1
|
Smith D, Španěl P, Demarais N, Langford VS, McEwan MJ. Recent developments and applications of selected ion flow tube mass spectrometry (SIFT-MS). MASS SPECTROMETRY REVIEWS 2025; 44:101-134. [PMID: 36776107 DOI: 10.1002/mas.21835] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/09/2022] [Accepted: 12/12/2022] [Indexed: 06/18/2023]
Abstract
Selected ion flow tube mass spectrometry (SIFT-MS) is now recognized as the most versatile analytical technique for the identification and quantification of trace gases down to the parts-per-trillion by volume, pptv, range. This statement is supported by the wide reach of its applications, from real-time analysis, obviating sample collection of very humid exhaled breath, to its adoption in industrial scenarios for air quality monitoring. This review touches on the recent extensions to the underpinning ion chemistry kinetics library and the alternative challenge of using nitrogen carrier gas instead of helium. The addition of reagent anions in the Voice200 series of SIFT-MS instruments has enhanced the analytical capability, thus allowing analyses of volatile trace compounds in humid air that cannot be analyzed using reagent cations alone, as clarified by outlining the anion chemistry involved. Case studies are reviewed of breath analysis and bacterial culture volatile organic compound (VOC), emissions, environmental applications such as air, water, and soil analysis, workplace safety such as transport container fumigants, airborne contamination in semiconductor fabrication, food flavor and spoilage, drugs contamination and VOC emissions from packaging to demonstrate the stated qualities and uniqueness of the new generation SIFT-MS instrumentation. Finally, some advancements that can be made to improve the analytical capability and reach of SIFT-MS are mentioned.
Collapse
Affiliation(s)
- David Smith
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - Patrik Španěl
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia
| | | | | | - Murray J McEwan
- Syft Technologies Limited, Christchurch, New Zealand
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
2
|
Zhao TY, Bian Y, Zhou Y, Zhang Y, Feng XS, Chen F. Trends in pretreatment and determination methods for furfurals in foods: Update since 2017. Food Res Int 2025; 201:115600. [PMID: 39849758 DOI: 10.1016/j.foodres.2024.115600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/04/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
BACKGROUND Furfurals, key derivatives of Maillard reactions commonly found in everyday foods, have been identified as having significant toxic effects on human health. Excessive intake of furfurals can lead symptoms such as weight loss, poor nutrient metabolism which followed by disease occurrence. The severe carcinogenicity, mutagenicity and genotoxicity of furfurals were well recognized recently. In response, international organizations have established strict limits on the allowable levels of furfurals in food products. Therefore, it is of paramount importance to implement control which mediated by modern pretreatment and analytical techniques, towards the daily accessibility of furfurals. SCOPE AND APPROACH This review seeks to present a comprehensive overview of recent advancements in the pretreatment and analytical techniques for furfurals in food from 2017 to 2023. Various pretreatment methods, such as liquid phase microextraction, solid phase extraction, solid phase microextraction, and QuEChERS, as well as analytical technologies like liquid chromatography-based methods and gas chromatography-based methods, are thoroughly discussed in terms of their mechanisms, benefits, and limitations. KEY FINDINGS AND CONCLUSIONS Currently, various pretreatment and analytical techniques with advantages and limitations had been proposed. The development of novel materials does facilitate the optimization and application of microextraction based pretreatment platforms which share with enhanced extraction efficiency. In addition, the development of novel targeting/sensing materials along with the utilization of high-resolution mass spectrometry could promote the determination sensitivity. In future, development of novel absorbents which mediates more desirable pretreatment methods, and automated and miniaturized on-site analytical instruments for furfurals determination still deserve indepth invesigation.
Collapse
Affiliation(s)
- Tong-Yi Zhao
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021 China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Fang Chen
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
3
|
Li Y, Fan Z, Zhang S, Jiang J, Yang F, Ren M, Li Q, Li H, Yang Y, Hua L. Rapid measurement of ethyl carbamate in Chinese liquor by fast gas chromatography photoionization-induced chemical ionization mass spectrometry. Talanta 2025; 282:126965. [PMID: 39341055 DOI: 10.1016/j.talanta.2024.126965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024]
Abstract
As a common by-product during the production of alcoholic beverages, such as Chinese liquor, ethyl carbamate (EC) poses potential genotoxicity and is associated with the risk of various cancers. Hence, rapidly and accurately measuring the content of EC in liquor is critical to assess the product quality and risks of mass samples during the production process. In this study, a feasible method based on fast gas chromatography photoionization-induced chemical ionization mass spectrometry (FastGC-PICI-TOFMS) was developed for the analysis of EC in Chinese liquor. The rapid separation of EC in Chinese liquor was conducted using FastGC based on a thermostatic column set at 150 °C to eliminate the interferences of matrix effects. The PICI-TOFMS could realize accurate quantification of EC without any sample pre-treatment due to the efficient ionization of EC by the PICI source. As a result, the total analysis time for EC in Chinese liquor was less than 4 min. The limit of detection (LOD) for EC was 4.4 μg L-1. And the intra-day and inter-day precision were 3.2%-3.7 % and 1.6 %, respectively. Finally, the ability of the proposed method was preliminarily proved by high-throughput and accurate measurement of EC in four different flavors of Chinese liquors.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian, 116023, PR China
| | - Zhigang Fan
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, PR China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian, 116023, PR China
| | - Siyu Zhang
- Kweichow Moutai Co., Ltd., Renhuai, 564500, PR China; Baijiu Manufacturing Innovation Institute of Guizhou Province, Renhuai, 564500, PR China
| | - Jichun Jiang
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian, 116023, PR China
| | - Fan Yang
- Kweichow Moutai Co., Ltd., Renhuai, 564500, PR China; Baijiu Manufacturing Innovation Institute of Guizhou Province, Renhuai, 564500, PR China
| | - Meihui Ren
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian, 116023, PR China
| | - Qingyun Li
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian, 116023, PR China
| | - Haiyang Li
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian, 116023, PR China
| | - Yubo Yang
- Kweichow Moutai Co., Ltd., Renhuai, 564500, PR China; Baijiu Manufacturing Innovation Institute of Guizhou Province, Renhuai, 564500, PR China.
