1
|
Lee OYC, Wu HHT, Besra GS. Professor David Minnikin Memorial Lecture: An era of the mycobacterial cell wall lipid biomarkers. Tuberculosis (Edinb) 2023; 143S:102415. [PMID: 38012929 DOI: 10.1016/j.tube.2023.102415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 11/29/2023]
Abstract
This paper is dedicated to the memory of Professor David Ernest Minnikin (1939-2021). David was one of the key scientists who pioneered the field of Mycobacterium tuberculosis cell envelope research for over half a century. From the classification, identification, and extraction of the unusual lipids of the mycobacterial cell wall, to exploiting them as characteristic lipid biomarkers for sensitive detection, his ideas enlightened a whole world of possibilities within the tuberculosis (TB) field. In addition, his definition of the intricate models now forms a key milestone in our understanding of the M. tuberculosis cell envelope and has resolved many unanswered questions on the evolution of M. tuberculosis.
Collapse
Affiliation(s)
- Oona Y-C Lee
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, B15 2TT, United Kingdom; Coventry Road Medical Centre, Small Heath, Birmingham, B10 0UG, United Kingdom
| | - Houdini H T Wu
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, B15 2TT, United Kingdom; Coventry Road Medical Centre, Small Heath, Birmingham, B10 0UG, United Kingdom; UK Health Security Agency, Public Health Laboratory, Birmingham, B5 9SS, United Kingdom
| | - Gurdyal S Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, B15 2TT, United Kingdom.
| |
Collapse
|
2
|
In Silico Drug Discovery Strategies Identified ADMET Properties of Decoquinate RMB041 and Its Potential Drug Targets against Mycobacterium tuberculosis. Microbiol Spectr 2022; 10:e0231521. [PMID: 35352998 PMCID: PMC9045315 DOI: 10.1128/spectrum.02315-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The highly adaptive cellular response of Mycobacterium tuberculosis to various antibiotics and the high costs for clinical trials, hampers the development of novel antimicrobial agents with improved efficacy and safety. Subsequently, in silico drug screening methods are more commonly being used for the discovery and development of drugs, and have been proven useful for predicting the pharmacokinetics, toxicities, and targets, of prospective new antimicrobial agents. In this investigation we used a reversed target fishing approach to determine potential hit targets and their possible interactions between M. tuberculosis and decoquinate RMB041, a propitious new antituberculosis compound. Two of the 13 identified targets, Cyp130 and BlaI, were strongly proposed as optimal drug-targets for dormant M. tuberculosis, of which the first showed the highest comparative binding affinity to decoquinate RMB041. The metabolic pathways associated with the selected target proteins were compared to previously published molecular mechanisms of decoquinate RMB041 against M. tuberculosis, whereby we confirmed disrupted metabolism of proteins, cell wall components, and DNA. We also described the steps within these pathways that are inhibited and elaborated on decoquinate RMB041’s activity against dormant M. tuberculosis. This compound has previously showed promising in vitro safety and good oral bioavailability, which were both supported by this in silico study. The pharmacokinetic properties and toxicity of this compound were predicted and investigated using the online tools pkCSM and SwissADME, and Discovery Studio software, which furthermore supports previous safety and bioavailability characteristics of decoquinate RMB041 for use as an antimycobacterial medication. IMPORTANCE This article elaborates on the mechanism of action of a novel antibiotic compound against both, active and dormant Mycobacterium tuberculosis and describes its pharmacokinetics (including oral bioavailability and toxicity). Information provided in this article serves useful during the search for drugs that shorten the treatment regimen for Tuberculosis and cause minimal adverse effects.
