1
|
Hammond HL, Roy CJ. History and Toxinology of Palytoxins. Toxins (Basel) 2024; 16:417. [PMID: 39453193 PMCID: PMC11511052 DOI: 10.3390/toxins16100417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Palytoxins are a group of highly potent and structurally complex marine toxins that rank among some of the most toxic substances known to science. Palytoxins are naturally synthesized by a variety of marine organisms, including Palythoa zoanthids, Ostreopsis dinoflagellates, and Trichodesmium cyanobacteria, and are widely distributed in tropical and temperate regions where they can bioaccumulate in marine life. The evolution of research on palytoxins has been an intricate exchange between interdisciplinary fields, drawing insights from chemistry, biology, medicine, and environmental science in efforts to better understand and mitigate the health risks associated with this family of toxins. In this review, we begin with a brief history covering the discovery of this group of toxins and the events that led to its isolation. We then focus on the chemical structure of these compounds and their proposed mechanism of action. Finally, we review in vitro, ex vivo, and in vivo studies related to their toxicity, with the aim to provide a broad overview of the current knowledge on palytoxin toxinology.
Collapse
Affiliation(s)
- Harriet L. Hammond
- Center for Airborne Infection & Transmission Science, Tulane University School of Medicine, New Orleans, LA 70112, USA;
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Chad J. Roy
- Center for Airborne Infection & Transmission Science, Tulane University School of Medicine, New Orleans, LA 70112, USA;
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
| |
Collapse
|
2
|
Dutra Pierezan M, Rafael Kleeman C, Luiz Manique Barreto P, Barcellos Hoff R, Verruck S. Investigating the etiology of Haff disease: Optimization and validation of a sensitive LC-MS/MS method for palytoxins analysis in directly associated freshwater and marine food samples from Brazil. Food Res Int 2024; 190:114585. [PMID: 38945605 DOI: 10.1016/j.foodres.2024.114585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 07/02/2024]
Abstract
Haff disease typically develops after eating contaminated marine or freshwater species, especially fish. Despite still having an unknown etiology, recent reports have suggested its possible correlation with palytoxins. Therefore, the present work aimed to optimize and perform a validation of a sensitive method using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) for the analysis of palytoxin and some of its analogs, with the main purpose of investigating their presence in marine and freshwater food samples associated with Haff disease in Brazil. The method optimization was performed using a central composite rotatable design and fish samples fortified with the palytoxin standard. Then, the optimized method was validated for different food matrices, including freshwater and marine fish, mollusks, and crustaceans. The sample preparation involved a solid-liquid extraction using methanol and water, solid-phase extraction using Strata-X cartridges, and on-column palytoxin oxidation. The detection of the main oxidized fragments (amino and amide aldehydes) was achieved by LC-MS/MS with electrospray ionization in positive mode, using a C18 column, as well as acetonitrile and water as mobile phases, both acidified with 0.1 % of formic acid. After optimization and validation, the etiological investigation involved the analysis of 16 Brazilian Haff disease-related food samples (in natura and leftover meals) from 2022. The method was demonstrated to be appropriate for quantitative analysis of freshwater and marine species. So far, it has proven to be one of the most sensitive methods related to palytoxin detection (LOD 10 μg/kg), being able to work in a range that includes the provisional ingestion limit (30 μg/kg). Regarding the Haff disease-related samples analysis, there is a strong indication of palytoxin contamination since the amino aldehyde (common fragment for all palytoxins) was detected in 15 of the 16 samples. Selected results were confirmed using liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS).
Collapse
Affiliation(s)
- Milena Dutra Pierezan
- Department of Food Science and Technology, Federal University of Santa Catarina, Rod. Admar Gonzaga, 1346, Itacorubi, 88034-001 Florianópolis, SC, Brazil
| | - Cristian Rafael Kleeman
- Department of Food Science and Technology, Federal University of Santa Catarina, Rod. Admar Gonzaga, 1346, Itacorubi, 88034-001 Florianópolis, SC, Brazil; Advanced Laboratory Section of Santa Catarina (SLAV/SC), Ministry of Agriculture and Livestock (MAPA), R. João Grumiche, 117 - Bloco T, 88102-600 São José, SC, Brazil; Instituto Catarinense de Sanidade Agropecuária (ICASA), Florianópolis, SC 88034-100, Brazil
| | - Pedro Luiz Manique Barreto
- Department of Food Science and Technology, Federal University of Santa Catarina, Rod. Admar Gonzaga, 1346, Itacorubi, 88034-001 Florianópolis, SC, Brazil
| | - Rodrigo Barcellos Hoff
- Advanced Laboratory Section of Santa Catarina (SLAV/SC), Ministry of Agriculture and Livestock (MAPA), R. João Grumiche, 117 - Bloco T, 88102-600 São José, SC, Brazil.