| | - Lei Hua
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian, 116023, PR China.
| |
Collapse
|
4
|
Dos Santos Gomes W, Pereira LL, Rodrigues da Luz JM, Soares da Silva MDC, Reis Veloso TG, Partelli FL. Exploring the microbiome of coffee plants: Implications for coffee quality and production. Food Res Int 2024; 179:113972. [PMID: 38342526 DOI: 10.1016/j.foodres.2024.113972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 02/13/2024]
Abstract
Coffee stands as one of the world's most popular beverages, and its quality undergoes the influence of numerous pre- and post-harvest procedures. These encompass genetic variety, cultivation environment, management practices, harvesting methods, and post-harvest processing. Notably, microbial communities active during fermentation hold substantial sway over the ultimate quality and sensory characteristics of the final product. The interaction between plants and microorganisms assumes critical significance, with specific microbes assuming pivotal roles in coffee plant growth, fruit development, and, subsequently, the fruit's quality. Microbial activities can synthesize or degrade compounds that influence the sensory profile of the beverage. However, studies on the metabolic products generated by various coffee-related microorganisms and their chemical functionality, especially in building sensory profiles, remain scarce. The primary aim of this study was to conduct a literature review, based on a narrative methodology, on the current understanding of the plant-microorganism interaction in coffee production. Additionally, it aimed to explore the impacts of microorganisms on plant growth, fruit production, and the fermentation processes, directly influencing the ultimate quality of the coffee beverage. Articles were sourced from ScienceDirect, Scopus, Web of Science, and Google Scholar using specific search terms such as "coffee microorganisms", "microorganisms-coffee interactions", "coffee fermentation", "coffee quality", and 'coffee post-harvest processing". The articles used were published in English between 2000 and 2023. Selection criteria involved thoroughly examining articles to ensure their inclusion was based on results about the contribution of microorganisms to both the production and quality of the coffee beverage. The exploration of microorganisms associated with the coffee plant and its fruit presents opportunities for bioprospecting, potentially leading to targeted fermentations via starter cultures, consequently generating new profiles. This study synthesizes existing data on the current understanding of the coffee-associated microbiome, its functionalities within ecosystems, the metabolic products generated by microorganisms, and their impacts on fermentation processes and grain and beverage quality. It highlights the importance of plant-microorganism interactions in the coffee production chain.
Collapse
Affiliation(s)
- Willian Dos Santos Gomes
- Genetic Improvement Program, Federal University of Espírito Santo, S/N Guararema, Alegre 29375-000, Brazil
| | - Lucas Louzada Pereira
- Coffee Design Group, Venda Nova Do Imigrante, Federal Institute of Espírito Santo (IFES), Rua Elizabeth Minete Perim, S/N, Bairro São Rafael, Espírito Santo-ES 29375-000, Brazil.
| | - José Maria Rodrigues da Luz
- Department of Microbiology, Mycorrhizal Associations Laboratory - LAMIC Universidade Federal de Viçosa (UFV), Ph Rolfs Avenue S/N, Viçosa, Minas Gerais-MG 6570-000, Brazil
| | - Marliane de Cássia Soares da Silva
- Department of Microbiology, Mycorrhizal Associations Laboratory - LAMIC Universidade Federal de Viçosa (UFV), Ph Rolfs Avenue S/N, Viçosa, Minas Gerais-MG 6570-000, Brazil
| | - Tomás Gomes Reis Veloso
- Department of Microbiology, Mycorrhizal Associations Laboratory - LAMIC Universidade Federal de Viçosa (UFV), Ph Rolfs Avenue S/N, Viçosa, Minas Gerais-MG 6570-000, Brazil
| | - Fábio Luiz Partelli
- Genetic Improvement Program, Federal University of Espírito Santo, S/N Guararema, Alegre 29375-000, Brazil
| |
Collapse
|
5
|
Reyrolle M, Bareille G, Epova EN, Barre J, Bérail S, Pigot T, Desauziers V, Gautier L, Le Bechec M. Authenticating teas using multielement signatures, strontium isotope ratios, and volatile compound profiling. Food Chem 2023; 423:136271. [PMID: 37167668 DOI: 10.1016/j.foodchem.2023.136271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 04/17/2023] [Accepted: 04/27/2023] [Indexed: 05/13/2023]
Abstract
High value food products are subject to adulterations and frauds. This study aimed to combine, in our knowledge for the first time, inorganic chemical tracers (multi-elements and Sr isotopy) with volatile organic compound (VOCs) to discriminate the geographic origin, the varieties and transformation processes to authenticate 26 tea samples. By measuring Sr isotope ratio using the multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS), 6 out of 11 regions were successfully discriminated. The combination with the ICP-MS inorganic pattern allowed to discriminate 4 more regions with a significance level of 0.05. VOCs fingerprints, obtained with selected ion flow tube mass spectrometer (SIFT-MS), were not correlated with origin but with the cultivar and transformation processes. Green, oolong, and dark teas were clearly differentiated, with hexanal and hexanol contributing to the discrimination of oxidation levels. With this multi-instrumental approach, it is possible to certify the geographical origin and the tea conformity.
