1
|
Wang JL, Liu XY, Jiang PK, Yu QR, Xu QF. Half substitution of mineral N with fish protein hydrolysate enhancing microbial residue C and N storage and climate benefits under high straw residue return. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122488. [PMID: 39270338 DOI: 10.1016/j.jenvman.2024.122488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
The widespread utilization of straw return was a popular practice straw disposal for highly intensive agriculture in China, which has brought about some negative impacts such as less time for straw complete biodegradation, aggravation of greenhouse gas evolution, and lower efficient of carbon accumulation. It was urgent to find an eco-friendly N-rich organic fertilizer instead of mineral N as activator to solve the above problems and lead a carbon accumulation in long tern management. Besides, microbial necromass was considered as a crucial contributor to persistent soil carbon (C) and nitrogen (N) pool. How organic fertilizer activators influence microbial residue under different amount of crop residues input remained unclear. Thus, soils incorporating moderate and high rate of rice straw residue with additions of half and full of organic activators (fish protein hydrolysates vs. manure) were incubated for measuring carbon dioxide (CO2) and nitrous oxide (N2O) emission, microbial community and necromass. It was found that soil CO2 emission was rapidest during the first 13 days of straw decomposition but remained lowest in the treatments of 50% mineral N substituted by fish protein hydrolysate. There were that 81%-89% of total CO2 release and 59%-65% of total N2O emission occurred within 60 days of incubation period, and bacterial community and nitrate positively affected soil CO2 and N2O release respectively. Straw incorporation amount and organic activator application interactively influenced soil CO2 emission but not affected soil N2O emission. After 360 days of incubation, the difference of bacterial necromass was noticeable but fungal necromass remained almost unaltered across all treatments. All treatments showed generally comparable contribution of microbial necromass N to the total N pool. The treatment of 50% mineral N substituted by fish protein hydrolysate under high rate of straw input (HSF50) promoted the highest proportion of microbial necromass C in soil organic C because of alleviating N limitation for microorganisms. Finally, HSF50 was recommended as an eco-friendly strategy for enhancing microbial necromass C and N storage and climate benefits in agroecosystems.
Collapse
Affiliation(s)
- Jia Lin Wang
- College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, Hangzhou, 311300, China; The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xin Yu Liu
- College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, Hangzhou, 311300, China; The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Pei Kun Jiang
- College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, Hangzhou, 311300, China; The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Qiu Ran Yu
- College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, Hangzhou, 311300, China; The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Qiu Fang Xu
- College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, Hangzhou, 311300, China; The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
2
|
Zuev AG, Krivosheina MG, Leonov VD, Öpik M, Vasar M, Saraeva AK, Tiunov AV, Goncharov AA. Mycorrhiza-feeding soil invertebrates in two coniferous forests traced with 13C labelling. MYCORRHIZA 2023; 33:59-68. [PMID: 36662299 DOI: 10.1007/s00572-023-01102-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Mycorrhizal fungi represent a potentially abundant carbon resource for soil animals, but their role in soil food webs remains poorly understood. To detect taxa that are trophically linked to the extraradical mycelium of mycorrhizal fungi, we used stable isotope (13C) labelling of whole trees in combination with the in-growth mesh bag technique in two coniferous forests. This allowed us to detect the flux of carbon in the mycelium of mycorrhizal fungi, and consequently in the tissues of soil invertebrates. The mycorrhizal fungal genera constituted 93.5% of reads in mycelium samples from the in-growth mesh bags. All mycelium from in-growth mesh bags and about 32% of the invertebrates sampled (in total 11 taxa) received the 13C label after 45 days of exposure. The extent of feeding of soil invertebrates on the mycelium of mycorrhizal fungi depended on the taxonomic affinity of the animals. The strongest trophic link to the mycorrhiza-derived carbon was detected in Isotomidae (Collembola) and Oppiidae (Oribatida). The label was also observed in the generalist predators, indicating the propagation of mycorrhiza-derived carbon into the higher trophic levels of the soil food web. Higher 13C labelling in the tissues of euedaphic Collembola and Oribatida compared to atmobiotic and hemiedaphic families indicates the importance of mycorrhizal fungi as a food resource for invertebrates in deeper soil horizons.
