1
|
Guo X, Wang X, Tian C, Dai J, Zhao Z, Duan Y. Development of mass spectrometry imaging techniques and its latest applications. Talanta 2023; 264:124721. [PMID: 37271004 DOI: 10.1016/j.talanta.2023.124721] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/03/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023]
Abstract
Mass spectrometry imaging (MSI) is a novel molecular imaging technology that collects molecular information from the surface of samples in situ. The spatial distribution and relative content of various compounds can be visualized simultaneously with high spatial resolution. The prominent advantages of MSI promote the active development of ionization technology and its broader applications in diverse fields. This article first gives a brief introduction to the vital parts of the processes during MSI. On this basis, provides a comprehensive overview of the most relevant MS-based imaging techniques from their mechanisms, pros and cons, and applications. In addition, a critical issue in MSI, matrix effects is also discussed. Then, the representative applications of MSI in biological, forensic, and environmental fields in the past 5 years have been summarized, with a focus on various types of analytes (e.g., proteins, lipids, polymers, etc.) Finally, the challenges and further perspectives of MSI are proposed and concluded.
Collapse
Affiliation(s)
- Xing Guo
- College of Chemistry and Material Science, Northwest University, Xi'an, 710069, PR China
| | - Xin Wang
- College of Chemistry and Material Science, Northwest University, Xi'an, 710069, PR China
| | - Caiyan Tian
- College of Life Science, Sichuan University, Chengdu, 610064, PR China
| | - Jianxiong Dai
- Aliben Science and Technology Company Limited, Chengdu, 610064, PR China
| | | | - Yixiang Duan
- College of Chemistry and Material Science, Northwest University, Xi'an, 710069, PR China; Research Center of Analytical Instrumentation, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
2
|
Soudah T, Zoabi A, Margulis K. Desorption electrospray ionization mass spectrometry imaging in discovery and development of novel therapies. MASS SPECTROMETRY REVIEWS 2023; 42:751-778. [PMID: 34642958 DOI: 10.1002/mas.21736] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) is one of the least specimen destructive ambient ionization mass spectrometry tissue imaging methods. It enables rapid simultaneous mapping, measurement, and identification of hundreds of molecules from an unmodified tissue sample. Over the years, since its first introduction as an imaging technique in 2005, DESI-MSI has been extensively developed as a tool for separating tissue regions of various histopathologic classes for diagnostic applications. Recently, DESI-MSI has also emerged as a versatile technique that enables drug discovery and can guide the efficient development of drug delivery systems. For example, it has been increasingly employed for uncovering unique patterns of in vivo drug distribution, the discovery of potentially treatable biochemical pathways, revealing novel druggable targets, predicting therapeutic sensitivity of diseased tissues, and identifying early tissue response to pharmacological treatment. These and other recent advances in implementing DESI-MSI as the tool for the development of novel therapies are highlighted in this review.
Collapse
Affiliation(s)
- Terese Soudah
- The Faculty of Medicine, The School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amani Zoabi
- The Faculty of Medicine, The School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Katherine Margulis
- The Faculty of Medicine, The School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
3
|
Fournelle F, Lauzon N, Yang E, Chaurand P. Metal-Assisted Laser Desorption Ionization Imaging Mass Spectrometry for Biological and Forensic Applications. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Spatially Mapping the Baseline and Bisphenol-A Exposed Daphnia magna Lipidome Using Desorption Electrospray Ionization-Mass Spectrometry. Metabolites 2022; 12:metabo12010033. [PMID: 35050155 PMCID: PMC8781255 DOI: 10.3390/metabo12010033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/18/2021] [Accepted: 12/27/2021] [Indexed: 02/05/2023] Open
Abstract
Untargeted lipidomics has previously been applied to the study of daphnids and the discovery of biomarkers that are indicative of toxicity. Typically, liquid chromatography—mass spectrometry is used to measure the changes in lipid abundance in whole-body homogenates of daphnids, each only ca. 3 mm in length which limits any biochemical interpretation of site-specific toxicity. Here, we applied mass spectrometry imaging of Daphnia magna to combine untargeted lipidomics with spatial resolution to map the molecular perturbations to defined anatomical regions. A desorption electrospray ionization—mass spectrometry (DESI-MS) method was optimized and applied to tissue sections of daphnids exposed to bisphenol-A (BPA) compared to unexposed controls, generating an untargeted mass spectrum at each pixel (35 µm2/pixel) within each section. First, unique lipid profiles from distinct tissue types were identified in whole-body daphnids using principal component analysis, specifically distinguishing appendages, eggs, eye, and gut. Second, changes in the lipidome were mapped over four stages of normal egg development and then the effect of BPA exposure on the egg lipidome was characterized. The primary perturbations to the lipidome were annotated as triacylglycerides and phosphatidylcholine, and the distributions of the individual lipid species within these classes were visualized in whole-body D. magna sections as ion images. Using an optimized DESI-MS workflow, the first ion images of D. magna tissue sections were generated, mapping both their baseline and BPA-perturbed lipidomes.
