1
|
Jadhav SR, Shah RM, Karpe AV, Beale DJ, Kouremenos KA, Palombo EA. Identifying Putative Biomarkers of Foodborne Pathogens Using a Metabolomic Approach. Methods Mol Biol 2025; 2852:255-272. [PMID: 39235749 DOI: 10.1007/978-1-0716-4100-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Metabolomics is the study of low molecular weight biochemical molecules (typically <1500 Da) in a defined biological organism or system. In case of food systems, the term "food metabolomics" is often used. Food metabolomics has been widely explored and applied in various fields including food analysis, food intake, food traceability, and food safety. Food safety applications focusing on the identification of pathogen-specific biomarkers have been promising. This chapter describes a nontargeted metabolite profiling workflow using gas chromatography coupled with mass spectrometry (GC-MS) for characterizing three globally important foodborne pathogens, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella enterica, from selective enrichment liquid culture media. The workflow involves a detailed description of food spiking experiments followed by procedures for the extraction of polar metabolites from media, the analysis of the extracts using GC-MS, and finally chemometric data analysis using univariate and multivariate statistical tools to identify potential pathogen-specific biomarkers.
Collapse
Affiliation(s)
- Snehal R Jadhav
- Consumer Analytical Safety Sensory (CASS) Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Melbourne, VIC, Australia.
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, VIC, Australia.
| | - Rohan M Shah
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, VIC, Australia
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Avinash V Karpe
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, VIC, Australia
- Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, QLD, Australia
| | - David J Beale
- Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, QLD, Australia
| | | | - Enzo A Palombo
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Kumar P, Rani A, Singh S, Kumar A. Recent advances on
DNA
and omics‐based technology in Food testing and authentication: A review. J Food Saf 2022. [DOI: 10.1111/jfs.12986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Pramod Kumar
- National Institute of Cancer Prevention and Research Indian Council for Medical Research (ICMR‐NICPR) Noida India
| | - Alka Rani
- National Institute of Cancer Prevention and Research Indian Council for Medical Research (ICMR‐NICPR) Noida India
| | - Shalini Singh
- National Institute of Cancer Prevention and Research Indian Council for Medical Research (ICMR‐NICPR) Noida India
| | - Anuj Kumar
- National Institute of Cancer Prevention and Research Indian Council for Medical Research (ICMR‐NICPR) Noida India
| |
Collapse
|
3
|
Feng Y, Cheng Z, Wei X, Chen M, Zhang J, Zhang Y, Xue L, Chen M, Li F, Shang Y, Liang T, Ding Y, Wu Q. Novel method for rapid identification of Listeria monocytogenes based on metabolomics and deep learning. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
4
|
Jadhav SR, Shah RM, Karpe AV, Barlow RS, McMillan KE, Colgrave ML, Beale DJ. Utilizing the Food-Pathogen Metabolome to Putatively Identify Biomarkers for the Detection of Shiga Toxin-Producing E. coli (STEC) from Spinach. Metabolites 2021; 11:metabo11020067. [PMID: 33503909 PMCID: PMC7911566 DOI: 10.3390/metabo11020067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 11/27/2022] Open
Abstract
Shiga toxigenic E. coli (STEC) are an important cause of foodborne disease globally with many outbreaks linked to the consumption of contaminated foods such as leafy greens. Existing methods for STEC detection and isolation are time-consuming. Rapid methods may assist in preventing contaminated products from reaching consumers. This proof-of-concept study aimed to determine if a metabolomics approach could be used to detect STEC contamination in spinach. Using untargeted metabolic profiling, the bacterial pellets and supernatants arising from bacterial and inoculated spinach enrichments were investigated for the presence of unique metabolites that enabled categorization of three E. coli risk groups. A total of 109 and 471 metabolite features were identified in bacterial and inoculated spinach enrichments, respectively. Supervised OPLS-DA analysis demonstrated clear discrimination between bacterial enrichments containing different risk groups. Further analysis of the spinach enrichments determined that pathogen risk groups 1 and 2 could be easily discriminated from the other groups, though some clustering of risk groups 1 and 2 was observed, likely representing their genomic similarity. Biomarker discovery identified metabolites that were significantly associated with risk groups and may be appropriate targets for potential biosensor development. This study has confirmed that metabolomics can be used to identify the presence of pathogenic E. coli likely to be implicated in human disease.