| | - Silvani Verruck
- Department of Food Science and Technology, Federal University of Santa Catarina, Rod. Admar Gonzaga, 1346, Itacorubi, 88034-001 Florianópolis, SC, Brazil.
| |
Collapse
|
3
|
First Characterization of Ostreopsis cf. ovata (Dinophyceae) and Detection of Ovatoxins during a Multispecific and Toxic Ostreopsis Bloom on French Atlantic Coast. Mar Drugs 2022; 20:md20070461. [PMID: 35877754 PMCID: PMC9315632 DOI: 10.3390/md20070461] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 01/17/2023] Open
Abstract
Blooms of the benthic toxic dinoflagellate genus Ostreopsis have been recorded more frequently during the last two decades, particularly in warm temperate areas such as the Mediterranean Sea. The proliferation of Ostreopsis species may cause deleterious effects on ecosystems and can impact human health through skin contact or aerosol inhalation. In the eastern Atlantic Ocean, the toxic O. cf. ovata has not yet been reported to the north of Portugal, and the only species present further north was O. cf. siamensis, for which the toxic risk is considered low. During summer blooms of unidentified Ostreopsis species on the French Basque coast (Atlantic) in 2020 and 2021, people suffered from irritations and respiratory disorders, and the number of analyzed cases reached 674 in 2021. In order to investigate the causes, sampling was carried out during summer 2021 to (i) taxonomically identify Ostreopsis species present using a molecular approach, (ii) isolate strains from the bloom and culture them, and (iii) characterize the presence of known toxins which may be involved. For the first time, this study reports the presence of both O. cf. siamensis and O. cf. ovata, for which the French Basque coast is a new upper distribution limit. Furthermore, the presence of ovatoxins a, b, c, and d in the environmental sample and in a cultivated strain in culture confirmed the toxic nature of the bloom and allowed identifying O. cf. ovata as the producer. The present data identify a new health risk in the area and highlight the extended distribution of some harmful dinoflagellates, presumably in relation to climate change.
Collapse
|
4
|
Functional and Structural Biological Methods for Palytoxin Detection. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10070916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Palytoxin (PLTX) and its analogues are marine polyethers identified in Palythoa and Zoanthus corals, Ostreopsis dinoflagellates, and Trichodesmium cyanobacteria. Humans can be exposed to these toxins by different routes with a series of adverse effects but the most severe risk is associated with poisonings by the consumption of edible marine organisms accumulating these toxins, as occurs in (sub)-tropical areas. In temperate areas, adverse effects ascribed to PLTXs have been recorded after inhalation of marine aerosols and/or cutaneous contact with seawater during Ostreopsis blooms, as well as during cleaning procedures of Palythoa-containing home aquaria. Besides instrumental analytical methods, in the last years a series of alternative or complementary methods based on biological/biochemical tools have been developed for the rapid and specific PLTX detection required for risk assessment. These methods are usually sensitive, cost- and time-effective, and do not require highly specialized operators. Among them, structural immunoassays and functional cell-based assays are reviewed. The availability of specific anti-PLTX antibodies allowed the development of different sensitive structural assays, suitable for its detection also in complex matrices, such as mussels. In addition, knowing the mechanism of PLTX action, a series of functional identification methods has been developed. Despite some of them being limited by matrix effects and specificity issues, biological methods for PLTX detection represent a feasible tool, suitable for rapid screening.
Collapse
|
5
|
Symbiodiniaceae diversity and characterization of palytoxin in various zoantharians (Anthozoa, Hexacorallia). ORG DIVERS EVOL 2022. [DOI: 10.1007/s13127-022-00550-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Zuo W, Kwok HF. Development of Marine-Derived Compounds for Cancer Therapy. Mar Drugs 2021; 19:md19060342. [PMID: 34203870 PMCID: PMC8232666 DOI: 10.3390/md19060342] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/11/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer has always been a threat to human health with its high morbidity and mortality rates. Traditional therapy, including surgery, chemotherapy and radiotherapy, plays a key role in cancer treatment. However, it is not able to prevent tumor recurrence, drug resistance and treatment side effects, which makes it a very attractive challenge to search for new effective and specific anticancer drugs. Nature is a valuable source of multiple pharmaceuticals, and most of the anticancer drugs are natural products or derived from them. Marine-derived compounds, such as nucleotides, proteins, peptides and amides, have also shed light on cancer therapy, and they are receiving a fast-growing interest due to their bioactive properties. Their mechanisms contain anti-angiogenic, anti-proliferative and anti-metastasis activities; cell cycle arrest; and induction of apoptosis. This review provides an overview on the development of marine-derived compounds with anticancer properties, both their applications and mechanisms, and discovered technologies.
