1
|
Su H, Li X, Huang L, Cao J, Zhang M, Vedarethinam V, Di W, Hu Z, Qian K. Plasmonic Alloys Reveal a Distinct Metabolic Phenotype of Early Gastric Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007978. [PMID: 33742513 DOI: 10.1002/adma.202007978] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/09/2021] [Indexed: 05/20/2023]
Abstract
Gastric cancer (GC) is a multifactorial process, accompanied by alterations in metabolic pathways. Non-invasive metabolic profiling facilitates GC diagnosis at early stage leading to an improved prognostic outcome. Herein, mesoporous PdPtAu alloys are designed to characterize the metabolic profiles in human blood. The elemental composition is optimized with heterogeneous surface plasmonic resonance, offering preferred charge transfer for photoinduced desorption/ionization and enhanced photothermal conversion for thermally driven desorption. The surface structure of PdPtAu is further tuned with controlled mesopores, accommodating metabolites only, rather than large interfering compounds. Consequently, the optimized PdPtAu alloy yields direct metabolic fingerprints by laser desorption/ionization mass spectrometry in seconds, consuming 500 nL of native plasma. A distinct metabolic phenotype is revealed for early GC by sparse learning, resulting in precise GC diagnosis with an area under the curve of 0.942. It is envisioned that the plasmonic alloy will open up a new era of minimally invasive blood analysis to improve the surveillance of cancer patients in the clinical setting.
Collapse
Affiliation(s)
- Haiyang Su
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory of Gynecologic Oncology, Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Xinxing Li
- Department of Gastrointestinal Surgery, Tongji Hospital, Medical College of Tongji University, Shanghai, 200065, P. R. China
- Department of General Surgery, Changzheng Hospital, Naval Medical University, Shanghai, 200003, P. R. China
| | - Lin Huang
- Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Jing Cao
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory of Gynecologic Oncology, Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Mengji Zhang
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory of Gynecologic Oncology, Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Vadanasundari Vedarethinam
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory of Gynecologic Oncology, Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Wen Di
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory of Gynecologic Oncology, Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Zhiqian Hu
- Department of Gastrointestinal Surgery, Tongji Hospital, Medical College of Tongji University, Shanghai, 200065, P. R. China
- Department of General Surgery, Changzheng Hospital, Naval Medical University, Shanghai, 200003, P. R. China
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory of Gynecologic Oncology, Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| |
Collapse
|
2
|
Gachumi G, Purves RW, Hopf C, El-Aneed A. Fast Quantification Without Conventional Chromatography, The Growing Power of Mass Spectrometry. Anal Chem 2020; 92:8628-8637. [PMID: 32510944 DOI: 10.1021/acs.analchem.0c00877] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mass spectrometry (MS) in hyphenated techniques is widely accepted as the gold standard quantitative tool in life sciences. However, MS possesses intrinsic analytical capabilities that allow it to be a stand-alone quantitative technique, particularly with current technological advancements. MS has a great potential for simplifying quantitative analysis without the need for tedious chromatographic separation. Its selectivity relies on multistage MS analysis (MSn), including tandem mass spectrometry (MS/MS), as well as the ever-growing advancements of high-resolution MS instruments. This perspective describes various analytical platforms that utilize MS as a stand-alone quantitative technique, namely, flow injection analysis (FIA), matrix assisted laser desorption ionization (MALDI), including MALDI-MS imaging and ion mobility, particularly high-field asymmetric waveform ion mobility spectrometry (FAIMS). When MS alone is not capable of providing reliable quantitative data, instead of conventional liquid chromatography (LC)-MS, the use of a guard column (i.e., fast chromatography) may be sufficient for quantification. Although the omission of chromatographic separation simplifies the analytical process, extra procedures may be needed during sample preparation and clean-up to address the issue of matrix effects. The discussion of this manuscript focuses on key parameters underlying the uniqueness of each technique for its application in quantitative analysis without the need for a chromatographic separation. In addition, the potential for each analytical strategy and its challenges are discussed as well as improvements needed to render them as mainstream quantitative analytical tools. Overcoming the hurdles for fully validating a quantitative method will allow MS alone to eventually become an indispensable quantitative tool for clinical and toxicological studies.