Collapse
Affiliation(s)
- Marine Reyrolle
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IMT Mines Ales, IPREM, Pau, France; Institut des sciences analytiques et de Physicochimie pour l'environnement et les Matériaux, UMR5254, Hélioparc, 2 avenue du Président Angot, 64053, Pau cedex 9, France
| | - Gilles Bareille
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IMT Mines Ales, IPREM, Pau, France; Institut des sciences analytiques et de Physicochimie pour l'environnement et les Matériaux, UMR5254, Hélioparc, 2 avenue du Président Angot, 64053, Pau cedex 9, France
| | - Ekaterina N Epova
- Advanced Isotopic Analysis (A.I.A.), Hélioparc, 2 avenue du Président Angot, 64000, Pau, France
| | - Julien Barre
- Advanced Isotopic Analysis (A.I.A.), Hélioparc, 2 avenue du Président Angot, 64000, Pau, France
| | - Sylvain Bérail
- Advanced Isotopic Analysis (A.I.A.), Hélioparc, 2 avenue du Président Angot, 64000, Pau, France
| | - Thierry Pigot
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IMT Mines Ales, IPREM, Pau, France; Institut des sciences analytiques et de Physicochimie pour l'environnement et les Matériaux, UMR5254, Hélioparc, 2 avenue du Président Angot, 64053, Pau cedex 9, France
| | - Valerie Desauziers
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IMT Mines Ales, IPREM, Pau, France; Institut des sciences analytiques et de Physicochimie pour l'environnement et les Matériaux, UMR5254, Hélioparc, 2 avenue du Président Angot, 64053, Pau cedex 9, France
| | - Lydia Gautier
- T Edition, 63 rue Vercingétorix, 75014 Paris, France
| | - Mickael Le Bechec
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IMT Mines Ales, IPREM, Pau, France; Institut des sciences analytiques et de Physicochimie pour l'environnement et les Matériaux, UMR5254, Hélioparc, 2 avenue du Président Angot, 64053, Pau cedex 9, France.
| |
Collapse
|
6
|
Pua A, Goh RMV, Huang Y, Tang VCY, Ee KH, Cornuz M, Liu SQ, Lassabliere B, Yu B. Recent advances in analytical strategies for coffee volatile studies: Opportunities and challenges. Food Chem 2022; 388:132971. [PMID: 35462220 DOI: 10.1016/j.foodchem.2022.132971] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/29/2022]
Abstract
Coffee has attracted significant research interest owing to its complex volatile composition and aroma, which imparts a pleasant sensorial experience that remains challenging to analyse and interpret. This review summarises analytical challenges associated with coffee's volatile and matrix complexity, and recent developments in instrumental techniques to resolve them. The benefits of state-of-the-art analytical techniques applied to coffee volatile analysis from experimental design to sample preparation, separation, detection, and data analysis are evaluated. Complementary method selection coupled with progressive experimental design and data analysis are vital to unravel the increasing comprehensiveness of coffee volatile datasets. Considering this, analytical workflows for conventional, targeted, and untargeted coffee volatile analyses are thus proposed considering the trends towards sorptive extraction, multidimensional gas chromatography, and high-resolution mass spectrometry. In conclusion, no single analytical method addresses coffee's complexity in its entirely, and volatile analysis must be tailored to the key objectives and concerns of the analyst.
Collapse
Affiliation(s)
- Aileen Pua
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Sigapore; Department of Food Science and Technology, National University of Singapore, S14 Level 5, Science Drive 2, Singapore 117542, Sigapore
| | - Rui Min Vivian Goh
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Sigapore
| | - Yunle Huang
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Sigapore; Department of Food Science and Technology, National University of Singapore, S14 Level 5, Science Drive 2, Singapore 117542, Sigapore
| | - Vivien Chia Yen Tang
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Sigapore
| | - Kim-Huey Ee
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Sigapore
| | - Maurin Cornuz
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Sigapore
| | - Shao Quan Liu
- Department of Food Science and Technology, National University of Singapore, S14 Level 5, Science Drive 2, Singapore 117542, Sigapore.
