1
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Chang D, Zaia J. Methods to improve quantitative glycoprotein coverage from bottom-up LC-MS data. MASS SPECTROMETRY REVIEWS 2022; 41:922-937. [PMID: 33764573 DOI: 10.1002/mas.21692] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/24/2020] [Accepted: 03/11/2021] [Indexed: 05/18/2023]
Abstract
Advances in mass spectrometry instrumentation, methods development, and bioinformatics have greatly improved the ease and accuracy of site-specific, quantitative glycoproteomics analysis. Data-dependent acquisition is the most popular method for identification and quantification of glycopeptides; however, complete coverage of glycosylation site glycoforms remains elusive with this method. Targeted acquisition methods improve the precision and accuracy of quantification, but at the cost of throughput and discoverability. Data-independent acquisition (DIA) holds great promise for more complete and highly quantitative site-specific glycoproteomics analysis, while maintaining the ability to discover novel glycopeptides without prior knowledge. We review additional features that can be used to increase selectivity and coverage to the DIA workflow: retention time modeling, which would simplify the interpretation of complex tandem mass spectra, and ion mobility separation, which would maximize the sampling of all precursors at a giving chromatographic retention time. The instrumentation and bioinformatics to incorporate these features into glycoproteomics analysis exist. These improvements in quantitative, site-specific analysis will enable researchers to assess glycosylation similarity in related biological systems, answering new questions about the interplay between glycosylation state and biological function.
Collapse
Affiliation(s)
- Deborah Chang
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Joseph Zaia
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Gao Z, He Y, He Q, Wei W, Luo Y, Ma Z, Chen W, Chu F, Zhang S, Liu Y, Pan Y. Multidimensional identification of disaccharide isomers based on non-covalent complexes and tandem mass spectrometry. Talanta 2022; 249:123674. [PMID: 35717753 DOI: 10.1016/j.talanta.2022.123674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022]
Abstract
Glycans are the most abundant organic polymers in nature. They are essential to living organisms and regulate a wide range of biological functions. However, mass spectrometry-based identification of glycan isomers remains challenging due to the complexity of their structures including their complex compositions, linkages, and anomeric configurations. In this study, two novel complex ions, the mononuclear copper-bound dimeric ions [(Cu2+)(A)(L-His)-H]+ and the mononuclear copper-bound quaternary ions [(Cu2+)(A)(L-Ser)3-H]+ (where A denotes a disaccharide, and L-Ser/His denotes l-serine/histidine), were designed for the collision-induced dissociation-based identification and relative quantification of 14 disaccharide isomers. When the unique fragmentation patterns of the above two types of complex ions were mapped into a three-dimensional vector, all the isomers were completely distinguished. Of note, the established method is able to identify mixtures of linkage isomers only using tandem mass spectrometry based on linkage-specific fragment ions of histidine-based complex ions. Finally, the method was successfully applied to the identification and relative quantification of two disaccharide isomers (lactose and sucrose) in dairy beverages. In conclusion, the established method is sensitive to subtle structural differences in disaccharide isomers and has the potential to be used for the differentiation of various glycans.
Collapse
Affiliation(s)
- Zhan Gao
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China
| | - Yuwen He
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China
| | - Quan He
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China
| | - Wei Wei
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China
| | - Yuanqing Luo
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China
| | - Zihan Ma
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China
| | - Weiwei Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China
| | - Fengjian Chu
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Shuheng Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China
| | - Yaqin Liu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China.
| |
Collapse
|
4
|
Nalehua MR, Zaia J. Measuring change in glycoprotein structure. Curr Opin Struct Biol 2022; 74:102371. [PMID: 35452871 DOI: 10.1016/j.sbi.2022.102371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/15/2022] [Accepted: 03/09/2022] [Indexed: 11/19/2022]
Abstract
Biosynthetic enzymes in the secretory pathway create distributions of glycans at each glycosite that elaborate the biophysical properties and biological functions of glycoproteins. Because the biosynthetic glycosylation reactions do not go to completion, each protein glycosite is heterogeneous with respect to glycosylation. This heterogeneity means that it is not sufficient to measure protein abundance in omics experiments. Rather, it is necessary to sample the distribution of glycosylation at each glycosite to quantify the changes that occur during biological processes. On the one hand, the use of data-dependent acquisition methods to sample glycopeptides is limited by the instrument duty cycle and the missing value problem. On the other, stepped window data-independent acquisition samples all precursors, but ion abundances are limited by duty cycle. Therefore, the ability to quantify accurately the flux in glycoprotein glycosylation that occurs during biological processes requires the exploitation of emerging mass spectrometry technologies capable of deep, comprehensive sampling and selective high confidence assignment of the complex glycopeptide mixtures. This review summarizes recent technical advances and mass spectral glycoproteomics analysis strategies and how these developments impact our ability to quantify the changes in glycosylation that occur during biological processes. We highlight specific improvements to glycopeptide characterization through activated electron dissociation, ion mobility trends and instrumentation, and efficient algorithmic approaches for glycopeptide assignment. We also discuss the emerging need for unified standards to enable interlaboratory collaborations and effective monitoring of structural changes in glycoproteins.