Collapse
|
5
|
Massaro A, Stella R, Negro A, Bragolusi M, Miano B, Arcangeli G, Biancotto G, Piro R, Tata A. New strategies for the differentiation of fresh and frozen/thawed fish: A rapid and accurate non-targeted method by ambient mass spectrometry and data fusion (part A). Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108364] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Mass spectrometry imaging as a potential technique for diagnostic of Huanglongbing disease using fast and simple sample preparation. Sci Rep 2020; 10:13457. [PMID: 32778716 PMCID: PMC7417563 DOI: 10.1038/s41598-020-70385-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
Huanglongbing (HLB) is a disease of worldwide incidence that affects orange trees, among other commercial varieties, implicating in great losses to the citrus industry. The disease is transmitted through Diaphorina citri vector, which inoculates Candidatus Liberibacter spp. in the plant sap. HLB disease lead to blotchy mottle and fruit deformation, among other characteristic symptoms, which induce fruit drop and affect negatively the juice quality. Nowadays, the disease is controlled by eradication of sick, symptomatic plants, coupled with psyllid control. Polymerase chain reaction (PCR) is the technique most used to diagnose the disease; however, this methodology involves high cost and extensive sample preparation. Mass spectrometry imaging (MSI) technique is a fast and easily handled sample analysis that, in the case of Huanglongbing allows the detection of increased concentration of metabolites associated to the disease, including quinic acid, phenylalanine, nobiletin and sucrose. The metabolites abieta-8,11,13-trien-18-oic acid, suggested by global natural product social molecular networking (GNPS) analysis, and 4-acetyl-1-methylcyclohexene showed a higher distribution in symptomatic leaves and have been directly associated to HLB disease. Desorption electrospray ionization coupled to mass spectrometry imaging (DESI-MSI) allows the rapid and efficient detection of biomarkers in sweet oranges infected with Candidatus Liberibacter asiaticus and can be developed into a real-time, fast-diagnostic technique.
Collapse
|
7
|
Stutts WL, Knuth MM, Ekelöf M, Mahapatra D, Kullman SW, Muddiman DC. Methods for Cryosectioning and Mass Spectrometry Imaging of Whole-Body Zebrafish. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:768-772. [PMID: 32129621 PMCID: PMC9375048 DOI: 10.1021/jasms.9b00097] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The zebrafish (Danio rerio) is an ideal model for whole animal studies of lipid metabolism and lipid-related disease. In this work, infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) mass spectrometry imaging (MSI) was applied for direct visualization of lipid and metabolite distributions across various organs in whole-body zebrafish tissue sections. Detailed methods for overcoming the challenges of cryosectioning adult male zebrafish for MSI and complementary histological imaging are described. Representative two-dimensional ion maps demonstrated organ specific localization of lipid analytes allowing for visualization of areas of interest including the brain, liver, intestines, and skeletal muscle. A high resolving power mass spectrometer was utilized for accurate mass measurements, which permitted the use of open-source, web-based tools for MS1 annotations including METASPACE and METLIN. Whole-body MSI with IR-MALDESI allowed for broad lipid coverage with high spatial resolution, illustrating the potential of this technique for studying lipid-related diseases using zebrafish as a model organism.
