1
|
He CC, Hamlow LA, Zhu Y, Nei YW, Fan L, McNary CP, Maître P, Steinmetz V, Schindler B, Compagnon I, Armentrout PB, Rodgers MT. Structural and Energetic Effects of O2'-Ribose Methylation of Protonated Pyrimidine Nucleosides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2318-2334. [PMID: 31435890 DOI: 10.1007/s13361-019-02300-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/18/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
The 2'-substituents distinguish DNA from RNA nucleosides. 2'-O-methylation occurs naturally in RNA and plays important roles in biological processes. Such 2'-modifications may alter the hydrogen-bonding interactions of the nucleoside and thus may affect the conformations of the nucleoside in an RNA chain. Structures of the protonated 2'-O-methylated pyrimidine nucleosides were examined by infrared multiple photon dissociation (IRMPD) action spectroscopy, assisted by electronic structure calculations. The glycosidic bond stabilities of the protonated 2'-O-methylated pyrimidine nucleosides, [Nuom+H]+, were also examined and compared to their DNA and RNA nucleoside analogues via energy-resolved collision-induced dissociation (ER-CID). The preferred sites of protonation of the 2'-O-methylated pyrimidine nucleosides parallel their canonical DNA and RNA nucleoside analogues, [dNuo+H]+ and [Nuo+H]+, yet their nucleobase orientation and sugar puckering differ. The glycosidic bond stabilities of the protonated pyrimidine nucleosides follow the order: [dNuo+H]+ < [Nuo+H]+ < [Nuom+H]+. The slightly altered structures help explain the stabilization induced by 2'-O-methylation of the pyrimidine nucleosides.
Collapse
Affiliation(s)
- C C He
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - L A Hamlow
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - Y Zhu
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - Y-W Nei
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - L Fan
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - C P McNary
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - P Maître
- Laboratoire de Chimie Physique (UMR8000), Université Paris-Sud, CNRS, Université Paris Saclay, 91405, Orsay, France
| | - V Steinmetz
- Laboratoire de Chimie Physique (UMR8000), Université Paris-Sud, CNRS, Université Paris Saclay, 91405, Orsay, France
| | - B Schindler
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France
| | - I Compagnon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France
| | - P B Armentrout
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - M T Rodgers
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
2
|
Devereaux ZJ, He CC, Zhu Y, Roy HA, Cunningham NA, Hamlow LA, Berden G, Oomens J, Rodgers MT. Structures and Relative Glycosidic Bond Stabilities of Protonated 2'-Fluoro-Substituted Purine Nucleosides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1521-1536. [PMID: 31111413 DOI: 10.1007/s13361-019-02222-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/10/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
The 2'-substituent is the primary distinguishing feature between DNA and RNA nucleosides. Modifications to this critical position, both naturally occurring and synthetic, can produce biologically valuable nucleoside analogues. The unique properties of fluorine make it particularly interesting and medically useful as a synthetic nucleoside modification. In this work, the effects of 2'-fluoro modification on the protonated gas-phase purine nucleosides are examined using complementary tandem mass spectrometry and computational methods. Direct comparisons are made with previous studies on related nucleosides. Infrared multiple photon dissociation action spectroscopy performed in both the fingerprint and hydrogen-stretching regions allows for the determination of the experimentally populated conformations. The populated conformers of protonated 2'-fluoro-2'-deoxyadenosine, [Adofl+H]+, and 2'-fluoro-2'-deoxyguanosine, [Guofl+H]+, are highly parallel to their respective canonical DNA and RNA counterparts. Both N3 and N1 protonation sites are accessed by [Adofl+H]+, stabilizing syn and anti nucleobase orientations, respectively. N7 protonation and anti nucleobase orientation dominates in [Guofl+H]+. Spectroscopically observable intramolecular hydrogen-bonding interactions with fluorine allow more definitive sugar puckering determinations than possible for the canonical systems. [Adofl+H]+ adopts C2'-endo sugar puckering, whereas [Guofl+H]+ adopts both C2'-endo and C3'-endo sugar puckering. Energy-resolved collision-induced dissociation experiments with survival yield analyses provide relative glycosidic bond stabilities. The N-glycosidic bond stabilities of the protonated 2'-fluoro-substituted purine nucleosides are found to exceed those of their canonical analogues. Further, the N-glycosidic bond stability is found to increase with increasing electronegativity of the 2'-substituent, i.e., H < OH < F. The N-glycosidic bond stability is also greater for the adenine nucleoside analogues than the guanine nucleoside analogues.
