1
|
Zhang J, Kitova EN, Li J, Eugenio L, Ng K, Klassen JS. Localizing Carbohydrate Binding Sites in Proteins Using Hydrogen/Deuterium Exchange Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:83-90. [PMID: 26423923 DOI: 10.1007/s13361-015-1263-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 08/24/2015] [Accepted: 08/31/2015] [Indexed: 06/05/2023]
Abstract
The application of hydrogen/deuterium exchange mass spectrometry (HDX-MS) to localize ligand binding sites in carbohydrate-binding proteins is described. Proteins from three bacterial toxins, the B subunit homopentamers of Cholera toxin and Shiga toxin type 1 and a fragment of Clostridium difficile toxin A, and their interactions with native carbohydrate receptors, GM1 pentasaccharides (β-Gal-(1→3)-β-GalNAc-(1→4)[α-Neu5Ac-(2→3)]-β-Gal-(1→4)-Glc), Pk trisaccharide (α-Gal-(1→4)-β-Gal-(1→4)-Glc) and CD-grease (α-Gal-(1→3)-β-Gal-(1→4)-β-GlcNAcO(CH2)8CO2CH3), respectively, served as model systems for this study. Comparison of the differences in deuterium uptake for peptic peptides produced in the absence and presence of ligand revealed regions of the proteins that are protected against deuterium exchange upon ligand binding. Notably, protected regions generally coincide with the carbohydrate binding sites identified by X-ray crystallography. However, ligand binding can also result in increased deuterium exchange in other parts of the protein, presumably through allosteric effects. Overall, the results of this study suggest that HDX-MS can serve as a useful tool for localizing the ligand binding sites in carbohydrate-binding proteins. However, a detailed interpretation of the changes in deuterium exchange upon ligand binding can be challenging because of the presence of ligand-induced changes in protein structure and dynamics.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
- Alberta Glycomics Centre, Edmonton, Alberta, Canada
| | - Elena N Kitova
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
- Alberta Glycomics Centre, Edmonton, Alberta, Canada
| | - Jun Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
- Alberta Glycomics Centre, Edmonton, Alberta, Canada
| | - Luiz Eugenio
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
- Alberta Glycomics Centre, Edmonton, Alberta, Canada
| | - Kenneth Ng
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
- Alberta Glycomics Centre, Edmonton, Alberta, Canada
| | - John S Klassen
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada.
- Alberta Glycomics Centre, Edmonton, Alberta, Canada.
| |
Collapse
|
2
|
Structural analysis of the interleukin-8/glycosaminoglycan interactions by amide hydrogen/deuterium exchange mass spectrometry. Methods 2015; 89:45-53. [DOI: 10.1016/j.ymeth.2015.02.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/12/2015] [Accepted: 02/19/2015] [Indexed: 12/22/2022] Open
|
3
|
Charvátová O, Foley BL, Bern MW, Sharp JS, Orlando R, Woods RJ. Quantifying protein interface footprinting by hydroxyl radical oxidation and molecular dynamics simulation: application to galectin-1. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2008; 19:1692-705. [PMID: 18707901 PMCID: PMC2607067 DOI: 10.1016/j.jasms.2008.07.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 07/10/2008] [Accepted: 07/14/2008] [Indexed: 05/13/2023]
Abstract
Biomolecular surface mapping methods offer an important alternative method for characterizing protein-protein and protein-ligand interactions in cases in which it is not possible to determine high-resolution three-dimensional (3D) structures of complexes. Hydroxyl radical footprinting offers a significant advance in footprint resolution compared with traditional chemical derivatization. Here we present results of footprinting performed with hydroxyl radicals generated on the nanosecond time scale by laser-induced photodissociation of hydrogen peroxide. We applied this emerging method to a carbohydrate-binding protein, galectin-1. Since galectin-1 occurs as a homodimer, footprinting was employed to characterize the interface of the monomeric subunits. Efficient analysis of the mass spectrometry data for the oxidized protein was achieved with the recently developed ByOnic (Palo Alto, CA) software that was altered to handle the large number of modifications arising from side-chain oxidation. Quantification of the level of oxidation has been achieved by employing spectral intensities for all of the observed oxidation states on a per-residue basis. The level of accuracy achievable from spectral intensities was determined by examination of mixtures of synthetic peptides related to those present after oxidation and tryptic digestion of galectin-1. A direct relationship between side-chain solvent accessibility and level of oxidation emerged, which enabled the prediction of the level of oxidation given the 3D structure of the protein. The precision of this relationship was enhanced through the use of average solvent accessibilities computed from 10 ns molecular dynamics simulations of the protein.
Collapse
Affiliation(s)
- Olga Charvátová
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, Georgia, 30602, USA
| | - B. Lachele Foley
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, Georgia, 30602, USA
| | - Marshall W. Bern
- Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California, 94304, USA
| | - Joshua S. Sharp
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, Georgia, 30602, USA
| | - Ron Orlando
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, Georgia, 30602, USA
| | - Robert J. Woods
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, Georgia, 30602, USA
- Correspondence to : Robert J. Woods, , Phone: +1-706-542-4454, FAX : +1-706-542-4412
| |
Collapse
|
4
|
Abstract
Oligo- and polysaccharides are infamous for being extremely flexible molecules, populating a series of well-defined rotational isomeric states under physiological conditions. Characterization of this heterogeneous conformational ensemble has been a major obstacle impeding high-resolution structure determination of carbohydrates and acting as a bottleneck in the effort to understand the relationship between the carbohydrate structure and function. This challenge has compelled the field to develop and apply theoretical and experimental methods that can explore conformational ensembles by both capturing and deconvoluting the structural and dynamic properties of carbohydrates. This review focuses on computational approaches that have been successfully used in combination with experiment to detail the three-dimensional structure of carbohydrates in a solution and in a complex with proteins. In addition, emerging experimental techniques for three-dimensional structural characterization of carbohydrate-protein complexes and future challenges in the field of structural glycobiology are discussed. The review is divided into five sections: (1) The complexity and plasticity of carbohydrates, (2) Predicting carbohydrate-protein interactions, (3) Calculating relative and absolute binding free energies for carbohydrate-protein complexes, (4) Emerging and evolving techniques for experimental characterization of carbohydrate-protein structures, and (5) Current challenges in structural glycoscience.