Collapse
Affiliation(s)
- Whitney L. Stutts
- Molecular Education, Technology, and Research Innovation Center, North Carolina State University, Raleigh, North Carolina
| | - Megan M. Knuth
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
| | - Måns Ekelöf
- FTMS Laboratory for Human Health Research and Department of Chemistry, North Carolina State University, Raleigh, North Carolina
| | - Debabrata Mahapatra
- Comparative Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Seth W. Kullman
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
- Comparative Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina
| | - David C. Muddiman
- Molecular Education, Technology, and Research Innovation Center, North Carolina State University, Raleigh, North Carolina
- FTMS Laboratory for Human Health Research and Department of Chemistry, North Carolina State University, Raleigh, North Carolina
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
8
|
|
9
|
Perez CJ, Bagga AK, Prova SS, Yousefi Taemeh M, Ifa DR. Review and perspectives on the applications of mass spectrometry imaging under ambient conditions. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33 Suppl 3:27-53. [PMID: 29698560 DOI: 10.1002/rcm.8145] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/06/2018] [Accepted: 04/12/2018] [Indexed: 05/18/2023]
Abstract
Ambient mass spectrometry (AMS)-based techniques are performed under ambient conditions in which the ionization and desorption occur in the open environment allowing the direct analysis of molecules with minimal or no sample preparation. A selected group of AMS techniques demonstrate imaging capabilities that can provide information about the localization of molecules on complex sample surfaces such as biological tissues. 2D, 3D, and multimodal imaging have unlocked an array of applications to systematically address complex problems in many areas of research such as drug monitoring, natural products, forensics, and cancer diagnostics. In the present review, we summarize recent advances in the field with respect to the implementation of new ambient ionization techniques and current applications in the last 5 years. In more detail, we mainly focus on imaging applications in topics related to animal whole bodies and tissues, single cells, cancer diagnostics and biomarkers, microbial cultures and co-cultures, plant and natural product metabolomics, and forensic applications. Finally, we discuss new areas of research, future perspectives, and the overall direction that the field may take in the years to come.
Collapse
Affiliation(s)
- Consuelo J Perez
- Centre for Research in Mass Spectrometry, Department of Chemistry, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Aafreen K Bagga
- Centre for Research in Mass Spectrometry, Department of Chemistry, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Shamina S Prova
- Centre for Research in Mass Spectrometry, Department of Chemistry, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Maryam Yousefi Taemeh
- Centre for Research in Mass Spectrometry, Department of Chemistry, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Demian R Ifa
- Centre for Research in Mass Spectrometry, Department of Chemistry, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| |
Collapse
|
10
|
Weiskirchen R, Weiskirchen S, Kim P, Winkler R. Software solutions for evaluation and visualization of laser ablation inductively coupled plasma mass spectrometry imaging (LA-ICP-MSI) data: a short overview. J Cheminform 2019; 11:16. [PMID: 30778692 PMCID: PMC6690067 DOI: 10.1186/s13321-019-0338-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/09/2019] [Indexed: 12/19/2022] Open
Abstract
Mass spectrometry imaging (MSI) using laser ablation (LA) inductively coupled plasma (ICP) is an innovative and exciting methodology to perform highly sensitive elemental analyses. LA-ICP-MSI of metals, trace elements or isotopes in tissues has been applied to a range of biological samples. Several LA-ICP-MSI studies have shown that metals have a highly compartmentalized distribution in some organs, which might be altered in consequence of genetic diseases, intoxication, or malnutrition. Although metal imaging by LA-ICP-MSI is an established methodology, potential pitfalls in the determination of metal concentrations might result from erroneous calibration, standardization, and normalization. In addition, for simple display of final imaging results, most LA-ICP-MSI users prefer to process their measurements by commercial processing software. Such programs typically visualize the regional metal differences in colorful and vivid imaging maps, but might not represent the actual signal densities correctly. There is a great abundance of such MSI data processing programs available differing in quality, usability, integrated features, workflow, reliability, system requirements, speed of data processing, and price. Some software packages contain a multitude of features which are superfluous for most users. In contrast, often only few data formats are used, in case of commercial programs even only the instrument provider’s own raw data format. Therefore, first time and average users are often confused and helpless in choosing the correct software for processing their data. Here we have briefly summarized software packages, data routines, macros, programming tools, scripts, algorithms, or self-written patches and updates for existing programs presently in use for mining LA-ICP-MSI data.![]()
Collapse
Affiliation(s)
- Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, 52074, Aachen, Germany.
