1
|
Roy S, Lutsenko S. Mechanism of Cu entry into the brain: many unanswered questions. Neural Regen Res 2024; 19:2421-2429. [PMID: 38526278 PMCID: PMC11090436 DOI: 10.4103/1673-5374.393107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/10/2023] [Accepted: 12/09/2023] [Indexed: 03/26/2024] Open
Abstract
Brain tissue requires high amounts of copper (Cu) for its key physiological processes, such as energy production, neurotransmitter synthesis, maturation of neuropeptides, myelination, synaptic plasticity, and radical scavenging. The requirements for Cu in the brain vary depending on specific brain regions, cell types, organism age, and nutritional status. Cu imbalances cause or contribute to several life-threatening neurologic disorders including Menkes disease, Wilson disease, Alzheimer's disease, Parkinson's disease, and others. Despite the well-established role of Cu homeostasis in brain development and function, the mechanisms that govern Cu delivery to the brain are not well defined. This review summarizes available information on Cu transfer through the brain barriers and discusses issues that require further research.
Collapse
Affiliation(s)
- Shubhrajit Roy
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
An Investigation into Proteomic Constituents of Cerebrospinal Fluid in Patients with Chronic Peripheral Neuropathic Pain Medicated with Opioids- a Pilot Study. J Neuroimmune Pharmacol 2020; 16:634-650. [PMID: 33219474 DOI: 10.1007/s11481-020-09970-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/30/2020] [Indexed: 12/25/2022]
Abstract
The pharmacodynamics of opioids for chronic peripheral neuropathic pain are complex and likely extend beyond classical opioid receptor theory. Preclinical evidence of opioid modulation of central immune signalling has not been identified in vivo in humans. Examining the cerebrospinal fluid (CSF) of patients medicated with opioids is required to identify potential pharmacodynamic mechanisms. We compared CSF samples of chronic peripheral neuropathic pain patients receiving opioids (n = 7) versus chronic peripheral neuropathic pain patients not taking opioids (control group, n = 13). Baseline pain scores with demographics were recorded. Proteome analysis was performed using mass spectrometry and secreted neuropeptides were measured by enzyme-linked immunosorbent assay. Based on Gene Ontology analysis, proteins involved in the positive regulation of nervous system development and myeloid leukocyte activation were increased in patients taking opioids versus the control group. The largest decrease in protein expression in patients taking opioids were related to neutrophil mediated immunity. In addition, notably higher expression levels of neural proteins (85%) and receptors (80%) were detected in the opioid group compared to the control group. This study suggests modulation of CNS homeostasis, possibly attributable to opioids, thus highlighting potential mechanisms for the pharmacodynamics of opioids. We also provide new insights into the immunomodulatory functions of opioids in vivo.
Collapse
|
3
|
Yan X, He B, Hu L, Gao J, Chen S, Jiang G. Insight into the endocrine disrupting effect and cell response to butyltin compounds in H295R cell: Evaluated with proteomics and bioinformatics analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:1489-1496. [PMID: 30045567 DOI: 10.1016/j.scitotenv.2018.02.165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/10/2018] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
The widespread use of organotin compounds (OTs) as biocides in antifouling paints and agricultural applications poses a serious threat to the ecosystem and humans. Butyltin compounds (BTs), especially tributyltin (TBT), are considered to be endocrine disrupting chemicals in marine organisms. The underlying mechanism of disrupting effects on mammals, however, has not been sufficiently investigated. To determine the effect and action of these biocides, the present study evaluated the effects of BTs on human adrenocortical carcinoma cells (H295R) with a focus on endocrine disrupting effect. Two-dimensional electrophoresis (2-DE) and subsequent mass finger printing were used to identify proteins expression profiles from the cells after exposure to 0.1μM BTs for 48h. In total, 89 protein spots showed altered expression in at least two treatment groups and 69 of these proteins were subsequently identified. Bioinformatic analysis of the proteins indicated that BTs involved in the regulation of hormone homeostasis, lipid metabolism, cell death, and energy production. IPA analysis revealed LXR/RXR (liver X receptor/retinoid X receptor) activation, FXR/RXR (farnesoid X receptor/retinoid X receptor) activation and fatty acid metabolism were the top three categories on which BTs acted and these systems play vital roles in sterol, glucose and lipid metabolism. The expression of LXR and FXR mRNA in H295R cells was stimulated by TBT, confirming the ability of TBT to activate this nuclear receptor. In summary, the differentially expressed proteins discovered in this study may participate in the toxic actions of BTs, and nuclear receptor activation and lipid metabolism may play important roles in such actions of BTs.
Collapse
Affiliation(s)
- Xueting Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China.
| | - Jiejun Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Chen
- Department of Radiation Oncology, Washington University in St. Louis, 4511 Forest Park Ave, St. Louis, MO 63108, USA
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Neely BA, Soper JL, Gulland FMD, Bell PD, Kindy M, Arthur JM, Janech MG. Proteomic analysis of cerebrospinal fluid in California sea lions (Zalophus californianus) with domoic acid toxicosis identifies proteins associated with neurodegeneration. Proteomics 2015; 15:4051-63. [DOI: 10.1002/pmic.201500167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/10/2015] [Accepted: 09/09/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Benjamin A. Neely
- Department of Medicine; Division of Nephrology; Medical University of South Carolina; Charleston SC USA
| | | | | | - P. Darwin Bell
- Department of Medicine; Division of Nephrology; Medical University of South Carolina; Charleston SC USA
| | - Mark Kindy
- Marine Biomedicine and Environmental Sciences Center; Medical University of South Carolina; Charleston SC USA
- Department of Regenerative Medicine and Cell Biology; Medical University of South Carolina; Charleston SC USA
- Department of Veterans’ Affairs; Research Service; Charleston SC USA
| | - John M. Arthur
- Department of Internal Medicine; Division of Nephrology; University of Arkansas for Medical Sciences; Little Rock AR USA
| | - Michael G. Janech
- Department of Medicine; Division of Nephrology; Medical University of South Carolina; Charleston SC USA
- Marine Biomedicine and Environmental Sciences Center; Medical University of South Carolina; Charleston SC USA
| |
Collapse
|