Collapse
Affiliation(s)
- Zachary J Devereaux
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - C C He
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Y Zhu
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - H A Roy
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - N A Cunningham
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - L A Hamlow
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - G Berden
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525 ED, Nijmegen, The Netherlands
| | - J Oomens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525 ED, Nijmegen, The Netherlands
| | - M T Rodgers
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA.
| |
Collapse
|
3
|
Hamlow LA, Devereaux ZJ, Roy HA, Cunningham NA, Berden G, Oomens J, Rodgers MT. Impact of the 2'- and 3'-Sugar Hydroxyl Moieties on Gas-Phase Nucleoside Structure. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:832-845. [PMID: 30850972 DOI: 10.1007/s13361-019-02155-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
Modified nucleosides have been an important target for pharmaceutical development for the treatment of cancer, herpes simplex virus, and the human immunodeficiency virus (HIV). Amongst these nucleoside analogues, those based on 2',3'-dideoxyribose sugars are quite common, particularly in anti-HIV applications. The gas-phase structures of several protonated 2',3'-dideoxyribose nucleosides are examined in this work and compared with those of the analogous protonated DNA, RNA, and arabinose nucleosides to elucidate the influence of the 2'- and combined 2',3'-hydroxyl groups on intrinsic structure. Infrared multiple photon dissociation (IRMPD) action spectra are collected for the protonated 2',3'-dideoxy forms of adenosine, guanosine, cytidine, thymidine and uridine, [ddAdo+H]+, [ddGuo+H]+, [ddCyd+H]+, [ddThd+H]+, and [ddUrd+H]+, in the IR fingerprint and hydrogen-stretching regions. Molecular mechanics conformational searching followed by electronic structure calculations generates low-energy conformers of the protonated 2',3'-dideoxynucleosides and corresponding predicted linear IR spectra to facilitate interpretation of the measured IRMPD action spectra. These experimental IRMPD spectra and theoretical calculations indicate that the absence of the 2'- and 3'-hydroxyls largely preserves the protonation preferences of the canonical forms. The spectra and calculated structures indicate a slight preference for C3'-endo sugar puckering. The presence of the 3'- and further 2'-hydroxyl increases the available intramolecular hydrogen-bonding opportunities and shifts the sugar puckering modes for all nucleosides but the guanosine analogues to a slight preference for C2'-endo over C3'-endo. Graphical Abstract.
Collapse
Affiliation(s)
- L A Hamlow
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA
| | - Zachary J Devereaux
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA
| | - H A Roy
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA
| | - N A Cunningham
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA
| | - G Berden
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525ED, Nijmegen, The Netherlands
| | - J Oomens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525ED, Nijmegen, The Netherlands
| | - M T Rodgers
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA.
| |
Collapse
|
4
|
He CC, Hamlow LA, Devereaux ZJ, Zhu Y, Nei YW, Fan L, McNary CP, Maitre P, Steinmetz V, Schindler B, Compagnon I, Armentrout PB, Rodgers MT. Structural and Energetic Effects of O2'-Ribose Methylation of Protonated Purine Nucleosides. J Phys Chem B 2018; 122:9147-9160. [PMID: 30203656 DOI: 10.1021/acs.jpcb.8b07687] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The chemical difference between DNA and RNA nucleosides is their 2'-hydrogen versus 2'-hydroxyl substituents. Modification of the ribosyl moiety at the 2'-position and 2'-O-methylation in particular, is common among natural post-transcriptional modifications of RNA. 2'-Modification may alter the electronic properties and hydrogen-bonding characteristics of the nucleoside and thus may lead to enhanced stabilization or malfunction. The structures and relative glycosidic bond stabilities of the protonated forms of the 2'-O-methylated purine nucleosides, 2'-O-methyladenosine (Adom) and 2'-O-methylguanosine (Guom), were examined using two complementary tandem mass spectrometry approaches, infrared multiple photon dissociation action spectroscopy and energy-resolved collision-induced dissociation. Theoretical calculations were also performed to predict the structures and relative stabilities of stable low-energy conformations of the protonated forms of the 2'-O-methylated purine nucleosides and their infrared spectra in the gas