| | - Benjamin Lassabliere
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Sigapore
| | - Bin Yu
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Sigapore.
| |
Collapse
|
7
|
Ahmed S, Brinkley S, Smith E, Sela A, Theisen M, Thibodeau C, Warne T, Anderson E, Van Dusen N, Giuliano P, Ionescu KE, Cash SB. Climate Change and Coffee Quality: Systematic Review on the Effects of Environmental and Management Variation on Secondary Metabolites and Sensory Attributes of Coffea arabica and Coffea canephora. FRONTIERS IN PLANT SCIENCE 2021; 12:708013. [PMID: 34691093 PMCID: PMC8531415 DOI: 10.3389/fpls.2021.708013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Climate change is impacting crop performance and agricultural systems around the world with implications for farmers and consumers. We carried out a systematic review to synthesize evidence regarding the effects of environmental factors associated with climate change and management conditions associated with climate adaptation on the crop quality of a culturally-relevant perennial crop, coffee (Coffea arabica and Coffea canephora). Seventy-three articles were identified that addressed the study's research question including 42 articles on environmental factors, 20 articles on management conditions, and 11 articles on both. While variation was found between studies, findings highlight that coffee quality is vulnerable to changes in light exposure, altitude, water stress, temperature, carbon dioxide, and nutrient management. Both increases as well as decreases were found in secondary metabolites and sensory attributes that determine coffee quality in response to shifts in environmental and management conditions. The most consistent evidence identified through this systematic review includes the following two trends: (1) increased altitude is associated with improved sensory attributes of coffee and; (2) increased light exposure is associated with decreased sensory attributes of coffee. Research gaps were found regarding the effects of shifts in carbon dioxide, water stress, and temperature on the directionality (increase, decrease, or non-linear) of coffee quality and how this varies with location, elevation, and management conditions. This systematic review further identified the following research needs: (1) long-term studies that examine the interactive effects of multiple environmental factors and management conditions on coffee quality; (2) studies that examine the interaction between sensory attributes and secondary metabolites that determine coffee quality and; (3) studies on the feasibility of various climate-adaptation strategies for mitigating the effects of climate change on coffee quality. Evidence-based innovations are needed to mitigate climate impacts on coffee quality toward enhanced sustainability and resilience of the coffee sector from farm to cup.
Collapse
Affiliation(s)
- Selena Ahmed
- Food and Health Lab, Department of Health and Human Development, Montana State University, Bozeman, MT, United States
| | - Sarah Brinkley
- Department of Horticultural Sciences, Center for Coffee Research and Education, Texas A&M University, College Station, TX, United States
| | - Erin Smith
- Food and Health Lab, Department of Health and Human Development, Montana State University, Bozeman, MT, United States
| | - Ariella Sela
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States
| | - Mitchell Theisen
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States
| | - Cyrena Thibodeau
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States
| | - Teresa Warne
- Food and Health Lab, Department of Health and Human Development, Montana State University, Bozeman, MT, United States
| | | | | | - Peter Giuliano
- Specialty Coffee Association, Santa Ana, CA, United States
- Coffee Science Foundation, Santa Ana, CA, United States
| | | | - Sean B. Cash
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States
| |
Collapse
|
8
|
La Nasa J, Lomonaco T, Manco E, Ceccarini A, Fuoco R, Corti A, Modugno F, Castelvetro V, Degano I. Plastic breeze: Volatile organic compounds (VOCs) emitted by degrading macro- and microplastics analyzed by selected ion flow-tube mass spectrometry. CHEMOSPHERE 2021; 270:128612. [PMID: 33127106 DOI: 10.1016/j.chemosphere.2020.128612] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/02/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
Pollution from microplastics (MPs) has become one of the most relevant topics in environmental chemistry. The risks related to MPs include their capability to adsorb toxic and harmful molecular species, and to release additives and degradation products into ecosystems. Their role as a primary source of a broad range of harmful volatile organic compounds (VOCs) has also been recently reported. In this work, we applied a non-destructive approach based on selected-ion flow tube mass spectrometry (SIFT-MS) for the characterization of VOCs released from a set of plastic debris collected from a sandy beach in northern Tuscany. The interpretation of the individual SIFT-MS spectra, aided by principal component data analysis, allowed us to relate the aged polymeric materials that make up the plastic debris (polyethylene, polypropylene, and polyethylene terephthalate) to their VOC emission profile, degradation level, and sampling site. The study proves the potential of SIFT-MS application in the field, as a major advance to obtain fast and reliable information on the VOCs emitted from microplastics. The possibility to obtain qualitative and quantitative data on plastic debris in less than 2 min also makes SIFT-MS a useful and innovative tool for future monitoring campaigns involving statistically significant sets of environmental samples.