Collapse
Affiliation(s)
- Weimin Zuo
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao;
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao;
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao
- Correspondence:
| |
Collapse
|
7
|
Abstract
This review covers the literature published between January and December in 2018 for marine natural products (MNPs), with 717 citations (706 for the period January to December 2018) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1554 in 469 papers for 2018), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. The proportion of MNPs assigned absolute configuration over the last decade is also surveyed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia and School of Environment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
8
|
Chomérat N, Bilien G, Viallon J, Hervé F, Réveillon D, Henry K, Zubia M, Vieira C, Ung A, Gatti CMI, Roué M, Derrien A, Amzil Z, Darius HT, Chinain M. Taxonomy and toxicity of a bloom-forming Ostreopsis species (Dinophyceae, Gonyaulacales) in Tahiti island (South Pacific Ocean): one step further towards resolving the identity of O. siamensis. HARMFUL ALGAE 2020; 98:101888. [PMID: 33129466 DOI: 10.1016/j.hal.2020.101888] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/18/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Among dinoflagellates responsible for benthic harmful algal blooms, the genus Ostreopsis primarily described from tropical areas has been increasingly reported from subtropical and temperate areas worldwide. Several species of this toxigenic genus produce analogs of palytoxin, thus representing a major threat to human and environmental health. The taxonomy of several species needs to be clarified as it was based mostly on morphological descriptions leading in some cases to ambiguous interpretations and misidentifications. The present study aims at reporting a benthic bloom that occurred in April 2019 in Tahiti island, French Polynesia. A complete taxonomic investigation of the blooming Ostreopsis species was realized using light, epifluorescence and field emission electron microscopy and phylogenetic analyses inferred from LSU rDNA and ITS-5.8S rDNA regions. Toxicity of a natural sample and strains isolated from the bloom was assessed using both neuroblastoma cell-based assay and LC-MS/MS analyses. Morphological observations showed that cells were round to oval, large, 58.0-82.5 µm deep (dorso-ventral length) and 45.7-61.2 µm wide. The cingulum was conspicuously undulated, forming a 'V' in ventral view. Thecal plates possessed large pores in depressions, with a collar rim. Detailed observation also revealed the presence of small thecal pores invisible in LM. Phylogenetic analyses were congruent and all sequences clustered within the genotype Ostreopsis sp. 6, in a subclade closely related to sequences from the Gulf of Thailand and Malaysia. No toxicity was found on the field sample but all the strains isolated from the bloom were found to be cytotoxic and produced ostreocin D, a lower amount of ostreocins A and B and putatively other compounds. Phylogenetic data demonstrate the presence of this species in the Gulf of Thailand, at the type locality of O. siamensis, and morphological data are congruent with the original description and support this identification.
Collapse
Affiliation(s)
- Nicolas Chomérat
- Ifremer, LER BO, Station of Marine Biology of Concarneau, Place de la Croix, F-29900 Concarneau, France.