phase. Low-energy conformations highly parallel to those found for the protonated forms of the canonical DNA and RNA purine nucleosides are also found for the protonated 2'-O-methylated purine nucleosides. Importantly, the preferred site of protonation, nucleobase orientation, and sugar puckering are preserved among the DNA, RNA, and 2'-O-methylated variants of the protonated purine nucleosides. The 2'-substituent does however influence hydrogen-bond stabilization as the 2'-O-methyl and 2'-hydroxyl substituents enable a hydrogen-bonding interaction between the 2'- and 3'-substituents, whereas a 2'-hydrogen atom does not. Further, 2'-O-methylation reduces the number of stable low-energy hydrogen-bonded conformations possible and importantly inverts the preferred polarity of this interaction versus that of the RNA analogues. Trends in the CID50% values extracted from survival yield analyses of the 2'-O-methylated and canonical DNA and RNA forms of the protonated purine nucleosides are employed to elucidate their relative glycosidic bond stabilities. The glycosidic bond stability of Adom is found to exceed that of its DNA and RNA analogues. The glycosidic bond stability of Guom is also found to exceed that of its DNA analogue; however, this modification weakens this bond relative to its RNA counterpart. The glycosidic bond stability of the protonated purine nucleosides appears to be correlated with the hydrogen-bond stabilization of the sugar moiety.
Collapse
Affiliation(s)
- C C He
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| | - L A Hamlow
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| | - Zachary J Devereaux
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| | - Y Zhu
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| | - Y-W Nei
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| | - L Fan
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| | - C P McNary
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112 , United States
| | - P Maitre
- Laboratoire de Chimie Physique (UMR8000), CNRS, Université Paris-Sud, Université Paris-Saclay , 91405 Orsay , France
| | - V Steinmetz
- Laboratoire de Chimie Physique (UMR8000), CNRS, Université Paris-Sud, Université Paris-Saclay , 91405 Orsay , France
| | - B Schindler
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière , F-69622 Villeurbanne , France
| | - I Compagnon
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière , F-69622 Villeurbanne , France
| | - P B Armentrout
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112 , United States
| | - M T Rodgers
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| |
Collapse
|
5
|
Aptamer-based sensor for quantitative detection of mercury (II) ions by attenuated total reflection surface enhanced infrared absorption spectroscopy. Anal Chim Acta 2018; 1033:137-147. [PMID: 30172319 DOI: 10.1016/j.aca.2018.05.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/20/2018] [Accepted: 05/10/2018] [Indexed: 11/20/2022]
Abstract
A sensing platform based on the attenuated total reflection surface enhanced infrared absorption spectroscopy (ATR-SEIRAS) technique and immobilized aptamer has been proposed herein for the selective detection of mercury ions (Hg2+). In the proposed platform, 5' thiolated 32-mer DNA probes with methylene blue at the 3' end were immobilized on a thin gold (Au) surface layer. Following Hg2+ ions interacting with T bases of the aptamer, T-Hg-T bonds are formed; resulting in a hairpin-shaped formation of the DNA and a detectable change in the IR absorbance of the sensing interface. Notably, the background noise produced by external molecules (e.g., water, non-specific binding molecules and bulk solution) is reduced to a negligible level by means of the ATR detection mode. It is shown that the proposed sensor has a linear response (R2 = 0.986) with high sensitivity and good selectivity over the Hg2+ range of 0.01 μM-50 μM.
Collapse
|
6
|
Jašíková L, Roithová J. Infrared Multiphoton Dissociation Spectroscopy with Free-Electron Lasers: On the Road from Small Molecules to Biomolecules. Chemistry 2018; 24:3374-3390. [PMID: 29314303 DOI: 10.1002/chem.201705692] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Indexed: 01/07/2023]
Abstract
Infrared multiphoton dissociation (IRMPD) spectroscopy is commonly used to determine the structure of isolated, mass-selected ions in the gas phase. This method has been widely used since it became available at free-electron laser (FEL) user facilities. Thus, in this Minireview, we examine the use of IRMPD/FEL spectroscopy for investigating ions derived from small molecules, metal complexes, organometallic compounds and biorelevant ions. Furthermore, we outline new applications of IRMPD spectroscopy to study biomolecules.