Collapse
Affiliation(s)
- Andrey G Zuev
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, Moscow, 119071, Russia.
| | - Marina G Krivosheina
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, Moscow, 119071, Russia
| | - Vladislav D Leonov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, Moscow, 119071, Russia
| | - Maarja Öpik
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 2 J. Liivi St, Tartu, 50409, Estonia
| | - Martti Vasar
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 2 J. Liivi St, Tartu, 50409, Estonia
| | - Anna K Saraeva
- Forest Research Institute, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, 185910, Russia
| | - Alexei V Tiunov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, Moscow, 119071, Russia
| | - Anton A Goncharov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, Moscow, 119071, Russia
| |
Collapse
|
3
|
Jardine KJ, Lei J, Som S, Souza D, Clendinen CS, Mehta H, Handakumbura P, Bill M, Young RP. Light-Dependence of Formate (C1) and Acetate (C2) Transport and Oxidation in Poplar Trees. PLANTS 2022; 11:plants11162080. [PMID: 36015384 PMCID: PMC9413118 DOI: 10.3390/plants11162080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022]
Abstract
Although apparent light inhibition of leaf day respiration is a widespread reported phenomenon, the mechanisms involved, including utilization of alternate respiratory pathways and substrates and light inhibition of TCA cycle enzymes are under active investigation. Recently, acetate fermentation was highlighted as a key drought survival strategy mediated through protein acetylation and jasmonate signaling. Here, we evaluate the light-dependence of acetate transport and assimilation in Populus trichocarpa trees using the dynamic xylem solution injection (DXSI) method developed here for continuous studies of C1 and C2 organic acid transport and light-dependent metabolism. Over 7 days, 1.0 L of [13C]formate and [13C2]acetate solutions were delivered to the stem base of 2-year old potted poplar trees, while continuous diurnal observations were made in the canopy of CO2, H2O, and isoprene gas exchange together with δ13CO2. Stem base injection of 10 mM [13C2]acetate induced an overall pattern of canopy branch headspace 13CO2 enrichment (δ13CO2 +27‰) with a diurnal structure in δ13CO2 reaching a mid-day minimum followed by a maximum shortly after darkening where δ13CO2 values rapidly increased up to +12‰. In contrast, 50 mM injections of [13C]formate were required to reach similar δ13CO2 enrichment levels in the canopy with δ13CO2 following diurnal patterns of transpiration. Illuminated leaves of detached poplar branches pretreated with 10 mM [13C2]acetate showed lower δ13CO2 (+20‰) compared to leaves treated with 10 mM [13C]formate (+320‰), the opposite pattern observed at the whole plant scale. Following dark/light cycles at the leaf-scale, rapid, strong, and reversible enhancements in headspace δ13CO2 by up to +60‰ were observed in [13C2]acetate-treated leaves which showed enhanced dihydrojasmonic acid and TCA cycle intermediate concentrations. The results are consistent with acetate in the transpiration stream as an effective activator of the jasmonate signaling pathway and respiratory substrate. The shorter lifetime of formate relative to acetate in the transpiration stream suggests rapid formate oxidation to CO2 during transport to the canopy. In contrast, acetate is efficiently transported to the canopy where an increased allocation towards mitochondrial dark respiration occurs at night. The results highlight the potential for an effective integration of acetate into glyoxylate and TCA cycles and the light-inhibition of citrate synthase as a potential regulatory mechanism controlling the diurnal allocation of acetate between anabolic and catabolic processes.