| | - Gwenael Bilien
- Ifremer, LER BO, Station of Marine Biology of Concarneau, Place de la Croix, F-29900 Concarneau, France
| | - Jérôme Viallon
- Institut Louis Malardé, Laboratoire des Micro-algues toxiques, UMR 241-EIO, PO box 30, 98713 Papeete, Tahiti, French Polynesia
| | - Fabienne Hervé
- Ifremer, Phycotoxins Laboratory, BP 21105, F-44311 Nantes Cedex 3, France
| | - Damien Réveillon
- Ifremer, Phycotoxins Laboratory, BP 21105, F-44311 Nantes Cedex 3, France
| | - Kévin Henry
- Institut Louis Malardé, Laboratoire des Micro-algues toxiques, UMR 241-EIO, PO box 30, 98713 Papeete, Tahiti, French Polynesia
| | - Mayalen Zubia
- Université de Polynésie Française, UMR 241-EIO, PO Box 6570, 98702 Faa'a, Tahiti, French Polynesia
| | - Christophe Vieira
- Kobe University Research Center for Inland Seas, Rokkodai, Kobe 657-8501, Japan
| | - André Ung
- Institut Louis Malardé, Laboratoire des Micro-algues toxiques, UMR 241-EIO, PO box 30, 98713 Papeete, Tahiti, French Polynesia
| | - Clémence Mahana Iti Gatti
- Institut Louis Malardé, Laboratoire des Micro-algues toxiques, UMR 241-EIO, PO box 30, 98713 Papeete, Tahiti, French Polynesia
| | - Mélanie Roué
- Institut de Recherche pour le Développement (IRD), UMR 241-EIO, PO box 529, 98713 Papeete, Tahiti, French Polynesia
| | - Amélie Derrien
- Ifremer, LER BO, Station of Marine Biology of Concarneau, Place de la Croix, F-29900 Concarneau, France
| | - Zouher Amzil
- Ifremer, Phycotoxins Laboratory, BP 21105, F-44311 Nantes Cedex 3, France
| | - Hélène Taiana Darius
- Institut Louis Malardé, Laboratoire des Micro-algues toxiques, UMR 241-EIO, PO box 30, 98713 Papeete, Tahiti, French Polynesia
| | - Mireille Chinain
- Institut Louis Malardé, Laboratoire des Micro-algues toxiques, UMR 241-EIO, PO box 30, 98713 Papeete, Tahiti, French Polynesia
| |
Collapse
|
9
|
Verma A, Hughes DJ, Harwood DT, Suggett DJ, Ralph PJ, Murray SA. Functional significance of phylogeographic structure in a toxic benthic marine microbial eukaryote over a latitudinal gradient along the East Australian Current. Ecol Evol 2020; 10:6257-6273. [PMID: 32724512 PMCID: PMC7381561 DOI: 10.1002/ece3.6358] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/24/2020] [Accepted: 04/22/2020] [Indexed: 01/04/2023] Open
Abstract
Genetic diversity in marine microbial eukaryotic populations (protists) drives their ecological success by enabling diverse phenotypes to respond rapidly to changing environmental conditions. Despite enormous population sizes and lack of barriers to gene flow, genetic differentiation that is associated with geographic distance, currents, and environmental gradients has been reported from planktonic protists. However, for benthic protists, which have reduced dispersal opportunities, phylogeography and its phenotypic significance are little known. In recent years, the East Australian Current (EAC) has intensified its southward flow, associated with the tropicalization of temperate waters. Benthic harmful algal species have been increasingly found in south-eastern Australia. Yet little is known about the potential of these species to adapt or extend their range in relation to changing conditions. Here, we examine genetic diversity and functional niche divergence in a toxic benthic dinoflagellate, Ostreopsis cf. siamensis, along a 1,500 km north-south gradient in southeastern Australia. Sixty-eight strains were established from eight sampling sites. The study revealed long-standing genetic diversity among strains established from the northern-most sites, along with large phenotypic variation in observed physiological traits such as growth rates, cell volume, production of palytoxin-like compounds, and photophysiological parameters. Strains from the southern populations were more uniform in both genetic and functional traits, and have possibly colonized their habitats more recently. Our study reports significant genetic and functional trait variability in a benthic harmful algal species, indicative of high adaptability, and a possible climate-driven range extension. The observed high trait variation may facilitate development of harmful algal blooms under dynamic coastal environmental conditions.
Collapse
Affiliation(s)
- Arjun Verma
- Climate Change ClusterUniversity of Technology SydneyUltimoNSWAustralia
| | - David J. Hughes
- Climate Change ClusterUniversity of Technology SydneyUltimoNSWAustralia
| | | | - David J. Suggett
- Climate Change ClusterUniversity of Technology SydneyUltimoNSWAustralia
| | - Peter J. Ralph
- Climate Change ClusterUniversity of Technology SydneyUltimoNSWAustralia
| | - Shauna A. Murray
- Climate Change ClusterUniversity of Technology SydneyUltimoNSWAustralia
| |
Collapse
|
10
|
Verma A, Kohli GS, Harwood DT, Ralph PJ, Murray SA. Transcriptomic investigation into polyketide toxin synthesis in Ostreopsis (Dinophyceae) species. Environ Microbiol 2019; 21:4196-4211. [PMID: 31415128 DOI: 10.1111/1462-2920.14780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 12/01/2022]
Abstract
In marine ecosystems, dinoflagellates can become highly abundant and even dominant at times, despite their comparatively slow growth. Their ecological success may be related to their production of complex toxic polyketide compounds. Ostreopsis species produce potent palytoxin-like compounds (PLTX), which are associated with human skin and eye irritations, and illnesses through the consumption of contaminated seafood. To investigate the genetic basis of PLTX-like compounds, we sequenced and annotated transcriptomes from two PLTX-producing Ostreopsis species; O. cf. ovata, O. cf. siamensis, one non-PLTX producing species, O. rhodesae and compared them to a close phylogenetic relative and non-PLTX producer, Coolia malayensis. We found no clear differences in the presence or diversity of ketosynthase and ketoreductase transcripts between PLTX producing and non-producing Ostreopsis and Coolia species, as both groups contained >90 and > 10 phylogenetically diverse ketosynthase and ketoreductase transcripts, respectively. We report for the first-time type I single-, multi-domain polyketide synthases (PKSs) and hybrid non-ribosomal peptide synthase/PKS transcripts from all species. The long multi-modular PKSs were insufficient by themselves to synthesize the large complex polyether backbone of PLTX-like compounds. This implies that numerous PKS domains, including both single and multi-, work together on the biosynthesis of PLTX-like and other related polyketide compounds.