Collapse
Affiliation(s)
- Lucie Jašíková
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2, 128 43, Czech Republic
| | - Jana Roithová
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2, 128 43, Czech Republic
| |
Collapse
|
7
|
Wu RR, Hamlow LA, He CC, Nei YW, Berden G, Oomens J, Rodgers MT. The intrinsic basicity of the phosphate backbone exceeds that of uracil and thymine residues: protonation of the phosphate moiety is preferred over the nucleobase for pdThd and pUrd. Phys Chem Chem Phys 2018; 19:30351-30361. [PMID: 29099122 DOI: 10.1039/c7cp05521h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The gas-phase conformations of the protonated forms of thymidine-5'-monophosphate and uridine-5'-monophosphate, [pdThd+H]+ and [pUrd+H]+, are investigated by infrared multiple photon dissociation (IRMPD) action spectroscopy and electronic structure calculations. The IRMPD action spectra of [pdThd+H]+ and [pUrd+H]+ are measured over the IR fingerprint and hydrogen-stretching regions using the FELIX free electron laser and an OPO/OPA laser system. Low-energy conformations of [pdThd+H]+ and [pUrd+H]+ and their relative stabilities are computed at the MP2(full)/6-311+G(2d,2p)//B3LYP/6-311+G(d,p) and B3LYP/6-311+G(2d,2p)//B3LYP/6-311+G(d,p) levels of theory. Comparisons of the measured IRMPD action spectra and B3LYP/6-311+G(d,p) linear IR spectra computed for the low-energy conformers indicate that the dominant conformers of [pdThd+H]+ and [pUrd+H]+ populated in the experiments are protonated at the phosphate oxo oxygen atom, with a syn nucleobase orientation that is stabilized by strong P[double bond, length as m-dash]OH+O2 and P-OHO4' hydrogen-bonding interactions, and C2'-endo sugar puckering. Minor abundance of conformers protonated at the O2 carbonyl of the nucleobase residue may also contribute for [pdThd+H]+, but do not appear to be important for [pUrd+H]+. Comparisons to previous IRMPD spectroscopy investigations of the protonated forms of thymidine and uridine, [dThd+H]+ and [Urd+H]+, and the deprotonated forms of pdThd and pUrd, [pdThd-H]- and [pUrd-H]-, provide insight into the effects of the phosphate moiety and protonation on the conformational features of the nucleobase and sugar moieties. Most interestingly, the thymine and uracil nucleobases remain in their canonical forms for [pdThd+H]+ and [pUrd+H]+, unlike [dThd+H]+ and [Urd+H]+, where protonation occurs on the nucleobases and induces tautomerization of the thymine and uracil residues.
Collapse
Affiliation(s)
- R R Wu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Zhu Y, Roy HA, Cunningham NA, Strobehn SF, Gao J, Munshi MU, Berden G, Oomens J, Rodgers MT. IRMPD Action Spectroscopy, ER-CID Experiments, and Theoretical Studies of Sodium Cationized Thymidine and 5-Methyluridine: Kinetic Trapping During the ESI Desolvation Process Preserves the Solution Structure of [Thd+Na]<sup/>. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2423-2437. [PMID: 28836109 DOI: 10.1007/s13361-017-1753-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/01/2017] [Accepted: 07/02/2017] [Indexed: 05/25/2023]
Abstract
Thymidine (dThd) is a fundamental building block of DNA nucleic acids, whereas 5-methyluridine (Thd) is a common modified nucleoside found in tRNA. In order to determine the conformations of the sodium cationized thymine nucleosides [dThd+Na]+ and [Thd+Na]+ produced by electrospray ionization, their infrared multiple photon dissociation (IRMPD) action spectra are measured. Complementary electronic structure calculations are performed to determine the stable low-energy conformations of these complexes. Geometry optimizations and frequency analyses are performed at the B3LYP/6-311+G(d,p) level of theory, whereas energies are calculated at the B3LYP/6-311+G(2d,2p) level of theory. As protonation preferentially stabilizes minor tautomers of dThd and Thd, tautomerization facilitated by Na+ binding is also considered. Comparisons of the measured IRMPD and computed IR spectra find that [dThd+Na]+ prefers tridentate (O2,O4',O5') coordination to the canonical 2,4-diketo form of dThd with thymine in a syn orientation. In contrast, [Thd+Na]+ prefers bidentate (O2,O2') coordination to the canonical 2,4-diketo tautomer of Thd with thymine in an anti orientation. Although 2,4-dihydroxy tautomers and O2 protonated thymine nucleosides coexist in the gas phase, no evidence for minor tautomers is observed for the sodium cationized species. Consistent with experimental observations, the computational results confirm that the sodium cationized thymine nucleosides exhibit a strong preference for the canonical form of the thymine nucleobase. Survival yield analyses based on energy-resolved collision-induced dissociation (ER-CID) experiments suggest that the relative stabilities of protonated and sodium cationized dThd and Thd follow the order [dThd+H]+ < [Thd+H]+ < [dThd+Na]+ < [Thd+Na]+. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Y Zhu