Collapse
Affiliation(s)
- Kolby J. Jardine
- Lawrence Berkeley National Laboratory, Climate and Ecosystem Science Division, Berkeley, CA 94720, USA
- Correspondence:
| | - Joseph Lei
- Lawrence Berkeley National Laboratory, Climate and Ecosystem Science Division, Berkeley, CA 94720, USA
| | - Suman Som
- Lawrence Berkeley National Laboratory, Climate and Ecosystem Science Division, Berkeley, CA 94720, USA
| | - Daisy Souza
- Forest Management Laboratory, National Institute for Amazon Research, Manaus 69067-375, Brazil
| | - Chaevien S. Clendinen
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Hardeep Mehta
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Pubudu Handakumbura
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Markus Bill
- Lawrence Berkeley National Laboratory, Climate and Ecosystem Science Division, Berkeley, CA 94720, USA
| | - Robert P. Young
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| |
Collapse
|
4
|
Slaets JIF, Resch C, Mayr L, Weltin G, Heiling M, Gruber R, Dercon G. Laser spectroscopy steered 13 C-labelling of plant material in a walk-in growth chamber. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8669. [PMID: 31758611 DOI: 10.1002/rcm.8669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Carbon-13 (13 C)-labelled plant material forms the basis for experiments elucidating soil organic carbon dynamics and greenhouse gas emissions. Quantitative field-scale tracing is only possible if plants are labelled homogeneously in large quantities. By using a laser spectrometer to automatically steer the isotopic ratio in the chamber, it is possible to obtain large amounts of homogeneously labelled plant material. METHODS Ninety-six maize plants were labelled for 25 days until tassel formation in a 15 m3 walk-in growth chamber with a continuous air δ13 C-CO2 value of 400‰. A Los Gatos Research laser absorption spectrometer controlled the ambient δ13 C-CO2 value in the chamber through steering of the mass flow controllers with 13 C-enriched and natural abundance CO2 gas. RESULTS Laser absorption spectroscopy steering kept the δ13 C value of chamber air between 368 and 426‰. The resulting 1 kg dry matter of 13 C-labelled shoots showed an average δ13 C value of 384‰ and accuracy of 8‰ (half width of the 95% confidence interval). Only the oldest leaves showed larger heterogeneity. The growth chamber eliminated variability between plants. The δ13 C value of the stabile material did not differ significantly from that of bulk material. CONCLUSIONS Laser spectroscopy controlled 13 C labelling of plants in a walk-in growth chamber successfully kept the isotopic ratio of the CO2 in the chamber air constant. Therefore, large quantities of material were labelled homogeneously at the inter- and intra-plant level, thus establishing a method to provide high-quality input for quantitative isotopic tracer studies.
Collapse
Affiliation(s)
- Johanna I F Slaets
- Soil and Water Management & Crop Nutrition Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Christian Resch
- Soil and Water Management & Crop Nutrition Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Leopold Mayr
- Soil and Water Management & Crop Nutrition Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Georg Weltin
- Soil and Water Management & Crop Nutrition Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Maria Heiling
- Soil and Water Management & Crop Nutrition Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Roman Gruber
- Soil and Water Management & Crop Nutrition Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Gerd Dercon
- Soil and Water Management & Crop Nutrition Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| |
Collapse
|
5
|
Baldrian P. Microbial activity and the dynamics of ecosystem processes in forest soils. Curr Opin Microbiol 2017; 37:128-134. [DOI: 10.1016/j.mib.2017.06.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 06/21/2017] [Indexed: 01/16/2023]
|
6
|
Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change. Microbiol Mol Biol Rev 2017; 81:81/2/e00063-16. [PMID: 28404790 DOI: 10.1128/mmbr.00063-16] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ecology of forest soils is an important field of research due to the role of forests as carbon sinks. Consequently, a significant amount of information has been accumulated concerning their ecology, especially for temperate and boreal forests. Although most studies have focused on fungi, forest soil bacteria also play important roles in this environment. In forest soils, bacteria inhabit multiple habitats with specific properties, including bulk soil, rhizosphere, litter, and deadwood habitats, where their communities are shaped by nutrient availability and biotic interactions. Bacteria contribute to a range of essential soil processes involved in the cycling of carbon, nitrogen, and phosphorus. They take part in the decomposition of dead plant biomass and are highly important for the decomposition of dead fungal mycelia. In rhizospheres of forest trees, bacteria interact with plant roots and mycorrhizal fungi as commensalists or mycorrhiza helpers. Bacteria also mediate multiple critical steps in the nitrogen cycle, including N fixation. Bacterial communities in forest soils respond to the effects of global change, such as climate warming, increased levels of carbon dioxide, or anthropogenic nitrogen deposition. This response, however, often reflects the specificities of each studied forest ecosystem, and it is still impossible to fully incorporate bacteria into predictive models. The understanding of bacterial ecology in forest soils has advanced dramatically in recent years, but it is still incomplete. The exact extent of the contribution of bacteria to forest ecosystem processes will be recognized only in the future, when the activities of all soil community members are studied simultaneously.