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, 52074, Aachen, Germany
| | - Philipp Kim
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, 52074, Aachen, Germany
| | - Robert Winkler
- Department of Biochemistry and Biotechnology, Center for Research and Advanced Studies (CINVESTAV) Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, 36824, Irapuato, Gto., Mexico. .,Mass Spectrometry Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany.
| |
Collapse
|
11
|
Pirro V, Guffey SC, Sepúlveda MS, Mahapatra CT, Ferreira CR, Jarmusch AK, Cooks RG. Lipid dynamics in zebrafish embryonic development observed by DESI-MS imaging and nanoelectrospray-MS. MOLECULAR BIOSYSTEMS 2017; 12:2069-79. [PMID: 27120110 DOI: 10.1039/c6mb00168h] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The zebrafish Danio rerio is a model vertebrate organism for understanding biological mechanisms. Recent studies have explored using zebrafish as a model for lipid-related diseases, for in vivo fish bioassays, and for embryonic toxicity experiments. Mass spectrometry (MS) and MS imaging are established tools for lipid profiling and spatial mapping of biomolecules and offer rapid, sensitive, and simple analytical protocols for zebrafish analysis. When ambient ionization techniques are used, ions are generated in native environmental conditions, requiring neither sample preparation nor separation of molecules prior to MS. We used two direct MS techniques to describe the dynamics of the lipid profile during zebrafish embryonic development from 0 to 96 hours post-fertilization and to explore these analytical approaches as molecular diagnostic assays. Desorption electrospray ionization (DESI) MS imaging followed by nanoelectrospray (nESI) MS and tandem MS (MS/MS) were used in positive and negative ion modes, allowing the detection of a large variety of phosphatidylglycerols, phosphatidylcholines, phosphatidylinositols, free fatty acids, triacylglycerols, ubiquinone, squalene, and other lipids, and revealed information on the spatial distributions of lipids within the embryo and on lipid molecular structure. Differences were observed in the relative ion abundances of free fatty acids, triacylglycerols, and ubiquinone - essentially localized to the yolk - across developmental stages, whereas no relevant differences were found in the distribution of complex membrane glycerophospholipids, indicating conserved lipid constitution. Embryos exposed to trichloroethylene for 72 hours exhibited an altered lipid profile, indicating the potential utility of this technique for testing the effects of environmental contaminants.
Collapse
Affiliation(s)
- V Pirro
- Department of Chemistry and Center for Analytical Instrumentation Development, Purdue University, West Lafayette, IN 47907, USA
| | - S C Guffey
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA.
| | - M S Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA.
| | - C T Mahapatra
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA.
| | - C R Ferreira
- Department of Chemistry and Center for Analytical Instrumentation Development, Purdue University, West Lafayette, IN 47907, USA and Metabolite Profiling Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - A K Jarmusch
- Department of Chemistry and Center for Analytical Instrumentation Development, Purdue University, West Lafayette, IN 47907, USA
| | - R G Cooks
- Department of Chemistry and Center for Analytical Instrumentation Development, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
12
|
Perez CJ, Tata A, de Campos ML, Peng C, Ifa DR. Monitoring Toxic Ionic Liquids in Zebrafish (Danio rerio) with Desorption Electrospray Ionization Mass Spectrometry Imaging (DESI-MSI). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1136-1148. [PMID: 27778241 DOI: 10.1007/s13361-016-1515-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 05/20/2023]
Abstract
Ambient mass spectrometry imaging has become an increasingly powerful technique for the direct analysis of biological tissues in the open environment with minimal sample preparation and fast analysis times. In this study, we introduce desorption electrospray ionization mass spectrometry imaging (DESI-MSI) as a novel, rapid, and sensitive approach to localize the accumulation of a mildly toxic ionic liquid (IL), AMMOENG 130 in zebrafish (Danio rerio). The work demonstrates that DESI-MSI has the potential to rapidly monitor the accumulation of IL pollutants in aquatic organisms. AMMOENG 130 is a quaternary ammonium-based IL reported to be broadly used as a surfactant in commercialized detergents. It is known to exhibit acute toxicity to zebrafish causing extensive damage to gill secondary lamellae and increasing membrane permeability. Zebrafish were exposed to the IL in a static 96-h exposure study in concentrations near the LC50 of 1.25, 2.5, and 5.0 mg/L. DESI-MS analysis of zebrafish gills demonstrated the appearance of a dealkylated AMMOENG 130 metabolite in the lowest concentration of exposure identified by a high resolution hybrid LTQ-Orbitrap mass spectrometer as the trimethylstearylammonium ion, [C21H46N]+. With DESI-MSI, the accumulation of AMMOENG 130 and its dealkylated metabolite in zebrafish tissue was found in the nervous and respiratory systems. AMMOENG 130 and the metabolite were capable of penetrating the blood brain barrier of the fish with significant accumulation in the brain. Hence, we report for the first time the simultaneous characterization, distribution, and metabolism of a toxic IL in whole body zebrafish analyzed by DESI-MSI. This ambient mass spectrometry imaging technique shows great promise for the direct analysis of biological tissues to qualitatively monitor foreign, toxic, and persistent compounds in aquatic organisms from the environment. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Consuelo J Perez