Collapse
Affiliation(s)
- Arjun Verma
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Gurjeet S Kohli
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia.,Alfred-Wegener-Institute Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, 27515, Germany
| | - D Tim Harwood
- Cawthron Institute, 98, Halifax Street East, Nelson, 7010, New Zealand
| | - Peter J Ralph
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Shauna A Murray
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| |
Collapse
|
11
|
Terajima T, Uchida H, Abe N, Yasumoto T. Structure elucidation of ostreocin-A and ostreocin-E1, novel palytoxin analogs produced by the dinoflagellate Ostreopsis siamensis, using LC/Q-TOF MS. Biosci Biotechnol Biochem 2019; 83:381-390. [DOI: 10.1080/09168451.2018.1550356] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
ABSTRACT
Palytoxin analogs are marine toxins with large complex polyol structures. A benthic dinoflagellate Ostreopsis siamensis produces more than ten palytoxins (ostreocins, OSTs). The limited sample availability of minor OSTs restricts the definition of their chemical structures. The present investigation characterizes structures of two minor OSTs, i.e., ostreocin-A (OSTA) and ostreocin-E1 (OSTE1), using ostreocin-D (OSTD) as a reference compound, by liquid chromatography/quadrupole-time-of-flight mass spectrometry. The molecular formulas of OSTA and OSTE1 were C127H219N3O54 and C127H217N3O52, respectively. Compared to OSTD, OSTA has an extra oxygen atom whereas OSTE1 lacks one oxygen atom and two hydrogen atoms. The MS/MS experiments (precursor ions: [M + H]+ and [M-H]−) suggested a hydroxyl substitution at C82 in OSTA and alteration(s) between C53 and C100 in OSTE1. Further analysis of structural details in OSTE1 was performed through a pseudo-MS3 experiment (precursor ion: m/z 1432.748). Accordingly, the planar structures of OSTA and OSTE1 were assigned to 42,82-dihydroxy-3,26-didemethyl-19,44-dideoxypalytoxin and 42-hydroxy-3,26-didemethyl-19,44,73-trideoxypalytoxin-72-ene, respectively.
Abbreviations:CID: collision induced dissociation; HR-LC/MS/MS: high-resolution liquid chromatography/tandem mass spectrometry; LC/ESI/Q-TOF MS: liquid chromatography/quadrupole time-of-flight mass spectrometry equipped with an electrospray ionization source; NMR: nuclear magnetic resonance; OSTs: ostreocins; OSTA: ostreocin-A; OSTB: ostreocin-B; OSTD: ostreocin-D; OSTE1: ostreocin-E1; OVTX-a: ovatoxin-a; OVTXs: ovatoxins; PLTX: palytoxin
Collapse
Affiliation(s)
- Takehito Terajima
- Department of Food and Nutrition Science, Graduate School of Agriculture, Tokyo University of Agriculture, Setagaya, Tokyo, Japan
| | - Hideaki Uchida
- Japan Customer Service Operation, Agilent Technologies Japan, Ltd, Hachioji, Tokyo, Japan
| | - Naoki Abe
- Department of Food and Nutrition Science, Graduate School of Agriculture, Tokyo University of Agriculture, Setagaya, Tokyo, Japan
| | - Takeshi Yasumoto
- Tama Laboratory, Japan Food Research Laboratories, Tama, Tokyo, Japan
| |
Collapse
|