ 85287, USA
| | - Gary Siuzdak
- Department of Molecular Biology, Scripps Center for Mass Spectrometry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Trent R. Northen
- Department of Molecular Biology, Scripps Center for Mass Spectrometry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
- Department of GTL Bioenergy and Structural Biology, Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| |
Collapse
|