- Center for Research in Mass Spectrometry, Department of Chemistry, York University, Toronto, Ontario, Canada
| | - Alessandra Tata
- Center for Research in Mass Spectrometry, Department of Chemistry, York University, Toronto, Ontario, Canada
| | - Michel L de Campos
- Center for Research in Mass Spectrometry, Department of Chemistry, York University, Toronto, Ontario, Canada
- Department of Natural Active Principles and Toxicology, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Chun Peng
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Demian R Ifa
- Center for Research in Mass Spectrometry, Department of Chemistry, York University, Toronto, Ontario, Canada.
| |
Collapse
|
13
|
Schey KL, Hachey AJ, Rose KL, Grey AC. MALDI imaging mass spectrometry of Pacific White Shrimp L. vannamei and identification of abdominal muscle proteins. Proteomics 2016; 16:1767-74. [PMID: 26990122 DOI: 10.1002/pmic.201500531] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/26/2016] [Accepted: 03/11/2016] [Indexed: 02/06/2023]
Abstract
MALDI imaging mass spectrometry (IMS) has been applied to whole animal tissue sections of Pacific White Shrimp, Litopenaeus vannamei, in an effort to identify and spatially localize proteins in specific organ systems. Frozen shrimp were sectioned along the ventral-dorsal axis and methods were optimized for matrix application. In addition, tissue microextraction and homogenization was conducted followed by top-down LC-MS/MS analysis of intact proteins and searches of shrimp EST databases to identify imaged proteins. IMS images revealed organ system specific protein signals that highlighted the hepatopancreas, heart, nervous system, musculature, and cuticle. Top-down proteomics identification of abdominal muscle proteins revealed the sequence of the most abundant muscle protein that has no sequence homology to known proteins. Additional identifications of abdominal muscle proteins included titin, troponin-I, ubiquitin, as well as intact and multiple truncated forms of flightin; a protein known to function in high frequency contraction of insect wing muscles. The combined use of imaging mass spectrometry and top-down proteomics allowed for identification of novel proteins from the sparsely populated shrimp protein databases.
Collapse
Affiliation(s)
- Kevin L Schey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA.,Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Amanda J Hachey
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kristie L Rose
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA.,Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Angus C Grey
- School of Medical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
14
|
Biological Desorption Electrospray Ionization Mass Spectrometry (DESI MS) – unequivocal role of crucial ionization factors, solvent system and substrates. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Wang S, Chen X, Luan H, Gao D, Lin S, Cai Z, Liu J, Liu H, Jiang Y. Matrix-assisted laser desorption/ionization mass spectrometry imaging of cell cultures for the lipidomic analysis of potential lipid markers in human breast cancer invasion. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:533-42. [PMID: 26777684 DOI: 10.1002/rcm.7466] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/03/2015] [Accepted: 11/17/2015] [Indexed: 05/15/2023]
Abstract
RATIONALE Breast cancer is the leading cause of cancer death among women worldwide. Identification of lipid targets that play a role in breast cancer invasion may advance our understanding of the rapid progression of cancer and may lead to the development of new biomarkers for the disease. METHODS Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) was applied for the lipidomic profiling of two poorly invasive and two highly invasive breast cancer cell lines to identify the differentially accumulated lipids related to the invasive phenotype. The four cell lines were individually grown on indium tin oxide (ITO)-coated glass slides, analyzed as cell cultures. The raster width and matrix for detection were optimized to improve detection sensitivity. RESULTS Optimized MSI measurements were performed directly on the cell culture with 9-aminoacridine as matrix, resulting in 215 endogenous compounds detected in positive ion mode and 267 endogenous compounds in negative ion mode in all the four cell lines, representing the largest group of analytes that have been analyzed from cells by a single MSI study. In highly invasive cell lines, 31 lipids including phosphatidylglycerol (PG) and phosphatidic acids were found upregulated and eight lipids including sphingomyelin (SM) downregulated in negative ion mode. The products of de novo fatty acid synthesis incorporated into membrane phospholipids, like oleic-acid-containing PG, may be involved in mitochondrial dysfunction and thus affect the invasion of breast cancer cells. The deficiency of SM may be related to the disruption of apoptosis in highly invasive cancer cells. CONCLUSIONS This work uncovered more analytes in cells by MSI than previous reports, providing a better visualization and novel insights to advance our understanding of the relationship between rapid progression of breast cancer and lipid metabolism. The most altered lipids may aid the discovery of diagnostic markers and therapeutic targets of breast cancer.