Collapse
Affiliation(s)
- George Gachumi
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan Canada, S7N 5E5
| | - Randy W Purves
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan Canada, S7N 5E5.,Centre for Veterinary Drug Residues, Canadian Food Inspection Agency, 116 Veterinary Rd, Saskatoon, Saskatchewan Canada, S7N 2R3
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Strasse 10, 68163 Mannheim, Germany
| | - Anas El-Aneed
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan Canada, S7N 5E5
| |
Collapse
|
3
|
Nanomaterials as Assisted Matrix of Laser Desorption/Ionization Time-of-Flight Mass Spectrometry for the Analysis of Small Molecules. NANOMATERIALS 2017; 7:nano7040087. [PMID: 28430138 PMCID: PMC5408179 DOI: 10.3390/nano7040087] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 04/12/2017] [Accepted: 04/19/2017] [Indexed: 12/31/2022]
Abstract
Matrix-assisted laser desorption/ionization (MALDI), a soft ionization method, coupling with time-of-flight mass spectrometry (TOF MS) has become an indispensible tool for analyzing macromolecules, such as peptides, proteins, nucleic acids and polymers. However, the application of MALDI for the analysis of small molecules (<700 Da) has become the great challenge because of the interference from the conventional matrix in low mass region. To overcome this drawback, more attention has been paid to explore interference-free methods in the past decade. The technique of applying nanomaterials as matrix of laser desorption/ionization (LDI), also called nanomaterial-assisted laser desorption/ionization (nanomaterial-assisted LDI), has attracted considerable attention in the analysis of low-molecular weight compounds in TOF MS. This review mainly summarized the applications of different types of nanomaterials including carbon-based, metal-based and metal-organic frameworks as assisted matrices for LDI in the analysis of small biological molecules, environmental pollutants and other low-molecular weight compounds.
Collapse
|
5
|
Chiu TC. Recent advances in bacteria identification by matrix-assisted laser desorption/ionization mass spectrometry using nanomaterials as affinity probes. Int J Mol Sci 2014; 15:7266-80. [PMID: 24786089 PMCID: PMC4057671 DOI: 10.3390/ijms15057266] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/14/2014] [Accepted: 04/16/2014] [Indexed: 02/01/2023] Open
Abstract
Identifying trace amounts of bacteria rapidly, accurately, selectively, and with high sensitivity is important to ensuring the safety of food and diagnosing infectious bacterial diseases. Microbial diseases constitute the major cause of death in many developing and developed countries of the world. The early detection of pathogenic bacteria is crucial in preventing, treating, and containing the spread of infections, and there is an urgent requirement for sensitive, specific, and accurate diagnostic tests. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is an extremely selective and sensitive analytical tool that can be used to characterize different species of pathogenic bacteria. Various functionalized or unmodified nanomaterials can be used as affinity probes to capture and concentrate microorganisms. Recent developments in bacterial detection using nanomaterials-assisted MALDI-MS approaches are highlighted in this article. A comprehensive table listing MALDI-MS approaches for identifying pathogenic bacteria, categorized by the nanomaterials used, is provided.
Collapse
Affiliation(s)
- Tai-Chia Chiu
- Department of Applied Science, National Taitung University, 684 Section 1, Chunghua Road, Taitung 95002, Taiwan.
| |
Collapse
|
6
|
Cegłowski M, Jasiecki S, Schroeder G. Laser desorption/ionization mass spectrometric analysis of folic acid, vancomycin and Triton® X-100 on variously functionalized carbon nanotubes. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:2631-2638. [PMID: 24591024 DOI: 10.1002/rcm.6728] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 08/29/2013] [Accepted: 09/02/2013] [Indexed: 06/03/2023]
Abstract
RATIONALE Carbon nanotubes (CNTs) have been ascertained to constitute versatile assisting matrices for laser desorption/ionization mass spectrometric analysis of different molecules. The functionalization thereof can lead to obtaining laser desorption/ionization assisting surfaces that would allow the detection of molecules at lower concentration and produce spectra with a better signal-to-noise ratio. METHODS Pristine, -OH and -COOH functionalized multi-walled CNTs were obtained from commercial suppliers. Gallic or sinapinic acid was attached covalently to the CNT surfaces by forming an ester bond. Folic acid, vancomycin and Triton(®) X-100 were used as analytes to examine properties of these new assisting surfaces. Mass spectrometry analysis was conducted on a matrix-assisted laser desorption/ionization quadrupole time-of-flight (MALDIQTOF) mass spectrometer. RESULTS The functionalization of CNTs was confirmed with Fourier transform infrared (FTIR) spectroscopy. The obtained mass spectra revealed that all the assisting surfaces are capable of transferring energy to the analytes; moreover, the presence of carboxyl groups in the structures of CNTs highly enhances their ionization properties. Nevertheless, the presence of sinapinic acid on CNT surfaces does not increase their properties to absorb pulse laser energy. CONCLUSIONS The presented assisting surfaces are effective in LDI mass analysis of folic acid, vancomycin and Triton(®) X-100. The appropriate functionalization of CNTs can lead to the production of assisting surfaces that can become highly effective in the ionization of particular types of analytes.
Collapse
Affiliation(s)
- Michał Cegłowski
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Umultowska 89b, 61-614, Poznan, Poland
| | | | | |
Collapse
|