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - H A Roy
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - N A Cunningham
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - S F Strobehn
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - J Gao
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525ED, Nijmegen, The Netherlands
| | - M U Munshi
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525ED, Nijmegen, The Netherlands
| | - G Berden
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525ED, Nijmegen, The Netherlands
| | - J Oomens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525ED, Nijmegen, The Netherlands
| | - M T Rodgers
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
9
|
Alata I, Pérez-Mellor A, Ben Nasr F, Scuderi D, Steinmetz V, Gobert F, Jaïdane NE, Zehnacker-Rentien A. Does the Residues Chirality Modify the Conformation of a Cyclo-Dipeptide? Vibrational Spectroscopy of Protonated Cyclo-diphenylalanine in the Gas Phase. J Phys Chem A 2017; 121:7130-7138. [DOI: 10.1021/acs.jpca.7b06159] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ivan Alata
- Institut
des Sciences Moléculaires d’Orsay, CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France
| | - Ariel Pérez-Mellor
- Institut
des Sciences Moléculaires d’Orsay, CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France
| | - Feriel Ben Nasr
- Institut
des Sciences Moléculaires d’Orsay, CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France
- Laboratoire
de Spectroscopie Atomique Moléculaire et Applications, Université de Tunis El Manar, Tunis 1060, Tunisia
| | - Debora Scuderi
- Laboratoire
de Chimie Physique, CNRS, UMR8000, Univ. Paris-Sud, Orsay F-91405, France
| | - Vincent Steinmetz
- Laboratoire
de Chimie Physique, CNRS, UMR8000, Univ. Paris-Sud, Orsay F-91405, France
| | - Fabrice Gobert
- Laboratoire
de Chimie Physique, CNRS, UMR8000, Univ. Paris-Sud, Orsay F-91405, France
| | - Nejm-Eddine Jaïdane
- Laboratoire
de Spectroscopie Atomique Moléculaire et Applications, Université de Tunis El Manar, Tunis 1060, Tunisia
| | - Anne Zehnacker-Rentien
- Institut
des Sciences Moléculaires d’Orsay, CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France
| |
Collapse
|
10
|
Luo Z. Deep Ultraviolet Single‐Photon Ionization Mass Spectrometry. Mass Spectrom (Tokyo) 2017. [DOI: 10.5772/68072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
11
|
Lesslie M, Lawler JT, Dang A, Korn JA, Bím D, Steinmetz V, Maître P, Tureček F, Ryzhov V. Cytosine Radical Cations: A Gas‐Phase Study Combining IRMPD Spectroscopy, UVPD Spectroscopy, Ion–Molecule Reactions, and Theoretical Calculations. Chemphyschem 2017; 18:1293-1301. [DOI: 10.1002/cphc.201700281] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Michael Lesslie
- Department of Chemistry and Biochemistry Northern Illinois University DeKalb IL 60115 USA
| | - John T. Lawler
- Department of Chemistry and Biochemistry Northern Illinois University DeKalb IL 60115 USA
| | - Andy Dang
- Department of Chemistry University of Washington Bagley Hall, Box 351700 Seattle Washington 98195 USA
| | - Joseph A. Korn
- Department of Chemistry University of Washington Bagley Hall, Box 351700 Seattle Washington 98195 USA
| | - Daniel Bím
- Institute of Organic Chemistry and Biochemistry Academy of Sciences of the Czech Republic 166 10 Prague 6 Czech Republic
| | - Vincent Steinmetz
- Laboratoire de Chimie Physique Université Paris-Sud UMR8000 CNRS 91405 Orsay France
| | - Philippe Maître
- Laboratoire de Chimie Physique Université Paris-Sud UMR8000 CNRS 91405 Orsay France
| | - Frantisek Tureček
- Department of Chemistry University of Washington Bagley Hall, Box 351700 Seattle Washington 98195 USA
| | - Victor Ryzhov
- Department of Chemistry and Biochemistry Northern Illinois University DeKalb IL 60115 USA
| |
Collapse
|
12
|
