1
|
Fouquet TNJ, Cody RB, Charles L. Degradation strategies for structural characterization of insoluble synthetic polymers by mass spectrometry. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39093552 DOI: 10.1002/mas.21903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/15/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
With the advent of soft ionization techniques such as electrospray (ESI) and matrix-assisted laser desorption/ionization (MALDI) to produce intact gas-phase ions from nonvolatile macromolecules, mass spectrometry has become an essential technique in the field of polymeric materials. However, (co)polymers of very high molecular weight or with reticulated architectures still escape ESI or MALDI, mainly due to solubility issues. Strategies developed to tackle such an analytical challenge all rely on sample degradation to produce low-mass species amenable to existing ionization methods. Yet, chain degradation needs to be partial and controlled to generate sufficiently large species that still contain topological or architectural information. The present article reviews the different analytical degradation strategies implemented to perform mass spectrometry of these challenging synthetic polymers, covering thermal degradation approaches in sources developed in the 2000s, off-line sample pre-treatments for controlled chemical degradation of polymeric substrates, and most recent achievements employing reactive ionization modes to perform chemolysis on-line with MS.
Collapse
|
2
|
Grönlund K, Nissinen VH, Rytöluoto I, Mosallaei M, Mikkonen J, Korpijärvi K, Auvinen P, Suvanto M, Saarinen JJ, Jänis J. Direct Mass Spectrometric Analysis of Brominated Flame Retardants in Synthetic Polymers. ACS OMEGA 2024; 9:33011-33021. [PMID: 39100298 PMCID: PMC11292827 DOI: 10.1021/acsomega.4c04059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/20/2024] [Accepted: 07/11/2024] [Indexed: 08/06/2024]
Abstract
Brominated flame retardants (BFRs) are persistent organic pollutants that pose a major threat to the environment. In this study, a direct insertion probe (DIP) coupled with atmospheric pressure chemical ionization (APCI) quadrupole time-of-flight mass spectrometry (QTOF-MS) was used to characterize additives, especially BFRs, from solid polymer samples with minimal sample preparation. A temperature-programmed DIP analysis, from 150 to 450 °C within 10 min, was utilized to achieve temporal separation of analytes based on their boiling or degradation temperatures, thereby facilitating their easier identification within a single run. Studied BFRs showed different behaviors during the analysis: decabromodiphenyl ether and tetrabromobisphenol A were found to be stable within the studied temperature range, while hexabromocyclododecane already started to debrominate. Our study showed that the DIP-APCI-MS method suited well for the direct qualitative identification of BFRs from polymer matrices. Furthermore, by optimizing the sampling procedure with cryogenic grinding, even quantitative analysis could be performed. The DIP measurements also provided important information about the composition of polymer matrices, including the identification of the comonomers present. Overall, DIP-APCI QTOF-MS was found to be an excellent tool for the compositional analysis of plastic samples. Developing rapid and reliable analysis methods can pave the way for more efficient plastic recycling and the safer use of plastic recyclates.