Collapse
Affiliation(s)
- Jacopo La Nasa
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13 I-56124, Pisa, Italy
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13 I-56124, Pisa, Italy
| | - Enrico Manco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13 I-56124, Pisa, Italy
| | - Alessio Ceccarini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13 I-56124, Pisa, Italy
| | - Roger Fuoco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13 I-56124, Pisa, Italy
| | - Andrea Corti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13 I-56124, Pisa, Italy
| | - Francesca Modugno
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13 I-56124, Pisa, Italy.
| | - Valter Castelvetro
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13 I-56124, Pisa, Italy
| | - Ilaria Degano
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13 I-56124, Pisa, Italy
| |
Collapse
|
9
|
Macheiner L, Schmidt A, Karpf F, Mayer HK. A novel UHPLC method for determining the degree of coffee roasting by analysis of furans. Food Chem 2020; 341:128165. [PMID: 33038777 DOI: 10.1016/j.foodchem.2020.128165] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 11/26/2022]
Abstract
The aim of this study was to develop a multi-analyte UHPLC method for furans and to apply it to commercial coffee samples as well as commercial roasting trials. Furans, as rising time-temperature indicators (TTIs), promised to be an alternative to unsatisfactory roasting temperature measurements. Consequently, a UHPLC-UV method for the determination of 5-hydroxymethyl-2-furfural (HMF), 5-hydroxymethyl-2-furoic acid (HMFA), 2-furfural (F), 5-methylfurfural (MF), 2-furyl methyl ketone (FMC), 2-furoic acid (FA), and for 3-caffeoylquinic acid (3-CQA) was developed and validated. Commercial roasted coffee beans contained 77.7-322 mg/kg HMF, 73.3-158 mg/kg HMFA, 109-200 mg/kg 2-F, 157-209 mg/kg MF, 12.3-32.8 mg/kg FMC, and 137-205 mg/kg FA. Roasting trial samples showed strong rising HMF contents (max.: Arabica: 769 mg/kg, Robusta: 364 mg/kg) followed by a distinct decline. Only MF and FA appeared as steady rising TTIs in the roasting process in Arabica and Robusta beans. 3-CQA fitted well as a decreasing TTI as expected.
Collapse
Affiliation(s)
- Lukas Macheiner
- Department of Food Science and Technology, Food Chemistry Laboratory, BOKU - University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, A-1190 Vienna, Austria
| | - Anatol Schmidt
- Department of Food Science and Technology, Food Chemistry Laboratory, BOKU - University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, A-1190 Vienna, Austria. https://orcid.org/0000-0003-2424-5582
| | - Franz Karpf
- Department of Food Science and Technology, Food Chemistry Laboratory, BOKU - University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, A-1190 Vienna, Austria. https://orcid.org/0000-0003-0477-3206
| | - Helmut K Mayer
- Department of Food Science and Technology, Food Chemistry Laboratory, BOKU - University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, A-1190 Vienna, Austria.
| |
Collapse
|
10
|
Smith D, McEwan MJ, Španěl P. Understanding Gas Phase Ion Chemistry Is the Key to Reliable Selected Ion Flow Tube-Mass Spectrometry Analyses. Anal Chem 2020; 92:12750-12762. [PMID: 32857492 DOI: 10.1021/acs.analchem.0c03050] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Ion-molecule reactions (IMR) are at the very core of trace gas analyses in modern chemical ionization (CI) mass spectrometer instruments, which are increasingly being used in diverse areas of research and industry. The focus of this Perspective is on the ion chemistry that underpins gas-phase analytical CI methods. Special attention is given to the soft chemical ionization method known as selected ion flow tube-mass spectrometry (SIFT-MS). The processes involved in the ion chemistry of the reagent cations, H3O+, NO+, and O2+•, and the anions, O-•, O2-•, OH-, and NO2-, are discussed in some detail. Stressed throughout is that an understanding of these processes is mandatory to obtain reliable analyses of humid gaseous media such as ambient air and exhaled breath. It is indicated that further research is needed to understand the consequences of replacing helium in some situations by the more readily available nitrogen as the carrier gas in SIFT-MS.
Collapse
Affiliation(s)
- David Smith
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Murray J McEwan
- Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Patrik Španěl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223 Prague 8, Czech Republic
| |
Collapse
|
11
|
Mahmud MMC, Shellie RA, Keast R. Unravelling the relationship between aroma compounds and consumer acceptance: Coffee as an example. Compr Rev Food Sci Food Saf 2020; 19:2380-2420. [DOI: 10.1111/1541-4337.12595] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 04/01/2020] [Accepted: 05/25/2020] [Indexed: 11/27/2022]
Affiliation(s)
- M M Chayan Mahmud
- CASS Food Research Center, School of Exercise and Nutrition SciencesDeakin University Burwood Victoria Australia
| | - Robert A. Shellie
- CASS Food Research Center, School of Exercise and Nutrition SciencesDeakin University Burwood Victoria Australia
| | - Russell Keast
- CASS Food Research Center, School of Exercise and Nutrition SciencesDeakin University Burwood Victoria Australia
| |
Collapse
|
12
|
|
13
|
Brůhová Michalčíková R, Dryahina K, Smith D, Španěl P. Volatile compounds released by Nalophan; implications for selected ion flow tube mass spectrometry and other chemical ionisation mass spectrometry analytical methods. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8602. [PMID: 31756780 DOI: 10.1002/rcm.8602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
UNLABELLED Nalophan bags are commonly used to collect breath samples for volatile metabolite analysis. Volatile organic compounds (VOCs) released from the polymer can, however, be mistaken as breath metabolites when analyses are performed by selected ion flow tube mass spectrometry, SIFT-MS, or techniques that depend on a proper understanding of ion chemistry. METHODS Three analytical techniques were used to analyse the VOCs released into the nitrogen used to expand Nalophan bags, viz. gas chromatography/mass spectrometry (GC/MS), secondary electrospray ionization mass spectrometry (SESI-MS) and selected ion flow tube mass spectrometry (SIFT-MS). The most significant VOCs were identified and quantified by SIFT-MS as a function of storage time, temperature and humidity. RESULTS The consistent results obtained by these three analytical methods identify 1,2-ethanediol (ethylene glycol) and 2-methyl-1,3-dioxolane as the major VOCs released by the Nalophan. Their concentrations are enhanced by increasing the bag storage temperature and time, reaching 170 parts-per-billion by volume (ppbv) for ethylene glycol and 34 ppbv for 2-methyl-1,3-dioxolane in humid nitrogen (absolute humidity of 5%) contained in an 8-L Nalophan bag stored at 37°C for 160 min. CONCLUSIONS Using H3 O+ reagent ions for SIFT-MS and SESI-MS analyses, the following analyte ions (m/z values) are affected by the Nalophan impurities: 45, 63, 81, 89 and 99, which can compromise analyses of acetaldehyde, ethylene glycol, monoterpenes, acetoin, butyric acid, hexanal and heptane.