Wu RR, Yang B, Frieler CE, Berden G, Oomens J, Rodgers MT. 2,4-Dihydroxy and O2 Protonated Tautomers of dThd and Thd Coexist in the Gas Phase: Methylation Alters Protonation Preferences versus dUrd and Urd. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:410-421. [PMID: 26676730 DOI: 10.1007/s13361-015-1303-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/25/2015] [Accepted: 10/28/2015] [Indexed: 06/05/2023]
Abstract
The gas-phase structures of protonated thymidine, [dThd + H](+), and its modified form, protonated 5-methyluridine, [Thd + H](+), are examined by infrared multiple photon dissociation (IRMPD) action spectroscopy combined with electronic structure calculations. IRMPD action spectra are measured over the ranges extending from ~600 to 1900 cm(-1) and ~2800 to 3800 cm(-1) using the FELIX free electron laser and an optical parametric oscillator/amplifier (OPO/OPA) laser system, respectively. Comparisons between the B3LYP/6-311+G(d,p) linear IR spectra calculated for the stable low-energy conformers and the measured IRMPD spectra are used to determine the most favorable tautomeric conformations of [dThd + H](+) and [Thd + H](+) and to identify those populated in the experiments. Both B3LYP and MP2 levels of theory predict a minor 2,4-dihydroxy tautomer as the ground-state conformer of [dThd + H](+) and [Thd + H](+) indicating that the 2'-hydroxyl substituent of Thd does not exert a significant impact on the structural features. [dThd + H](+) and [Thd + H](+) share parallel IRMPD spectral profiles and yields in both the FELIX and OPO regions. Comparisons between the measured IRMPD and calculated IR spectra suggest that minor 2,4-dihydroxy tautomers and O2 protonated conformers of [dThd + H](+) and [Thd + H](+) are populated in the experiments. Comparison of this work to our previous IRMPD spectroscopy study of protonated 2'-deoxyuridine and uridine suggests that the 5-methyl substituent alters the preferences of O2 versus O4 protonation.
Collapse
Affiliation(s)
- R R Wu
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - Bo Yang
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - C E Frieler
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - G Berden
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands
| | - J Oomens
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, 1090 GD, Amsterdam, The Netherlands
| | - M T Rodgers
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
13
|
Yuan C, Liu X, Zeng C, Zhang H, Jia M, Wu Y, Luo Z, Fu H, Yao J. All-solid-state deep ultraviolet laser for single-photon ionization mass spectrometry. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:024102. [PMID: 26931868 DOI: 10.1063/1.4941841] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report here the development of a reflectron time-of-flight mass spectrometer utilizing single-photon ionization based on an all-solid-state deep ultraviolet (DUV) laser system. The DUV laser was achieved from the second harmonic generation using a novel nonlinear optical crystal KBe2BO3F2 under the condition of high-purity N2 purging. The unique property of this laser system (177.3-nm wavelength, 15.5-ps pulse duration, and small pulse energy at ∼15 μJ) bears a transient low power density but a high single-photon energy up to 7 eV, allowing for ionization of chemicals, especially organic compounds free of fragmentation. Taking this advantage, we have designed both pulsed nanospray and thermal evaporation sources to form supersonic expansion molecular beams for DUV single-photon ionization mass spectrometry (DUV-SPI-MS). Several aromatic amine compounds have been tested revealing the fragmentation-free performance of the DUV-SPI-MS instrument, enabling applications to identify chemicals from an unknown mixture.
Collapse
Affiliation(s)
- Chengqian Yuan
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xianhu Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chenghui Zeng
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hanyu Zhang
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Meiye Jia
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yishi Wu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongbing Fu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
14
|
Kumar S, Lucas B, Fayeton J, Scuderi D, Alata I, Broquier M, Barbu-Debus KL, Lepère V, Zehnacker A. Photofragmentation mechanisms in protonated chiral cinchona alkaloids. Phys Chem Chem Phys 2016; 18:22668-77. [DOI: 10.1039/c6cp04041a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photo-fragmentation of protonated alkaloids results in C8–C9 cleavage accompanied or not by hydrogen migration, with a stereochemistry-dependent branching ratio.