Collapse
|
7
|
Goncharov AA, Tsurikov SM, Potapov AM, Tiunov AV. Short-term incorporation of freshly fixed plant carbon into the soil animal food web: field study in a spruce forest. Ecol Res 2016. [DOI: 10.1007/s11284-016-1402-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Deslippe JR, Hartmann M, Grayston SJ, Simard SW, Mohn WW. Stable isotope probing implicates a species of Cortinarius in carbon transfer through ectomycorrhizal fungal mycelial networks in Arctic tundra. THE NEW PHYTOLOGIST 2016; 210:383-90. [PMID: 26681156 DOI: 10.1111/nph.13797] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Affiliation(s)
- Julie R Deslippe
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Martin Hartmann
- Forest Soils and Biogeochemistry, Swiss Federal Research Institute WSL, Zuercherstrasse 111, CH-8903, Birmensdorf, Switzerland
- Molecular Ecology, Institute for Sustainability Sciences, Agroscope, Reckenholzstrasse 191, CH-8046, Zurich, Switzerland
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Susan J Grayston
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Suzanne W Simard
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - William W Mohn
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
9
|
Nair RKF, Perks MP, Weatherall A, Baggs EM, Mencuccini M. Does canopy nitrogen uptake enhance carbon sequestration by trees? GLOBAL CHANGE BIOLOGY 2016; 22:875-88. [PMID: 26391113 PMCID: PMC4738422 DOI: 10.1111/gcb.13096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 08/27/2015] [Accepted: 08/31/2015] [Indexed: 05/15/2023]
Abstract
Temperate forest (15) N isotope trace experiments find nitrogen (N) addition-driven carbon (C) uptake is modest as little additional N is acquired by trees; however, several correlations of ambient N deposition against forest productivity imply a greater effect of atmospheric nitrogen deposition than these studies. We asked whether N deposition experiments adequately represent all processes found in ambient conditions. In particular, experiments typically apply (15) N to directly to forest floors, assuming uptake of nitrogen intercepted by canopies (CNU) is minimal. Additionally, conventional (15) N additions typically trace mineral (15) N additions rather than litter N recycling and may increase total N inputs above ambient levels. To test the importance of CNU and recycled N to tree nutrition, we conducted a mesocosm experiment, applying 54 g N/(15) N ha(-1) yr(-1) to Sitka spruce saplings. We compared tree and soil (15) N recovery among treatments where enrichment was due to either (1) a (15) N-enriched litter layer, or mineral (15) N additions to (2) the soil or (3) the canopy. We found that 60% of (15) N applied to the canopy was recovered above ground (in needles, stem and branches) while only 21% of (15) N applied to the soil was found in these pools. (15) N recovery from litter was low and highly variable. (15) N partitioning among biomass pools and age classes also differed among treatments, with twice as much (15) N found in woody biomass when deposited on the canopy than soil. Stoichiometrically calculated N effect on C uptake from (15) N applied to the soil, scaled to real-world conditions, was 43 kg C kg N(-1) , similar to manipulation studies. The effect from the canopy treatment was 114 kg C kg N(-1) . Canopy treatments may be critical to accurately represent N deposition in the field and may address the discrepancy between manipulative and correlative studies.