Collapse
|
3
|
Ochin CC, Wilson T, Garelnabi M. Dietary Oxidized Linoleic Acids Modulate Fatty Acids in Mice. J Lipid Atheroscler 2022; 11:197-210. [PMID: 35656146 PMCID: PMC9133782 DOI: 10.12997/jla.2022.11.2.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/11/2022] Open
Abstract
Objective An elevated concentration of oxidized lipids along with the abnormal accumulation of lipids has been linked to the formation of atheromatous plaque and the development of cardiovascular diseases. This study aims to investigate if consumption of different concentrations of dietary oxidized linoleic acid alters the distribution of long chain fatty acids (LCFAs) within the liver relative to plasma in mice. Methods C57BL/6 male mice (n = 40) were divided into 4 groups: Standard chow as plain control (P group, n =10), Chow supplemented with linoleic acid 9 mg/mouse/day, linoleic control (C group, n=0), oxidized linoleic acid; 9 mg/mouse/day (A group, n=10) and oxidized linoleic acid 18 mg/mouse/day diet (B group, n=10). Liver and plasma samples were extracted, trans-esterified and subsequently analyzed using gas chromatography mass spectrometry (GC-MS) for LCFAs; palmitic acid, stearic acid, oleic acid, linoleic acid and arachidonic acid. Results LCFA methyl esters were eluted and identified based on their respective physiochemical characteristics of GCMS assay with inter assay coefficient of variation percentage (CV%, 1.81–5.28%), limits of quantification and limit of detection values (2.021–11.402 mg/mL and 1.016–4.430 mg/mL) respectively. Correlation analysis of liver and plasma lipids of the mice groups yielded coefficients (r=0.96, 0.6, 0.8 and 0.33) with fatty acid percentage total of (16%, 10%, 16% and 58%) for the P, C, A and B groups respectively. Conclusion The sustained consumption of a diet rich in oxidized linoleic acid disrupted fatty acid metabolism. The intake also resulted in elevated concentration of LCFAs that are precursors of bioactive metabolite molecule.
Collapse
Affiliation(s)
- Chinedu C. Ochin
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, USA
| | - Thomas Wilson
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, USA
| | - Mahdi Garelnabi
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, USA
| |
Collapse
|
4
|
Genestet C, Hodille E, Barbry A, Berland JL, Hoffmann J, Westeel E, Bastian F, Guichardant M, Venner S, Lina G, Ginevra C, Ader F, Goutelle S, Dumitrescu O. Rifampicin exposure reveals within-host Mycobacterium tuberculosis diversity in patients with delayed culture conversion. PLoS Pathog 2021; 17:e1009643. [PMID: 34166469 PMCID: PMC8224949 DOI: 10.1371/journal.ppat.1009643] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/13/2021] [Indexed: 12/21/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) genetic micro-diversity in clinical isolates may underline mycobacterial adaptation to tuberculosis (TB) infection and provide insights to anti-TB treatment response and emergence of resistance. Herein we followed within-host evolution of Mtb clinical isolates in two cohorts of TB patients, either with delayed Mtb culture conversion (> 2 months), or with fast culture conversion (< 2 months). We captured the genetic diversity of Mtb isolates obtained in each patient, by focusing on minor variants detected as unfixed single nucleotide polymorphisms (SNPs). To unmask antibiotic tolerant sub-populations, we exposed these isolates to rifampicin (RIF) prior to whole genome sequencing (WGS) analysis. Thanks to WGS, we detected at least 1 unfixed SNP within the Mtb isolates for 9/15 patients with delayed culture conversion, and non-synonymous (ns) SNPs for 8/15 patients. Furthermore, RIF exposure revealed 9 additional unfixed nsSNP from 6/15 isolates unlinked to drug resistance. By contrast, in the fast culture conversion cohort, RIF exposure only revealed 2 unfixed nsSNP from 2/20 patients. To better understand the dynamics of Mtb micro-diversity, we investigated the variant composition of a persistent Mtb clinical isolate before and after controlled stress experiments mimicking the course of TB disease. A minor variant, featuring a particular mycocerosates profile, became enriched during both RIF exposure and macrophage infection. The variant was associated with drug tolerance and intracellular persistence, consistent with the pharmacological modeling predicting increased risk of treatment failure. A thorough study of such variants not necessarily linked to canonical drug-resistance, but which are prone to promote anti-TB drug tolerance, may be crucial to prevent the subsequent emergence of