Collapse
Affiliation(s)
- Krista Grönlund
- Department
of Chemistry, University of Eastern Finland, Yliopistokatu 7, 80130 Joensuu, Finland
| | - Ville H. Nissinen
- Department
of Chemistry, University of Eastern Finland, Yliopistokatu 7, 80130 Joensuu, Finland
| | - Ilkka Rytöluoto
- VTT
Technical Research Centre of Finland Ltd., Visiokatu 4, 33101 Tampere, Finland
| | - Milad Mosallaei
- VTT
Technical Research Centre of Finland Ltd., Visiokatu 4, 33101 Tampere, Finland
| | - Joonas Mikkonen
- VTT
Technical Research Centre of Finland Ltd., Visiokatu 4, 33101 Tampere, Finland
| | - Kirsi Korpijärvi
- VTT
Technical Research Centre of Finland Ltd., Koivurannantie 1, 40400 Jyväskylä, Finland
| | - Paavo Auvinen
- Department
of Chemistry, University of Eastern Finland, Yliopistokatu 7, 80130 Joensuu, Finland
| | - Mika Suvanto
- Department
of Chemistry, University of Eastern Finland, Yliopistokatu 7, 80130 Joensuu, Finland
| | - Jarkko J. Saarinen
- Department
of Chemistry, University of Eastern Finland, Yliopistokatu 7, 80130 Joensuu, Finland
| | - Janne Jänis
- Department
of Chemistry, University of Eastern Finland, Yliopistokatu 7, 80130 Joensuu, Finland
| |
Collapse
|
3
|
de Jonker M, Leonards PEG, Lamoree MH, Brandsma SH. A Rapid Screening Method for the Detection of Additives in Electronics and Plastic Consumer Products Using AP-MALDI-qTOF-MS. TOXICS 2023; 11:108. [PMID: 36850984 PMCID: PMC9960555 DOI: 10.3390/toxics11020108] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
A novel method was developed and optimized for the fast-screening analysis of additives in electronics and plastic consumer products using atmospheric pressure matrix-assisted laser desorption ionization (AP-MALDI) coupled with a high-resolution quadrupole time-of-flight (qTOF) mass spectrometer (MS). To simplify sample preparation and increase sample throughput, an innovative 48 well graphene nanoplatelets (GNP) doped AP-MALDI target plate was developed. The GNP incorporated in the target plate fulfilled the role of the MALDI matrix and, therefore, sample extracts could be directly transferred to the AP-MALDI 48 well target plate and analyzed without a subsequent matrix addition. The homogeneously dispersed and immobilized GNP target plates also provided increased signal intensity and reproducibility. Furthermore, analytical standards of various plastic additives and plastic products with known concentrations of additives were studied to assess the AP-MALDI ionization mechanisms and method capability. The analysis time was 15 s per measurement using an automated sequence. The GNP-doped target plates exhibited high desorption/ionization of low molecular weight molecules (<1000 Da) and can be used in both positive and negative ionization modes. The AP-MALDI-qTOF-MS method was applied to screen for additives in various electronics and plastic consumer products. Suspect screening was performed using a database containing 1366 compounds. A total of 56 additives including antioxidants, flame retardants, plasticizers, UV-stabilizers, and UV-filters were identified (confidence level 4). Identification of certain plastic additives in plastic children's toys may indicate that they are recycled from waste electronic and electronic equipment (WEEE).
Collapse
|
4
|
Vitali C, Janssen HG, Ruggeri FS, Nielen MWF. Rapid Single Particle Atmospheric Solids Analysis Probe-Mass Spectrometry for Multimodal Analysis of Microplastics. Anal Chem 2022; 95:1395-1401. [PMID: 36547121 PMCID: PMC9850409 DOI: 10.1021/acs.analchem.2c04345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite mass spectrometry (MS) being proven powerful for the characterization of synthetic polymers, its potential for the analysis of single particle microplastics (MPs) is yet to be fully disclosed. To date, MPs are regarded as ubiquitous contaminants, but the limited availability of techniques that enable full characterizations of MPs results in a lack of systematic data regarding their occurrence. In this study, an atmospheric solid analysis probe (ASAP) coupled to a compact quadrupole MS is proposed for the chemical analysis of single particle microplastics, while maintaining full compatibility with complementary staining and image analysis approaches. A two-stage ASAP probe temperature program was optimized for the removal of additives and surface contaminants followed by the actual polymer characterization. The method showed specific mass spectra for a wide range of single particle MPs, including polyolefins, polyaromatics, polyacrylates, (bio)polyesters, polyamides, polycarbonates, and polyacrylonitriles. The single particle size detection limits for polystyrene MPs were found to be 30 and 5 μm in full scan and selected ion recording mode, respectively. Moreover, results are presented of a multimodal microplastic analysis approach in which filtered particles are first characterized by staining and fluorescence microscopy, followed by simple probe picking of individual particles for subsequent analysis by ASAP-MS. The method provides a full characterization of MP contamination, including particle number, particle size, particle shape, and chemical identity. The applicability of the developed multimodal method was successfully demonstrated by the analysis of MPs in bioplastic bottled water.