Collapse
Affiliation(s)
| | - Joseph Zaia
- Dept. of Biochemistry, Boston University, United States.
| |
Collapse
|
5
|
Qin S, Tian Z. Proteoform Identification and Quantification Using Intact Protein Database Search Engine ProteinGoggle. Methods Mol Biol 2022; 2500:131-144. [PMID: 35657591 DOI: 10.1007/978-1-0716-2325-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Proteomics studies the proteome of organisms, especially proteins that are differentially expressed under certain physiological or pathological conditions; qualitative identification of protein sequences and posttranslational modifications (PTMs) and their positions can help us systematically understand the structure and function of proteoforms. With the development and relative popularity of soft ionization technology (such as electrospray ionization technology) and high mass measurement accuracy and high-resolution mass spectrometers (such as orbitrap), the mass spectrometry (MS) characterization of complete proteins (the so-called top-down proteomics) has become possible and has gradually become popular. Corresponding database search engines and protein identification bioinformatics tools have also been greatly developed. This chapter provides a brief overview of intact protein database search algorithm "isotopic mass-to-charge ratio and envelope fingerprinting" and search engine ProteinGoggle.
Collapse
Affiliation(s)
- Suideng Qin
- School of Chemical Science & Engineering and Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, China
| | - Zhixin Tian
- School of Chemical Science & Engineering and Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, China.
| |
Collapse
|
6
|
Chiu KY, Wang Q, Gunawardena HP, Held M, Faik A, Chen H. Desalting Paper Spay Mass Spectrometry (DPS-MS) for Rapid Detection of Glycans and Glycoconjugates. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2021; 469:116688. [PMID: 35386843 PMCID: PMC8981528 DOI: 10.1016/j.ijms.2021.116688] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The detection of glycans and glycoconjugates has gained increasing attention in biological fields. Traditional mass spectrometry (MS)-based methods for glycoconjugate analysis are challenged with poor intensity when dealing with complex biological samples. We developed a desalting paper spray mass spectrometry (DPS-MS) strategy to overcome the issue of signal suppression of carbohydrates in salted buffer. Glycans and glycoconjugates (i.e., glycopeptides, nucleotide sugars, etc.) in non-volatile buffer (e.g., Tris buffer) can be loaded on the paper substrate from which buffers can be removed by washing with ACN/H2O (90/10 v/v) solution. Glycans or glycoconjugates can then be eluted and spray ionized by adding ACN/H2O/formic acid (FA) (10/90/1 v/v/v) solvent and applying a high voltage (HV) to the paper substrate. This work also showed that DPS-MS is applicable for direct detection of intact glycopeptides and nucleotide sugars as well as determination of glycosylation profiling of antibody, such as NIST monoclonal antibody IgG (NISTmAb). NISTmAb was deglycosylated with PNGase F to release N-linked oligosaccharides. Twenty-six N-linked oligosaccharides were detected by DPS-MS within a 5-minute timeframe without the need for further enrichment or derivatization. This work demonstrates that DPS-MS allows fast and sensitive detection of glycans/oligosaccharides and glycosylated species in complex matrices and has great potential in bioanalysis.
Collapse
Affiliation(s)
- Kai-Yuan Chiu
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, USA, 07102
| | - Qi Wang
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, USA, 07102
| | - Harsha P Gunawardena
- Janssen Research & Development, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA, 19477
| | - Michael Held
- Deparment of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, USA
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, Ohio USA, 45701
| | - Ahmed Faik
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, Ohio USA, 45701
- Department of Environmental and Plant Biology, Ohio University, Athens Ohio, USA, 45701
| | - Hao Chen
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, USA, 07102
| |
Collapse
|
7
|
Gao Z, Li L, Chen W, Ma Z, Li Y, Gao Y, Ding CF, Zhao X, Pan Y. Distinguishment of Glycan Isomers by Trapped Ion Mobility Spectrometry. Anal Chem 2021; 93:9209-9217. [PMID: 34165974 DOI: 10.1021/acs.analchem.1c01461] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The in-depth study of glycan has drawn large research interests since it is one of the main biopolymers on the earth with a variety of biological functions. However, the distinguishment of glycans is still difficult due to the similarity of the monosaccharide building block, the anomer, and the linkage of glycosidic bonds. In this study, four novel and representative copper-bound diastereoisomeric complex ions were simultaneously detected in a single measurement by trapped ion mobility mass spectrometry, including mononuclear copper-bound dimeric ions [(Cu2+)(A)(l-Ser)-H]+ and [(Cu2+)(A)(l-His)-H]+, the mononuclear copper-bound trimeric ion [(Cu2+)(A)(l-Ser)(l-His)-H]+, and the binuclear copper-bound tetrameric ion [(Cu2+)2(A)(l-Ser)2(l-His)-3H]+ (where A denotes an oligosaccharide, and l-Ser and l-His denote l-serine and l-histidine, respectively). By combining the collision cross sections of complex ions, 23 oligosaccharide isomers were successfully distinguished including two pairs of sialylated glycan linkage isomers. In addition, due to the unique dissociation pathways of the trimeric ion, both the relative and absolute quantification of the individual isomer in the mixture could be determined using a mass spectrometry-based kinetic method. Finally, the method established above was successfully applied to the identification and quantification of glycan isomers in dairy beverages and juice. The method in the present study was sensitive to the fine difference of glycan isomers and might have wide applicability in glycoscience.