resistance. Taken together, the present findings support the further exploration of Mtb micro-diversity as a promising tool to detect patients at risk of poorly responding to anti-TB treatment, ultimately allowing improved and personalized TB management. Tuberculosis (TB) is caused by Mycobacterium tuberculosis (Mtb), bacteria that are able to persist inside the patient for many months or years, thus requiring long antibiotic treatments. Here we focused on TB patients with delayed response to treatment and we performed genetic characterization of Mtb isolates to search for sub-populations that may tolerate anti-TB drugs. We found that Mtb cultured from 9/15 patients contained different sub-populations, and in vitro drug exposure revealed Mtb sub-populations in 6/15 isolates, none related to known drug-resistance mechanisms. By contrast, drug exposure revealed Mtb sup-populations in 2/20 isolates in the control cohort of patients with fast culture conversion. Furthermore, we characterized a Mtb variant isolated from a sub-population growing in the presence of rifampicin (RIF), a major anti-TB drug. We found that this variant featured a modified lipidic envelope, and that it was able to develop in the presence of RIF and inside human macrophage cells. We performed pharmacological modelling and found that this kind of variant may be related to a poor response to treatment. In conclusion, searching for particular Mtb sub-populations may help to detect patients at risk of treatment failure and provide additional guidance for TB management.
Collapse
Affiliation(s)
- Charlotte Genestet
- CIRI—Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, Lyon, France
- Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de bactériologie, Lyon, France
- * E-mail:
| | - Elisabeth Hodille
- CIRI—Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, Lyon, France
- Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de bactériologie, Lyon, France
| | - Alexia Barbry
- CIRI—Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, Lyon, France
- Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de bactériologie, Lyon, France
| | - Jean-Luc Berland
- CIRI—Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, Lyon, France
- Fondation Mérieux, Emerging Pathogens Laboratory, Lyon, France
| | - Jonathan Hoffmann
- CIRI—Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, Lyon, France
- Fondation Mérieux, Emerging Pathogens Laboratory, Lyon, France
| | - Emilie Westeel
- CIRI—Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, Lyon, France
- Fondation Mérieux, Emerging Pathogens Laboratory, Lyon, France
| | - Fabiola Bastian
- Plateforme DTAMB, CNRS, Université Lyon 1, Villeurbanne, France
| | - Michel Guichardant
- CarMeN laboratory, INSA Lyon, INSERM U1060, INRA U1397, Université Lyon 1, Villeurbanne, France
| | - Samuel Venner
- Laboratoire de Biométrie et Biologie Évolutive, CNRS UMR 5558, Université Lyon 1, Villeurbanne, France
| | - Gérard Lina
- CIRI—Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, Lyon, France
- Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de bactériologie, Lyon, France
- Université Lyon 1, Facultés de Médecine et de Pharmacie de Lyon, Lyon, France
| | - Christophe Ginevra
- CIRI—Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, Lyon, France
- Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de bactériologie, Lyon, France
| | - Florence Ader
- CIRI—Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, Lyon, France
- Hospices Civils de Lyon, Service des Maladies infectieuses et tropicales, Lyon, France
| | - Sylvain Goutelle
- Laboratoire de Biométrie et Biologie Évolutive, CNRS UMR 5558, Université Lyon 1, Villeurbanne, France
- Université Lyon 1, Facultés de Médecine et de Pharmacie de Lyon, Lyon, France
- Hospices Civils de Lyon, Groupement Hospitalier Nord, Service pharmaceutique, Lyon, France
| | - Oana Dumitrescu
- CIRI—Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, Lyon, France
- Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de bactériologie, Lyon, France
- Université Lyon 1, Facultés de Médecine et de Pharmacie de Lyon, Lyon, France
| |
Collapse
|
5
|