Collapse
Affiliation(s)
- Clementina Vitali
- Wageningen
Food Safety Research, Wageningen University
& Research, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands,Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands, (C. Vitali)
| | - Hans-Gerd Janssen
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands,Unilever
Foods Innovation Centre − Hive, Bronland 14, 6708
WH Wageningen, The Netherlands
| | - Francesco Simone Ruggeri
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands,Physical
Chemistry and Soft Matter, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands, (F. S. Ruggeri)
| | - Michel W. F. Nielen
- Wageningen
Food Safety Research, Wageningen University
& Research, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands,Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
5
|
Endres KJ, Dilla RA, Becker ML, Wesdemiotis C. Poly(ethylene glycol) Hydrogel Crosslinking Chemistries Identified via Atmospheric Solids Analysis Probe Mass Spectrometry. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kevin J. Endres
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Rodger A. Dilla
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Matthew L. Becker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Chrys Wesdemiotis
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
- Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
6
|
Giorgi G, Bellani L, Giorgetti L. Characterization of additives in plastics: From MS to MS 10 multistep mass analysis and theoretical calculations of tris(2,4-di-tert-butylphenyl)phosphate. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4515. [PMID: 32363623 DOI: 10.1002/jms.4515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
In the analysis by electrospray (+) of an extract of hemp sprouts put in a polypropylene vial, we found a large contamination of a plastic additive. It was characterized by multiple-stage MSn experiments (MS ÷ MS10 ) and identified as tris(2,4-di-tert-butylphenyl)phosphate, also known with the synonyms F32IRS6B46, oxidized Naugard 524, and others. The MS2 ÷ MS7 spectra are characterized by consecutive eliminations of six isobutene molecules from the tert-butyl moieties, some of them also occurring in the ion source. The first three are calculated to occur preferentially from the ortho positions, whereas eliminations from the para positions are estimated to be less favored at about 5-6 kcal/mol in each step. Once the first three isobutene molecules are eliminated, the remaining three are lost from the tert-butyl moieties in para positions (MS5 ÷ MS7 ), yielding protonated triphenylphosphate, whose structure has been confirmed by the MS2 spectrum of triphenylphosphate standard: the latter spectrum is almost superimposable with the MS8 spectrum of the analyte under investigation. MS8 and MS9 spectra show main losses of water and C6 H4 molecules. The MS10 spectrum of precursor ions at m/z 215 shows the gas-phase addition of water and methanol and ions at m/z 168, attributable to the loss of a phosphorus oxide radical. Density functional theory (DFT) calculations (Becke 3LYP [B3LYP] 6-311+G(2d,2p)) have been used to evaluate structure and stability of different ionic and neutral species involved in the decomposition pathways and to calculate thermochemical data of the decomposition reactions. This multistep mass analysis combined with theoretical calculations resulted to be particularly useful and effective, yielding chemical, thermochemical, and mechanistic data of significant utility in the structural characterization and identification of the unknown analyte as well as to define its gas-phase reactivity under a multistep low-energy collision-induced dissociation regime.
Collapse
Affiliation(s)
- Gianluca Giorgi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, I-53100, Siena, Italy
| | - Lorenza Bellani
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, I-53100, Siena, Italy
- National Research Council (CNR), Institute of Biology and Agricultural Biotechnology, Research Area of Pisa, Via Moruzzi 1, I-56124, Pisa, Italy
| | - Lucia Giorgetti
- National Research Council (CNR), Institute of Biology and Agricultural Biotechnology, Research Area of Pisa, Via Moruzzi 1, I-56124, Pisa, Italy
| |
Collapse
|
7
|
Sica VP, Krivos KL, Kiehl DE, Pulliam CJ, Henry ID, Baker TR. The role of mass spectrometry and related techniques in the analysis of extractable and leachable chemicals. MASS SPECTROMETRY REVIEWS 2020; 39:212-226. [PMID: 30921495 DOI: 10.1002/mas.21591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
In addition to degradation products, impurities, and exogenous contaminants, industries such as pharmaceutical, food, and others must concern themselves with leachables. These chemicals can derive from containers and closures or migrate from labels or secondary containers and packaging to make their way into products. Identification and quantification of extractables (potential leachables) and leachables, typically trace level analytes, is a regulatory expectation intended to ensure consumer safety and product fidelity. Mass spectrometry and related techniques have played a significant role in the analysis of extractables and leachables (E&L). This review provides an overview of how mass spectrometry is used for E&L studies, primarily in the context of the pharmaceutical industry. This review includes work flows, examples of how identification and quantification is done, and the importance of orthogonal data from several different detectors. E&L analyses are driven by the need for consumer safety. These studies are expected to expand in existing areas (e.g., food, textiles, toys, etc.) and into new, currently unregulated product areas. Thus, this topic is of interest to audiences beyond just the pharmaceutical and health care industries. Finally, the potential of universal detector approaches used in other areas is suggested as an opportunity to drive E&L research progress in this arguably understudied, under-published realm.