Collapse
Affiliation(s)
- Sunil Kumar
- Institut des Sciences Moléculaires d'Orsay (ISMO)
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
- France
| | - Bruno Lucas
- Institut des Sciences Moléculaires d'Orsay (ISMO)
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
- France
| | - Jacqueline Fayeton
- Institut des Sciences Moléculaires d'Orsay (ISMO)
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
- France
| | - Debora Scuderi
- Univ. Paris-Sud
- Laboratoire de Chimie Physique
- UMR8000, and CNRS
- Orsay
- France
| | - Ivan Alata
- Institut des Sciences Moléculaires d'Orsay (ISMO)
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
- France
| | - Michel Broquier
- Institut des Sciences Moléculaires d'Orsay (ISMO)
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
- France
| | - Katia Le Barbu-Debus
- Institut des Sciences Moléculaires d'Orsay (ISMO)
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
- France
| | - Valeria Lepère
- Institut des Sciences Moléculaires d'Orsay (ISMO)
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
- France
| | - Anne Zehnacker
- Institut des Sciences Moléculaires d'Orsay (ISMO)
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
- France
| |
Collapse
|
15
|
Lepere V, Le Barbu-Debus K, Clavaguéra C, Scuderi D, Piani G, Simon AL, Chirot F, MacAleese L, Dugourd P, Zehnacker A. Chirality-dependent structuration of protonated or sodiated polyphenylalanines: IRMPD and ion mobility studies. Phys Chem Chem Phys 2015; 18:1807-17. [PMID: 26679547 DOI: 10.1039/c5cp06768e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ion mobility experiments are combined with Infra-Red Multiple Photon Dissociation (IRMPD) spectroscopy and quantum chemical calculations for assessing the role of chirality in the structure of protonated and sodiated di- or tetra-peptides. Sodiated systems show a strong chirality dependence of the competition between Na(+)O and Na(+)π interactions. Chirality effects are more subtle in protonated systems and manifest themselves by differences in the secondary interactions such hydrogen bonds between neutral groups or those involving the aromatic rings.
Collapse
Affiliation(s)
- Valeria Lepere
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Alata I, Scuderi D, Lepere V, Steinmetz V, Gobert F, Thiao-Layel L, Le Barbu-Debus K, Zehnacker-Rentien A. Exotic Protonated Species Produced by UV-Induced Photofragmentation of a Protonated Dimer: Metastable Protonated Cinchonidine. J Phys Chem A 2015; 119:10007-15. [DOI: 10.1021/acs.jpca.5b06506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ivan Alata
- Institut des Sciences
Moléculaires d’Orsay (ISMO), CNRS, Univ Paris-Sud, Université Paris Saclay, F-91405 Orsay, France
| | - Debora Scuderi
- Laboratoire de
Chimie Physique (LCP), CNRS, Univ Paris-Sud, Université Paris Saclay, F-91405 Orsay, France
| | - Valeria Lepere
- Institut des Sciences
Moléculaires d’Orsay (ISMO), CNRS, Univ Paris-Sud, Université Paris Saclay, F-91405 Orsay, France
| | - Vincent Steinmetz
- Laboratoire de
Chimie Physique (LCP), CNRS, Univ Paris-Sud, Université Paris Saclay, F-91405 Orsay, France
| | - Fabrice Gobert
- Laboratoire de
Chimie Physique (LCP), CNRS, Univ Paris-Sud, Université Paris Saclay, F-91405 Orsay, France
| | - Loïc Thiao-Layel
- Laboratoire de
Chimie Physique (LCP), CNRS, Univ Paris-Sud, Université Paris Saclay, F-91405 Orsay, France
| | - Katia Le Barbu-Debus
- Institut des Sciences
Moléculaires d’Orsay (ISMO), CNRS, Univ Paris-Sud, Université Paris Saclay, F-91405 Orsay, France
| | - Anne Zehnacker-Rentien
- Institut des Sciences
Moléculaires d’Orsay (ISMO), CNRS, Univ Paris-Sud, Université Paris Saclay, F-91405 Orsay, France
| |
Collapse
|