The search for organic compounds with TMAH thermochemolysis: From Earth analyses to space exploration experiments. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115896] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Zetola NM, Modongo C, Matsiri O, Tamuhla T, Mbongwe B, Matlhagela K, Sepako E, Catini A, Sirugo G, Martinelli E, Paolesse R, Di Natale C. Diagnosis of pulmonary tuberculosis and assessment of treatment response through analyses of volatile compound patterns in exhaled breath samples. J Infect 2016; 74:367-376. [PMID: 28017825 DOI: 10.1016/j.jinf.2016.12.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 12/12/2016] [Accepted: 12/18/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVES We determined the performance of a sensor array (an electronic nose) made of 8 metalloporphyrins coated quartz microbalances sensors for the diagnosis and prognosis of pulmonary tuberculosis (TB) using exhaled breath samples. METHODS TB cases and healthy controls were prospectively enrolled. Signals from volatile organic compounds (VOCs) in breath samples were measured at days 0, 2, 7, 14, and 30 of TB therapy and correlated with clinical and microbiological measurements. RESULTS Fifty one pulmonary TB cases and 20 healthy HIV-uninfected controls were enrolled in the study. 31 (61%) of the 51 pulmonary TB cases were coinfected with HIV. At day 0 (before TB treatment initiation) the sensitivity of our device was estimated at 94.1% (95% confidence interval [CI], 83.8-98.8%) and specificity was 90.0% (95% CI, 68.3-98.8%) for distinguishing TB cases from controls. Time-dependent changes in the breath signals were identified as time on TB treatment progressed. Time-dependent signal changes were more pronounced among HIV-uninfected patients. CONCLUSION The identification of VOCs' signals in breath samples using a sensor array achieved high sensitivity and specificity for the diagnosis of TB and allowed following signal changes during TB treatment.
Collapse
Affiliation(s)
- Nicola M Zetola
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA; School of Medicine, University of Botswana, Gaborone, Botswana; Botswana-UPenn Partnership, University of Pennsylvania, Gaborone, Botswana.
| | - Chawangwa Modongo
- Botswana-UPenn Partnership, University of Pennsylvania, Gaborone, Botswana.
| | - Ogopotse Matsiri
- Botswana-UPenn Partnership, University of Pennsylvania, Gaborone, Botswana.
| | - Tsaone Tamuhla
- Botswana-UPenn Partnership, University of Pennsylvania, Gaborone, Botswana.
| | - Bontle Mbongwe
- Department of Environmental Sciences, University of Botswana, Gaborone, Botswana.
| | | | - Enoch Sepako
- School of Medicine, University of Botswana, Gaborone, Botswana.
| | - Alexandro Catini
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy.
| | - Giorgio Sirugo
- Centro di Ricerca, Ospedale San Pietro Fatebenefratelli, Rome, Italy.
| | - Eugenio Martinelli
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy.
| | - Roberto Paolesse
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Rome, Italy.
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
7
|
Mourão MP, Denekamp I, Kuijper S, Kolk AH, Janssen HG. Hyphenated and comprehensive liquid chromatography ÿ gas chromatographymass spectrometry for the identification of Mycobacterium tuberculosis. J Chromatogr A 2016; 1439:152-160. [DOI: 10.1016/j.chroma.2015.10.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 09/24/2015] [Accepted: 10/19/2015] [Indexed: 12/14/2022]
|
8
|
Flentie KN, Stallings CL, Turk J, Minnaard AJ, Hsu FF. Characterization of phthiocerol and phthiodiolone dimycocerosate esters of M. tuberculosis by multiple-stage linear ion-trap MS. J Lipid Res 2016; 57:142-55. [PMID: 26574042 PMCID: PMC4689332 DOI: 10.1194/jlr.d063735] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/13/2015] [Indexed: 12/29/2022] Open
Abstract
Both phthiocerol/phthiodiolone dimycocerosate (PDIM) and phenolic glycolipids are abundant virulent lipids in the cell wall of various pathogenic mycobacteria, which can synthesize a wide range of complex high-molecular-mass lipids. In this article, we describe linear ion-trap MS(n) mass spectrometric approach for structural study of PDIMs, which were desorbed as the [M + Li](+) and [M + NH(4)](+) ions by ESI. We also applied charge-switch strategy to convert the mycocerosic acid substituents to their N-(4-aminomethylphenyl) pyridinium (AMPP) derivatives and analyzed them as M (+) ions, following alkaline hydrolysis of the PDIM to release mycocerosic acids. The structural information from MS(n) on the [M + Li](+) and [M + NH(4)](+) molecular species and on the M (+) ions of the mycocerosic acid-AMPP derivative affords realization of the complex structures of PDIMs in Mycobacterium tuberculosis biofilm, differentiation of phthiocerol and phthiodiolone lipid families and complete structure identification, including the phthiocerol and phthiodiolone backbones, and the mycocerosic acid substituents, including the locations of their multiple methyl side chains, can be achieved.