Collapse
Affiliation(s)
| | | | | | | | - Ian D Henry
- The Procter & Gamble Company, Mason, 45040, Ohio
| | | |
Collapse
|
8
|
Sato H, Nakamura S, Fouquet TNJ, Ohmura T, Kotani M, Naito Y. Simple Pretreatment for the Analysis of Additives and Polymers by Surface-Assisted Laser Desorption/Ionization Mass Spectrometry Using a Through-Hole Alumina Membrane as a Functional Substrate. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:298-307. [PMID: 32031406 DOI: 10.1021/jasms.9b00048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The analysis of additives and polymers was performed by desorption ionization using through-hole alumina membrane (DIUTHAME) as a functional substrate for both sample pretreatment and surface-assisted laser desorption/ionization (SALDI) mass spectrometry. Using the unique absorbing/filtering capabilities of DIUTHAME and investigating the solubility of analytes/bulk materials in some solvents, three pretreatment techniques were demonstrated with (1) the selective removal of hydrophilic poly(ethylene oxide) (PEO)-based components from a "PEO-monostearate" sample, (2) the on-chip filtration of solubilized decabromodiphenylether (DBDE) from a solution of polystyrene that had been preliminarily precipitated, and (3) the on-chip extraction of antioxidants (Irganox 1010, Irgafos 168, and dimyristyl 3,3'-thiodipropionate) from a suspension of polypropylene powder or from the powder itself. The extracted analytes were further mass-analyzed using a spiral high-resolution time-of-flight analyzer to assess their elemental composition or molecular distribution.
Collapse
Affiliation(s)
- Hiroaki Sato
- Research Institute for Sustainable Chemistry , National Institute of Advanced Industrial Science and Technology (AIST) , 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| | - Sayaka Nakamura
- Research Institute for Sustainable Chemistry , National Institute of Advanced Industrial Science and Technology (AIST) , 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| | - Thierry N J Fouquet
- Research Institute for Sustainable Chemistry , National Institute of Advanced Industrial Science and Technology (AIST) , 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| | - Takayuki Ohmura
- Hamamatsu Photonics K.K. , 314-5 Shimokanzo , Iwata , Shizuoka 438-0193 , Japan
| | - Masahiro Kotani
- Hamamatsu Photonics K.K. , 314-5 Shimokanzo , Iwata , Shizuoka 438-0193 , Japan
| | - Yasuhide Naito
- The Graduate School for the Creation of New Photonics Industries , 1955-1 Kurematsu-cho, Nishi-ku , Hamamatsu , Shizuoka 431-1202 , Japan
| |
Collapse
|
9
|
Hoffmann WD, Kertesz V, Srijanto BR, Van Berkel GJ. Atomic Force Microscopy Thermally-Assisted Microsampling with Atmospheric Pressure Temperature Ramped Thermal Desorption/Ionization-Mass Spectrometry Analysis. Anal Chem 2017; 89:3036-3042. [DOI: 10.1021/acs.analchem.6b04733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- William D. Hoffmann
- Mass
Spectrometry and Laser Spectroscopy Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Vilmos Kertesz
- Mass
Spectrometry and Laser Spectroscopy Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Bernadeta R. Srijanto
- Center
for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Gary J. Van Berkel
- Mass
Spectrometry and Laser Spectroscopy Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
10
|
Klampfl CW, Himmelsbach M. Advances in the determination of hindered amine light stabilizers - A review. Anal Chim Acta 2016; 933:10-22. [PMID: 27496993 DOI: 10.1016/j.aca.2016.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 10/21/2022]
Abstract
Within this paper we discuss analytical strategies for the characterization and quantitation of hindered amine light stabilizers (HALS) an important sub-group of polymer additives. For the determination of monomeric HALS a range of mature and reliable techniques exists, allowing their determination in polymer extracts. If qualitative or semi-quantitative information suffices, certain techniques are capable of sampling directly from the polymer surface with limited or no sample preparation. Different strategies for the determination of complex oligomeric HALS in extracts from polymer samples are discussed. Here, approaches providing only a sum parameter including all HALS oligomers have been distinguished from more sophisticated technologies allowing the determination of single oligomers, their degradation and by-products. Particularly, the latter issue is facing increased interest as it provides important information for polymers aging studies. A tabulated overview provides comprehensive information on different analytical techniques suitable for HALS determination.