Collapse
Affiliation(s)
- Shujuan Wang
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- Key Laboratory of Metabolomics at Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Xiaowu Chen
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- Key Laboratory of Metabolomics at Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Hemi Luan
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Dan Gao
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- Key Laboratory of Metabolomics at Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Shuhai Lin
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Jianjun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Hongxia Liu
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- Key Laboratory of Metabolomics at Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Yuyang Jiang
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- School of Medicine, Tsinghua University, Beijing, 10084, China
| |
Collapse
|
16
|
Garrett R, Rezende CM, Ifa DR. Revealing the spatial distribution of chlorogenic acids and sucrose across coffee bean endosperm by desorption electrospray ionization-mass spectrometry imaging. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.08.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Lostun D, Perez CJ, Licence P, Barrett DA, Ifa DR. Reactive DESI-MS imaging of biological tissues with dicationic ion-pairing compounds. Anal Chem 2015; 87:3286-93. [PMID: 25710577 DOI: 10.1021/ac5042445] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This work illustrates reactive desorption electrospray ionization mass spectrometry (DESI-MS) with a stable dication on biological tissues. Rat brain and zebra fish tissues were investigated with reactive DESI-MS in which the dictation forms a stable bond with biological tissue fatty acids and lipids. Tandem mass spectrometry (MS/MS) was used to characterize the dication (DC9) and to identify linked lipid-dication compounds formed. The fragment m/z 85 common to both DC9 fragmentation and DC9-lipid fragmentation was used to confirm that DC9 is indeed bonded with the lipids. Lipid signals in the range of m/z 250-350 and phosphoethanolamines (PE) m/z 700-800 observed in negative ion mode were also detected in positive ion mode with reactive DESI-MS with enhanced signal intensity. Reactive DESI-MS imaging in positive ion mode of rat brain and zebra fish tissues allowed enhanced detection of compounds commonly observed in the negative ion mode.
Collapse
Affiliation(s)
- Dragos Lostun
- †Department of Chemistry, Centre for Research in Mass Spectrometry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Consuelo J Perez
- †Department of Chemistry, Centre for Research in Mass Spectrometry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Peter Licence
- ‡School of Chemistry, University of Nottingham, Nottingham NG7 2RD, U.K
| | - David A Barrett
- §Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Demian R Ifa
- †Department of Chemistry, Centre for Research in Mass Spectrometry, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
18
|
Abstract
Desorption electrospray ionization (DESI) allows the direct analysis of ordinary objects or preprocessed samples under ambient conditions. Among other applications, DESI is used to identify and to record spatial distributions of small molecules in situ, sliced or imprinted biological tissue. Manipulation of the chemistry accompanying ambient analysis ionization can be used to optimize chemical analysis, including molecular imprinting. Images are obtained by continuously moving the sample relative to the DESI sprayer and the inlet of the mass spectrometer. The acquisition time depends on the size of the surface to be analyzed and on the desired resolution.
Collapse
Affiliation(s)
- Elaine C Cabral
- Department of Chemistry, Faculty of Science, Centre for Research in Mass Spectrometry (CRMS), York University, 256 Chemistry Building, 4700 Keele Street, Toronto, ON, Canada, M3J 1P3
| | | |
Collapse
|