Collapse
Affiliation(s)
- Mari L DeMarco
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602-4712, USA
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602-4712, USA
| |
Collapse
|
5
|
Seyfried NT, Atwood JA, Yongye A, Almond A, Day AJ, Orlando R, Woods RJ. Fourier transform mass spectrometry to monitor hyaluronan-protein interactions: use of hydrogen/deuterium amide exchange. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2007; 21:121-31. [PMID: 17154353 PMCID: PMC4189122 DOI: 10.1002/rcm.2817] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The use of Fourier transform mass spectrometry (FTMS) to monitor noncovalent complex formation in the gas phase under native conditions between the Link module from human tumor necrosis factor stimulated gene-6 (Link_TSG6) and hyaluronan (HA) oligosaccharides is reported. In particular, a titration experiment with increasing concentrations of octasaccharide (HA(8)) to protein produced a noncovalent complex with 1:1 stoichiometry when the oligosaccharide was in molar excess. However, in the presence of a molar excess of tetrasaccharide (HA(4)) nearly all proteins and oligosaccharides were observed in their unbound charge states. These results are consistent with solution-phase properties for this interaction in which HA(8), but not HA(4), supports high affinity Link_TSG6 binding. Hydrogen/deuterium amide exchange mass spectrometry (H/D-EX MS) was also utilized to investigate the level of global deuterium incorporation, over time, for Link_TSG6 in both the absence and presence of HA(8). After dilution into quenching conditions, deuterium incorporation reached limiting asymptotic values of 37 and 26 deuterons for the free and bound protein at 240 and 480 min, respectively, indicating that the oligosaccharide interferes with amide exchange on binding. To detect sequence-specific deuterium incorporation, pepsin digestion of Link_TSG6 in both the absence and presence of HA(8) was performed. A level of deuterium incorporation of 10-30% was observed for peptides analyzed in free Link_TSG6. Interestingly, HA(8) blocked some sites of proteolysis in Link_TSG6 compared to the free protein. Molecular modeling indicated that amino acids proximal to the ligand correlated with regions of the protein that were resistant to enzymatic digestion. Of the peptides that could be analyzed by H/D-EX MS in the presence of the ligand, a 30-60% reduction in deuterium incorporation, relative to the free protein, was observed, even for those sequences not directly involved in HA binding. These results support the utility of FTMS as a method for the characterization of protein-carbohydrate interactions.
Collapse
Affiliation(s)
- Nicholas T. Seyfried
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - James A. Atwood
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Austin Yongye
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Andrew Almond
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Anthony J. Day
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Ron Orlando
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Robert J. Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
- Correspondence to: R. J. Woods, Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA.
| |
Collapse
|
6
|
Hunt JJ, Cameron R, Williams MAK. On the simulation of enzymatic digest patterns: The fragmentation of oligomeric and polymeric galacturonides by endo-polygalacturonase II. Biochim Biophys Acta Gen Subj 2006; 1760:1696-703. [PMID: 17029794 DOI: 10.1016/j.bbagen.2006.08.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 08/08/2006] [Accepted: 08/19/2006] [Indexed: 11/24/2022]
Abstract
A simulation methodology for predicting the time-course of enzymatic digestions is described. The model is based solely on the enzyme's subsite architecture and concomitant binding energies. This allows subsite binding energies to be used to predict the evolution of the relative amounts of different products during the digestion of arbitrary mixtures of oligomeric or polymeric substrates. The methodology has been specifically demonstrated by studying the fragmentation of a population of oligogalacturonides of varying degrees of polymerization, when digested by endo-polygalacturonase II (endo-PG II) from Aspergillus niger.
Collapse
Affiliation(s)
- Jonathan J Hunt
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | | | | |
Collapse
|
7
|
Liu YH, Konermann L. Enzyme conformational dynamics during catalysis and in the ‘resting state’ monitored by hydrogen/deuterium exchange mass spectrometry. FEBS Lett 2006; 580:5137-42. [PMID: 16963025 DOI: 10.1016/j.febslet.2006.08.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 08/11/2006] [Accepted: 08/17/2006] [Indexed: 10/24/2022]
Abstract
This work reports the use of electrospray mass spectrometry for studying the conformational dynamics of enzymes by amide hydrogen/deuterium exchange (HDX) measurements. A rapid-mixing quench-flow approach allows comparisons to be made between the HDX kinetics of free enzymes with those under steady-state conditions. Experiments carried out on carboxypeptidase B in the absence of substrate and in the presence of saturating concentrations of hippuryl-Arg result in HDX kinetics that are indistinguishable. This finding implies that the conformational dynamics that mediate HDX are not significantly different in the resting state of the enzyme and during substrate turnover.
Collapse
Affiliation(s)
- Yu-Hong Liu
- Department of Chemistry, The University of Western Ontario, London, Ont., Canada N6A 5B7
| | | |
Collapse
|
8
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2002; 37:1176-1184. [PMID: 12447897 DOI: 10.1002/jms.258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|