Collapse
Affiliation(s)
- Christian W Klampfl
- Institute of Analytical Chemistry, Johannes Kepler University Linz, Altenberger Strasse 69, A-4040 Linz, Austria
| | - Markus Himmelsbach
- Institute of Analytical Chemistry, Johannes Kepler University Linz, Altenberger Strasse 69, A-4040 Linz, Austria.
| |
Collapse
|
11
|
Wang H, Yuan J. Identification and quantification of unknown antioxidants in plastic materials by ultrasonic extraction and ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2016; 22:19-29. [PMID: 26863072 DOI: 10.1255/ejms.1404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Mass spectrometry has been applied to the targeted analysis of commonly used additives (such as Irganox 1010, Irganox 1076, Irgafos 168, etc.) in plastic materials, but a fast and straightforward method for the non-targeted identification and quantification of unusual or potentially new antioxidant additives is still unavailable. In this study, a novel and simple method for the identification and quantification of unknown antioxidant additives in plastic food packaging using ultrasonic extraction and ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry has been developed. A method for the Irganox series analyzed here has not been reported previously. Unknown antioxidant additives have been identified by accurate m/z determination, MS(2) fragments and comparison with synthesized standards. The mass fragmentation patterns and structural assignments of these antioxidants have been studied. Parameters affecting the efficiency of the process, such as extraction solvents, extraction volume, extraction time and chromatographic conditions, have been studied and optimized. Ultrasonic extraction of plastic materials (40 mg) with dichloromethane (0.5 mL) at 25 °C was applied as optimal. Limits of detection of the target additives ranged from 0.5 ng g(-1) to 1.5 ng g(-1), and the detection was linear over the range studied (0.01-1.5 µg mg(-1), r(2)>0.99). The accuracy of the method has been tested by relative recovery experiments with spiked samples, with results ranging from 94.3% to 104.8%, and the precision (relative standard deviation) was within 11.0% (n=3). Finally, the method has been successfully applied to the determination of antioxidants in several real plastic samples.
Collapse
Affiliation(s)
- Hang Wang
- Instrumental Analysis Center, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, PR China..
| | - Jiaojian Yuan
- Instrumental Analysis Center, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, PR China..
| |
Collapse
|
12
|
Moreta C, Tena MT. Determination of plastic additives in packaging by liquid chromatography coupled to high resolution mass spectrometry. J Chromatogr A 2015; 1414:77-87. [DOI: 10.1016/j.chroma.2015.08.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/21/2015] [Accepted: 08/13/2015] [Indexed: 11/25/2022]
|
13
|
Direct characterization of polyurethanes and additives by atmospheric solid analysis probe with time-of-flight mass spectrometry (ASAP-TOF-MS). Anal Bioanal Chem 2015; 407:7175-87. [DOI: 10.1007/s00216-015-8881-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/19/2015] [Accepted: 06/24/2015] [Indexed: 01/18/2023]
|