Collapse
Affiliation(s)
- Kelly N Flentie
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
| | - Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
| | - John Turk
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Department of Internal Medicine
| | - Adriaan J Minnaard
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Department of Internal Medicine,
| |
Collapse
|
9
|
Nicoara SC, Turner NW, Minnikin DE, Lee OYC, O'Sullivan DM, McNerney R, Mutetwa R, Corbett LE, Morgan GH. Development of sample clean up methods for the analysis of Mycobacterium tuberculosis methyl mycocerosate biomarkers in sputum extracts by gas chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 986-987:135-42. [PMID: 25728371 PMCID: PMC4381843 DOI: 10.1016/j.jchromb.2015.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/05/2015] [Accepted: 02/08/2015] [Indexed: 11/23/2022]
Abstract
We developed a sample clean-up method to detect tuberculosis from sputum by GC–MS. Biomarkers recovered: 64–70% (standards solution), and 36–68% (sputum extracts). Cholesterol removed: 93–98% (standards solution) and 62–92% (sputum extracts). Less cholesterol in the filtered extracts avoids overloading of the analytical system. Analyzing large sample batches will need fewer interruptions for system cleaning.
A proof of principle gas chromatography–mass spectrometry method is presented, in combination with clean up assays, aiming to improve the analysis of methyl mycocerosate tuberculosis biomarkers from sputum. Methyl mycocerosates are generated from the transesterification of phthiocerol dimycocerosates (PDIMs), extracted in petroleum ether from sputum of tuberculosis suspect patients. When a high matrix background is present in the sputum extracts, the identification of the chromatographic peaks corresponding to the methyl derivatives of PDIMs analytes may be hindered by the closely eluting methyl ether of cholesterol, usually an abundant matrix constituent frequently present in sputum samples. The purification procedures involving solid phase extraction (SPE) based methods with both commercial Isolute-Florisil cartridges, and purpose designed molecularly imprinted polymeric materials (MIPs), resulted in cleaner chromatograms, while the mycocerosates are still present. The clean-up performed on solutions of PDIMs and cholesterol standards in petroleum ether show that, depending on the solvent mix and on the type of SPE used, the recovery of PDIMs is between 64 and 70%, whilst most of the cholesterol is removed from the system. When applied to petroleum ether extracts from representative sputum samples, the clean-up procedures resulted in recoveries of 36–68% for PDIMs, allowing some superior detection of the target analytes.
Collapse
Affiliation(s)
- Simona C Nicoara
- Centre for Earth, Planetary, Space and Astronomical Research CEPSAR, The Open University, Milton Keynes, UK.
| | - Nicholas W Turner
- Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - David E Minnikin
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, UK
| | - Oona Y-C Lee
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, UK
| | | | - Ruth McNerney
- London School of Hygiene & Tropical Medicine, London, UK
| | - Reggie Mutetwa
- Biomedical Research and Training Institute, Harare, Zimbabwe
| | - Liz E Corbett
- Biomedical Research and Training Institute, Harare, Zimbabwe
| | - Geraint H Morgan
- Centre for Earth, Planetary, Space and Astronomical Research CEPSAR, The Open University, Milton Keynes, UK
| |
Collapse
|