Collapse
Affiliation(s)
- Regina Brůhová Michalčíková
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova, Czech Republic
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Albertov, Czech Republic
| | - Kseniya Dryahina
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova, Czech Republic
| | - David Smith
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova, Czech Republic
| | - Patrik Španěl
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova, Czech Republic
| |
Collapse
|
14
|
Ghislain M, Costarramone N, Pigot T, Reyrolle M, Lacombe S, Le Bechec M. High frequency air monitoring by selected ion flow tube-mass spectrometry (SIFT-MS): Influence of the matrix for simultaneous analysis of VOCs, CO2, ozone and water. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
Kokkinofta R, Yiannopoulos S, Stylianou MA, Agapiou A. Use of Chemometrics for Correlating Carobs Nutritional Compositional Values with Geographic Origin. Metabolites 2020; 10:E62. [PMID: 32050624 PMCID: PMC7074360 DOI: 10.3390/metabo10020062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 12/14/2022] Open
Abstract
Carobs unique compositional and biological synthesis enables their characterization as functional foods. In the present study, 76 samples derived from fruit and seeds of carobs, with origin from the countries of the Mediterranean region (Cyprus, Greece, Italy, Spain, Turkey, Jordan and Palestine) were analyzed for their nutritional composition, in order to identify potential markers for their provenance and address the carobs' authenticity issue. Moisture, ash, fat, proteins, sugars (fructose, glucose, sucrose), dietary fibers and minerals (Ca, K, Mg, Na, P, Cu, Fe, Mn, Zn) were estimated following official methods. Due to the large number of data (76 samples × 17 parameters × 7 countries), chemometric techniques were employed to process them and extract conclusions. The samples of different geographical origin were discriminated with 79% success in total. The carobs from Cyprus, Italy and Spain were correctly classified without error. The main discriminators were found to be the dietary fibers, the carbohydrates and Cu, Zn and Mn, which emphasize their specific nutritional added value to the product and the country of origin impact. The results suggest that the proposed analytical approach is a powerful tool that enables the discrimination of carobs based on their country of origin. This research contributes to authenticity of carobs, adding value to local products.
Collapse
Affiliation(s)
| | | | - Marinos A. Stylianou
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Agapios Agapiou
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| |
Collapse
|
16
|
Hu X, Huang E, Barringer SA, Yousef AE. Factors affecting Alicyclobacillus acidoterrestris growth and guaiacol production and controlling apple juice spoilage by lauric arginate and ϵ-polylysine. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108883] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Price DJ, Day DA, Pagonis D, Stark H, Algrim LB, Handschy AV, Liu S, Krechmer JE, Miller SL, Hunter JF, de Gouw JA, Ziemann PJ, Jimenez JL. Budgets of Organic Carbon Composition and Oxidation in Indoor Air. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13053-13063. [PMID: 31652057 DOI: 10.1021/acs.est.9b04689] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The chemical composition of indoor air at the University of Colorado, Boulder art museum was measured by a suite of gas- and particle-phase instruments. Over 80% of the total observed organic carbon (TOOC) mass (100 μg m-3) consisted of reduced compounds (carbon oxidation state, OSC < -0.5) with high volatility (log10 C* > 7) and low carbon number (nC < 6). The museum TOOC was compared to other indoor and outdoor locations, which increased according to the following trend: remote < rural ≤ urban < indoor ≤ megacity. The museum TOOC was comparable to a university classroom and 3× less than residential environments. Trends in the total reactive flux were remote < indoor < rural < urban < megacity. High volatile organic compound (VOC) concentrations compensated low oxidant concentrations indoors to result in an appreciable reactive flux. Total hydroxyl radical (OH), ozone (O3), nitrate radical (NO3), and chlorine atom (Cl) reactivities for each location followed a similar trend to TOOC. High human occupancy events increased all oxidant reactivities in the museum by 65-125%. The lifetimes of O3, NO3, OH, and Cl reactivities were 13 h, 15 h, 23 days, and 189 days, respectively, corresponding to over 88% of indoor VOC oxidant reactivity being consumed outdoors after ventilation.