Collapse
Affiliation(s)
- Snehal R. Jadhav
- Consumer-Analytical-Safety-Sensory (CASS) Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia;
| | - Rohan M. Shah
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia;
- Land and Water, Commonwealth Scientific and Industrial Research Organization, Ecoscience Precinct, Dutton Park, QLD 4102, Australia;
| | - Avinash V. Karpe
- Land and Water, Commonwealth Scientific and Industrial Research Organization, Ecoscience Precinct, Dutton Park, QLD 4102, Australia;
| | - Robert S. Barlow
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Coopers Plains, QLD 4108, Australia; (R.S.B.); (K.E.M.)
| | - Kate E. McMillan
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Coopers Plains, QLD 4108, Australia; (R.S.B.); (K.E.M.)
| | - Michelle L. Colgrave
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, St Lucia, QLD 4067, Australia;
| | - David J. Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organization, Ecoscience Precinct, Dutton Park, QLD 4102, Australia;
- Correspondence: ; Tel.: +61-7-3833-5774
| |
Collapse
|
5
|
Li S, Tian Y, Jiang P, Lin Y, Liu X, Yang H. Recent advances in the application of metabolomics for food safety control and food quality analyses. Crit Rev Food Sci Nutr 2020; 61:1448-1469. [PMID: 32441547 DOI: 10.1080/10408398.2020.1761287] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
As one of the omics fields, metabolomics has unique advantages in facilitating the understanding of physiological and pathological activities in biology, physiology, pathology, and food science. In this review, based on developments in analytical chemistry tools, cheminformatics, and bioinformatics methods, we highlight the current applications of metabolomics in food safety, food authenticity and quality, and food traceability. Additionally, the combined use of metabolomics with other omics techniques for "foodomics" is comprehensively described. Finally, the latest developments and advances, practical challenges and limitations, and requirements related to the application of metabolomics are critically discussed, providing new insight into the application of metabolomics in food analysis.
Collapse
Affiliation(s)
- Shubo Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Yufeng Tian
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Pingyingzi Jiang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Ying Lin
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Xiaoling Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Hongshun Yang
- Department of Food Science & Technology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
6
|
Translating 'big data': better understanding of host-pathogen interactions to control bacterial foodborne pathogens in poultry. Anim Health Res Rev 2020; 21:15-35. [PMID: 31907101 DOI: 10.1017/s1466252319000124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent technological advances has led to the generation, storage, and sharing of colossal sets of information ('big data'), and the expansion of 'omics' in science. To date, genomics/metagenomics, transcriptomics, proteomics, and metabolomics are arguably the most ground breaking approaches in food and public safety. Here we review some of the recent studies of foodborne pathogens (Campylobacter spp., Salmonella spp., and Escherichia coli) in poultry using big data. Genomic/metagenomic approaches have reveal the importance of the gut microbiota in health and disease. They have also been used to identify, monitor, and understand the epidemiology of antibiotic-resistance mechanisms and provide concrete evidence about the role of poultry in human infections. Transcriptomics studies have increased our understanding of the pathophysiology and immunopathology of foodborne pathogens in poultry and have led to the identification of host-resistance mechanisms. Proteomic/metabolomic approaches have aided in identifying biomarkers and the rapid detection of low levels of foodborne pathogens. Overall, 'omics' approaches complement each other and may provide, at least in part, a solution to our current food-safety issues by facilitating the development of new rapid diagnostics, therapeutic drugs, and vaccines to control foodborne pathogens in poultry. However, at this time most 'omics' approaches still remain underutilized due to their high cost and the high level of technical skills required.
Collapse
|
7
|
Escherichia coli Clonobiome: Assessing the Strain Diversity in Feces and Urine by Deep Amplicon Sequencing. Appl Environ Microbiol 2019; 85:AEM.01866-19. [PMID: 31540992 DOI: 10.1128/aem.01866-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022] Open
Abstract
While microbiome studies have focused on diversity at the species level or higher, bacterial species in microbiomes are represented by different, often multiple, strains. These strains could be clonally and phenotypically very different, making assessment of strain content vital to a full understanding of microbiome function. This is especially important with respect to antibiotic-resistant strains, the clonal spread of which may be dependent on competition between them and susceptible strains from the same species. The pandemic, multidrug-resistant, and highly pathogenic Escherichia coli subclone ST131-H30 (H30) is of special interest, as it has already been found persisting in the gut and bladder in healthy people. In order to rapidly assess E. coli clonal diversity, we developed a novel method based on deep sequencing of two loci used for sequence typing, along with an algorithm for analysis of the resulting data. Using this method, we assessed fecal and urinary samples from healthy women carrying H30 and were able to uncover considerable diversity, including strains with frequencies at <1% of the E. coli population. We also found that, even in the absence of antibiotic use, H30 could completely dominate the gut and, especially, urine of healthy carriers. Our study offers a novel tool for assessing a species' clonal diversity (clonobiome) within the microbiome, which could be useful in studying the population structure and dynamics of multidrug-resistant and/or highly pathogenic strains in their natural environments.IMPORTANCE Bacterial species in the microbiome are often represented by multiple genetically and phenotypically different strains, making insight into subspecies diversity critical to a full understanding of the microbiome, especially with respect to opportunistic pathogens. However, methods allowing efficient high-throughput clonal typing are not currently available. This study combines a conventional E. coli typing method with deep amplicon sequencing to allow analysis of many samples concurrently. While our method was developed for E. coli, it may be adapted for other species, allowing microbiome researchers to assess clonal strain diversity in natural samples. Since assessment of subspecies diversity is particularly important for understanding the spread of antibiotic resistance, we applied our method to the study of a pandemic multidrug-resistant E. coli clone. The results we present suggest that this clone could be highly competitive in healthy carriers and that the mechanisms of colonization by such clones need to be studied.