Collapse
Affiliation(s)
- Richard K. F. Nair
- School of GeosciencesUniversity of EdinburghCrew BuildingEdinburgh, MidlothianEH9 3FFUK
| | - Micheal P. Perks
- Forest ResearchNorthern Research StationRoslin, MidlothianEH25 9SYUK
| | | | - Elizabeth M. Baggs
- Institute of Biological and Environmental SciencesUniversity of AberdeenZoology Building, Tillydrone AvenueAberdeenAB24 2TZUK
| | - Maurizio Mencuccini
- School of GeosciencesUniversity of EdinburghCrew BuildingEdinburgh, MidlothianEH9 3FFUK
- Institució Catalana de Recerca i Estudis AvançatsCentre for Ecological Research and Forestry Applications, Cerdanyola del VallèsBarcelona08193Spain
| |
Collapse
|
10
|
Nair R, Weatherall A, Perks M, Mencuccini M. Stem injection of 15N-NH4NO3 into mature Sitka spruce (Picea sitchensis). TREE PHYSIOLOGY 2014; 34:1130-40. [PMID: 25335951 PMCID: PMC4239792 DOI: 10.1093/treephys/tpu084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 08/25/2014] [Indexed: 06/02/2023]
Abstract
Stem injection techniques can be used to introduce (15)N into trees to overcome a low variation in natural abundance and label biomass with a distinct (15)N signature, but have tended to target small and young trees, of a variety of species, with little replication. We injected 98 atom% (15)N ammonium nitrate (NH4NO3) solution into 13 mature, 9- to 13-m tall edge-profile Sitka spruce trees in order to produce a large quantity of labelled litter, examining the distribution of the isotope throughout the canopy after felling in terms of both total abundance of (15)N and relative distribution of the isotope throughout individual trees. Using a simple mass balance of the canopy alone, based on observed total needle biomass and modelled branch biomass, all of the isotope injected was accounted for, evenly split between needles and branches, but with a high degree of variability both within individual trees, and among trees. Both (15)N abundance and relative within-canopy distribution were biased towards the upper and middle crown in foliage. Recovery of the label in branches was much more variable than in needles, possibly due to differences in nitrogen allocation for both growth and storage, which differ seasonally between foliage and woody biomass.
Collapse
Affiliation(s)
- Richard Nair
- School of Geosciences, University of Edinburgh, Crew Building, West Mains Road, Edinburgh EH9 3JN, Midlothian, Scotland
| | - Andrew Weatherall
- National School of Forestry, University of Cumbria, Penrith, CA11 0AH, UK
| | - Mike Perks
- Northern Research Station, Forest Research, Roslin EH25 9SY, Midlothian, Scotland
| | - Maurizio Mencuccini
- School of Geosciences, University of Edinburgh, Crew Building, West Mains Road, Edinburgh EH9 3JN, Midlothian, Scotland ICREA at CREAF, Campus de UAB, Cerdanyola del Valle's, Bellaterra, Barcelona, Spain
| |
Collapse
|
11
|
Churchland C, Grayston SJ. Specificity of plant-microbe interactions in the tree mycorrhizosphere biome and consequences for soil C cycling. Front Microbiol 2014; 5:261. [PMID: 24917855 PMCID: PMC4042908 DOI: 10.3389/fmicb.2014.00261] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 05/13/2014] [Indexed: 01/22/2023] Open
Abstract
Mycorrhizal associations are ubiquitous and form a substantial component of the microbial biomass in forest ecosystems and fluxes of C to these belowground organisms account for a substantial portion of carbon assimilated by forest vegetation. Climate change has been predicted to alter belowground plant-allocated C which may cause compositional shifts in soil microbial communities, and it has been hypothesized that this community change will influence C mitigation in forest ecosystems. Some 10,000 species of ectomycorrhizal fungi are currently recognized, some of which are host specific and will only associate with a single tree species, for example, Suillus grevillei with larch. Mycorrhizae are a strong sink for plant C, differences in mycorrhizal anatomy, particularly the presence and extent of emanating hyphae, can affect the amount of plant C allocated to these assemblages. Mycorrhizal morphology affects not only spatial distribution of C in forests, but also differences in the longevity of these diverse structures may have important consequences for C sequestration in soil. Mycorrhizal growth form has been used to group fungi into distinctive functional groups that vary qualitatively and spatially in their foraging and nutrient acquiring potential. Through new genomic techniques we are beginning to understand the mechanisms involved in the specificity and selection of ectomycorrhizal associations though much less is known about arbuscular mycorrhizal associations. In this review we examine evidence for tree species- mycorrhizal specificity, and the mechanisms involved (e.g., signal compounds). We also explore what is known about the effects of these associations and interactions with other soil organisms on the quality and quantity of C flow into the mycorrhizosphere (the area under the influence of mycorrhizal root tips), including spatial and seasonal variations. The enormity of the mycorrhizosphere biome in forests and its potential to sequester substantial C belowground highlights the vital importance of increasing our knowledge of the dynamics of the different mycorrhizal functional groups in diverse forests.
Collapse
Affiliation(s)
| | - Sue J. Grayston
- Belowground Ecosystem Group, Department of Forest and Conservation Sciences, University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|