Collapse
Affiliation(s)
| | | | | | - Harald Stark
- Aerodyne Research Inc. , Billerica , Massachusetts 01821 , United States
| | | | | | | | - Jordan E Krechmer
- Aerodyne Research Inc. , Billerica , Massachusetts 01821 , United States
| | | | - James F Hunter
- Department of Civil and Environmental Engineering and Department of Materials Science and Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | | | | | | |
Collapse
|
18
|
La Nasa J, Modugno F, Colombini MP, Degano I. Validation Study of Selected Ion Flow Tube-Mass Spectrometry (SIFT-MS) in Heritage Science: Characterization of Natural and Synthetic Paint Varnishes by Portable Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2250-2258. [PMID: 31489561 DOI: 10.1007/s13361-019-02305-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
The identification at molecular level of organic materials in heritage objects as paintings requires in most cases the collection of micro-samples followed by micro-destructive analysis. In this study, we explore the possibility to characterize natural and synthetic resins used as paint varnishes by mean of non-invasive analysis of released volatile organic compounds (VOCs) through selected ion flow tube-mass spectrometry (SIFT-MS). SIFT-MS is a portable direct mass spectrometric technique that achieves the analysis of VOCs at trace levels in real time, by controlled ultra-soft chemical ionization using eight different chemical ionization agents. We tested the portable instrumentation on different reference resins used as paint varnishes, both natural (mastic, dammar, and colophony) and synthetic (Paraloid B67, MS2A, Regalrez 1094, and polyvinyl acetate), to evaluate the possibility to acquire qualitative data for the identification of these materials in heritage objects avoiding any sampling. This new analytical approach was validated by comparison with the traditional approach for VOCs analysis based on solid phase micro extraction-gas chromatography/mass spectrometry (SPME-GC/MS) analysis. The results demonstrate the use of SIFT-MS as an in situ non-invasive and non-destructive mass spectrometric technique to identify organic materials, such as paint varnishes.
Collapse
Affiliation(s)
- Jacopo La Nasa
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Francesca Modugno
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | | | - Ilaria Degano
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy.
| |
Collapse
|
19
|
Dryahina K, Som S, Smith D, Španěl P. Characterization of spoilage‐related volatile organic compounds in packaged leaf salads. FLAVOUR FRAG J 2019. [DOI: 10.1002/ffj.3535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Kseniya Dryahina
- J. Heyrovský Institute of Physical Chemistry Academy of Sciences of the Czech Republic Prague Czech Republic
| | - Suman Som
- J. Heyrovský Institute of Physical Chemistry Academy of Sciences of the Czech Republic Prague Czech Republic
| | - David Smith
- J. Heyrovský Institute of Physical Chemistry Academy of Sciences of the Czech Republic Prague Czech Republic
| | - Patrik Španěl
- J. Heyrovský Institute of Physical Chemistry Academy of Sciences of the Czech Republic Prague Czech Republic
| |
Collapse
|
20
|
Kim HJ, Hong DL, Yu JW, Lee SM, Lee YB. Identification of Headspace Volatile Compounds of Blended Coffee and Application to Principal Component Analysis. Prev Nutr Food Sci 2019; 24:217-223. [PMID: 31328128 PMCID: PMC6615358 DOI: 10.3746/pnf.2019.24.2.217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
Coffee can be blended to create a variety of products to meet consumer’s needs. In order to uncover the blending effect of coffee beans, we performed an experiment using principal component analysis (PCA). Twelve varieties of green beans were tested in 11 experimental groups, and the volatile compounds of the beans were analyzed. A total of 41 volatile compounds were identified. PCA was performed on 13 compounds that had a low odor threshold value or a high concentration among the identified compounds. PCA of total volatile compounds showed that principal component (PC) 1 and PC2 were extracted within 80% cumulative dispersion level. In PC1 and PC2, furfuryl alcohol and formic acid ethyl ester showed the greatest positive correlation coefficients among all the volatile compounds. The largest negative correlation coefficients in PC1 and PC2 were 4-hydroxy-2-butanone and 3-(ethylthio)propanal, respectively. Using PCA of the major volatile compounds in coffee, propanal and 1-methylpyrrole were found to have the largest positive correlation coefficients in PC1 and PC2, respectively. In the score plot of the major volatile components, 4 kinds of blended coffee were closely grouped, therefore showing similar aroma qualities. However, 5 kinds of other blended coffees showed a positive correlation with PC2. This is probably due to 3-(ethylthio)propanal acting as a specific value. The application of statistical methods to blended coffee allows for logical and systematic data analysis of data and may be used as a basis for quality evaluation.