Collapse
|
8
|
Zhong F, Xu M, Zhu J. Development and application of time staggered/mass staggered-globally optimized targeted mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1120:80-88. [DOI: 10.1016/j.jchromb.2019.04.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/20/2019] [Accepted: 04/27/2019] [Indexed: 01/24/2023]
|
9
|
Jadhav SR, Shah RM, Karpe AV, Beale DJ, Kouremenos KA, Palombo EA. Identification of Putative Biomarkers Specific to Foodborne Pathogens Using Metabolomics. Methods Mol Biol 2019; 1918:149-164. [PMID: 30580406 DOI: 10.1007/978-1-4939-9000-9_12] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Metabolomics is one of the more recently developed "omics" that measures low molecular weight (typically < 1500 Da) compounds in biological samples. Metabolomics has been widely explored in environmental, clinical, and industrial biotechnology applications. However, its application to the area of food safety has been limited but preliminary work has demonstrated its value. This chapter describes an untargeted (nontargeted) metabolomics workflow using gas chromatography coupled to mass spectrometry (GC-MS) for characterizing three globally important foodborne pathogens, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella enterica, from selective enrichment liquid culture media. The workflow involves a detailed description of food spiking experiments followed by procedures for extraction of polar metabolites from media, analyzing the extracts using GC-MS and, finally, chemometric data analysis using the software "SIMCA" to identify potential pathogen-specific biomarkers.
Collapse
Affiliation(s)
- Snehal R Jadhav
- Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Melbourne, VIC, Australia
- Centre for Advanced Sensory Science, School of Exercise and Nutrition Sciences, Deakin University, Melbourne, VIC, Australia
| | - Rohan M Shah
- Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Avinash V Karpe
- Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Melbourne, VIC, Australia
- Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, QLD, Australia
| | - David J Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, QLD, Australia
| | - Konstantinos A Kouremenos
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Enzo A Palombo
- Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Melbourne, VIC, Australia.
| |
Collapse
|
10
|
Jadhav SR, Shah RM, Karpe AV, Morrison PD, Kouremenos K, Beale DJ, Palombo EA. Detection of Foodborne Pathogens Using Proteomics and Metabolomics-Based Approaches. Front Microbiol 2018; 9:3132. [PMID: 30619201 PMCID: PMC6305589 DOI: 10.3389/fmicb.2018.03132] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 12/04/2018] [Indexed: 11/22/2022] Open
Abstract
Considering the short shelf-life of certain food products such as red meat, there is a need for rapid and cost-effective methods for pathogen detection. Routine pathogen testing in food laboratories mostly relies on conventional microbiological methods which involve the use of multiple selective culture media and long incubation periods, often taking up to 7 days for confirmed identifications. The current study investigated the application of omics-based approaches, proteomics using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-ToF MS) and metabolomics using gas chromatography-mass spectrometry (GC-MS), for detection of three red meat pathogens - Listeria monocytogenes, Salmonella enterica and Escherichia coli O157:H7. Species-level identification was achieved within 18 h for S. enterica and E. coli O157:H7 and 30 h for L. monocytogenes using MALDI-ToF MS analysis. For the metabolomics approach, metabolites were extracted directly from selective enrichment broth samples containing spiked meat samples (obviating the need for culturing on solid media) and data obtained using GC-MS were analyzed using chemometric methods. Putative biomarkers relating to L. monocytogenes, S. enterica and E. coli O157:H7 were observed within 24, 18, and 12 h, respectively, of inoculating meat samples. Many of the identified metabolites were sugars, fatty acids, amino acids, nucleosides and organic acids. Secondary metabolites such as cadaverine, hydroxymelatonin and 3,4-dihydroxymadelic acid were also observed. The results obtained in this study will assist in the future development of rapid diagnostic tests for these important foodborne pathogens.
Collapse
Affiliation(s)
- Snehal R. Jadhav
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Rohan M. Shah
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Avinash V. Karpe
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, VIC, Australia
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Brisbane, QLD, Australia
| | - Paul D. Morrison
- Australian Centre for Research on Separation Science, RMIT University, Melbourne, VIC, Australia
| | - Konstantinos Kouremenos
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - David J. Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Brisbane, QLD, Australia
| | - Enzo A. Palombo
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Li H, Xu M, Zhu J. Headspace Gas Monitoring of Gut Microbiota Using Targeted and Globally Optimized Targeted Secondary Electrospray Ionization Mass Spectrometry. Anal Chem 2018; 91:854-863. [DOI: 10.1021/acs.analchem.8b03517] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Haorong Li
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States
| | - Mengyang Xu
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States
| | - Jiangjiang Zhu
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States
| |
Collapse
|