Collapse
Affiliation(s)
- Hyeon-Jae Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| | - Dong-Lee Hong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| | - Jung-Wan Yu
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| | - Seung-Min Lee
- Food R&D Health Supplement, CJ Blossom Park, Gyeonggi 16495, Korea
| | - Yang-Bong Lee
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| |
Collapse
|
21
|
Langford VS, Padayachee D, McEwan MJ, Barringer SA. Comprehensive odorant analysis for on‐line applications using selected ion flow tube mass spectrometry (
SIFT
‐
MS
). FLAVOUR FRAG J 2019. [DOI: 10.1002/ffj.3516] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | | | - Murray J. McEwan
- Syft Technologies Limited Christchurch New Zealand
- Department of Chemistry University of Canterbury Christchurch New Zealand
| | - Sheryl A. Barringer
- Department of Food Science and Technology The Ohio State University Columbus OH United States of America
| |
Collapse
|
22
|
Castada HZ, Barringer SA. Online, real‐time, and direct use of SIFT‐MS to measure garlic breath deodorization: a review. FLAVOUR FRAG J 2019. [DOI: 10.1002/ffj.3503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Hardy Z. Castada
- Department of Food Science & Technology The Ohio State University Columbus Ohio USA
| | - Sheryl Ann Barringer
- Department of Food Science & Technology The Ohio State University Columbus Ohio USA
| |
Collapse
|
23
|
Chang A, Li HY, Chang IN, Chu YH. Affinity Ionic Liquids for Chemoselective Gas Sensing. Molecules 2018; 23:E2380. [PMID: 30231477 PMCID: PMC6225420 DOI: 10.3390/molecules23092380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/09/2018] [Accepted: 09/15/2018] [Indexed: 01/02/2023] Open
Abstract
Selective gas sensing is of great importance for applications in health, safety, military, industry and environment. Many man-made and naturally occurring volatile organic compounds (VOCs) can harmfully affect human health or cause impairment to the environment. Gas analysis based on different principles has been developed to convert gaseous analytes into readable output signals. However, gas sensors such as metal-oxide semiconductors suffer from high operating temperatures that are impractical and therefore have limited its applications. The cost-effective quartz crystal microbalance (QCM) device represents an excellent platform if sensitive, selective and versatile sensing materials were available. Recent advances in affinity ionic liquids (AILs) have led them to incorporation with QCM to be highly sensitive for real-time detection of target gases at ambient temperature. The tailorable functional groups in AIL structures allow for chemoselective reaction with target analytes for single digit parts-per-billion detection on mass-sensitive QCM. This structural diversity makes AILs promising for the creation of a library of chemical sensor arrays that could be designed to efficiently detect gas mixtures simultaneously as a potential electronic in future. This review first provides brief introduction to some conventional gas sensing technologies and then delivers the latest results on our development of chemoselective AIL-on-QCM methods.
Collapse
Affiliation(s)
- Albert Chang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Minghsiung, Chiayi 62102, Taiwan.
| | - Hsin-Yi Li
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Minghsiung, Chiayi 62102, Taiwan.
| | - I-Nan Chang
- ANT Technology Co., Ltd., 137, Section 1, Fushing South Road, Taipei 10666, Taiwan.
| | - Yen-Ho Chu
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Minghsiung, Chiayi 62102, Taiwan.
| |
Collapse
|
24
|
de Melo Pereira GV, de Carvalho Neto DP, Magalhães Júnior AI, Vásquez ZS, Medeiros ABP, Vandenberghe LPS, Soccol CR. Exploring the impacts of postharvest processing on the aroma formation of coffee beans - A review. Food Chem 2018; 272:441-452. [PMID: 30309567 DOI: 10.1016/j.foodchem.2018.08.061] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 12/15/2022]
Abstract
The aim of this review is to describe the volatile aroma compounds of green coffee beans and evaluate sources of variation in the formation and development of coffee aroma through postharvest processing. The findings of this survey showed that the volatile constituents of green coffee beans (e.g., alcohols, aldehydes, and alkanes) have no significant influence on the final coffee aroma composition, as only a few such compounds remain in the beans after roasting. On the other hand, microbial-derived, odor-active compounds produced during removal of the fruit mucilage layer, including esters, higher alcohols, aldehydes, and ketones, can be detected in the final coffee product. Many postharvest processing including drying and storage processes could influence the levels of coffee aroma compositions, which remain to be elucidated. Better understanding of the effect of these processes on coffee aroma composition would assist coffee producers in the optimal selection of postharvest parameters that favor the consistent production of flavorful coffee beans.
Collapse
Affiliation(s)
- Gilberto V de Melo Pereira
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), 19011 Curitiba, Paraná 81531-980, Brazil
| | - Dão P de Carvalho Neto
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), 19011 Curitiba, Paraná 81531-980, Brazil
| | - Antonio I Magalhães Júnior
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), 19011 Curitiba, Paraná 81531-980, Brazil
| | - Zulma S Vásquez
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), 19011 Curitiba, Paraná 81531-980, Brazil
| | - Adriane B P Medeiros
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), 19011 Curitiba, Paraná 81531-980, Brazil
| | - Luciana P S Vandenberghe
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), 19011 Curitiba, Paraná 81531-980, Brazil
| | - Carlos R Soccol
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), 19011 Curitiba, Paraná 81531-980, Brazil.
| |
Collapse
|