Collapse
Affiliation(s)
- Zhan Gao
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Lei Li
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Weiwei Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Zihan Ma
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Yuan Li
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Yuanji Gao
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Chuan-Fan Ding
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Xiaoyong Zhao
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| |
Collapse
|
8
|
Cao W, Liu M, Kong S, Wu M, Zhang Y, Yang P. Recent Advances in Software Tools for More Generic and Precise Intact Glycopeptide Analysis. Mol Cell Proteomics 2021; 20:100060. [PMID: 33556625 PMCID: PMC8724820 DOI: 10.1074/mcp.r120.002090] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Intact glycopeptide identification has long been known as a key and challenging barrier to the comprehensive and accurate understanding the role of glycosylation in an organism. Intact glycopeptide analysis is a blossoming field that has received increasing attention in recent years. MS-based strategies and relative software tools are major drivers that have greatly facilitated the analysis of intact glycopeptides, particularly intact N-glycopeptides. This article provides a systematic review of the intact glycopeptide-identification process using MS data generated in shotgun proteomic experiments, which typically focus on N-glycopeptide analysis. Particular attention is paid to the software tools that have been recently developed in the last decade for the interpretation and quality control of glycopeptide spectra acquired using different MS strategies. The review also provides information about the characteristics and applications of these software tools, discusses their advantages and disadvantages, and concludes with a discussion of outstanding tools.
Collapse
Affiliation(s)
- Weiqian Cao
- The Fifth People's Hospital of Fudan University and Institutes of Biomedical Sciences, Fudan University, Shanghai, China; NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China; The Shanghai Key Laboratory of Medical Epigenetics and the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Fudan University, Shanghai, China.
| | - Mingqi Liu
- The Fifth People's Hospital of Fudan University and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Siyuan Kong
- The Fifth People's Hospital of Fudan University and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Mengxi Wu
- The Fifth People's Hospital of Fudan University and Institutes of Biomedical Sciences, Fudan University, Shanghai, China; Department of Chemistry, Fudan University, Shanghai, China
| | - Yang Zhang
- The Fifth People's Hospital of Fudan University and Institutes of Biomedical Sciences, Fudan University, Shanghai, China; The Shanghai Key Laboratory of Medical Epigenetics and the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Fudan University, Shanghai, China
| | - Pengyuan Yang
- The Fifth People's Hospital of Fudan University and Institutes of Biomedical Sciences, Fudan University, Shanghai, China; NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China; The Shanghai Key Laboratory of Medical Epigenetics and the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Fudan University, Shanghai, China; Department of Chemistry, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Xie Q, Li S, Zhao D, Ye L, Li Q, Zhang X, Zhu L, Bi C. Manipulating the position of DNA expression cassettes using location tags fused to dCas9 (Cas9-Lag) to improve metabolic pathway efficiency. Microb Cell Fact 2020; 19:229. [PMID: 33317552 PMCID: PMC7737257 DOI: 10.1186/s12934-020-01496-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/05/2020] [Indexed: 02/02/2023] Open
Abstract
Background Deactivated Cas9 (dCas9) led to significant improvement of CRISPR/Cas9-based techniques because it can be fused with a variety of functional groups to form diverse molecular devices, which can manipulate or modify target DNA cassettes. One important metabolic engineering strategy is to localize the enzymes in proximity of their substrates for improved catalytic efficiency. In this work, we developed a novel molecular device to manipulate the cellular location of specific DNA cassettes either on plasmids or on the chromosome, by fusing location tags to dCas9 (Cas9-Lag), and applied the technique for synthetic biology applications. Carotenoids like β-carotene serve as common intermediates for the synthesis of derivative compounds, which are hydrophobic and usually accumulate in the membrane compartment. Results Carotenoids like β-carotene serve as common intermediates for the synthesis of derivative compounds, which are hydrophobic and usually accumulate in the membrane components. To improve the functional expression of membrane-bound enzymes and localize them in proximity to the substrates, Cas9-Lag was used to pull plasmids or chromosomal DNA expressing carotenoid enzymes onto the cell membrane. For this purpose, dCas9 was fused to the E. coli membrane docking tag GlpF, and gRNA was designed to direct this fusion protein to the DNA expression cassettes. With Cas9-Lag, the zeaxanthin and astaxanthin titer increased by 29.0% and 26.7% respectively. Due to experimental limitations, the electron microscopy images of cells expressing Cas9-Lag vaguely indicated that GlpF-Cas9 might have pulled the target DNA cassettes in close proximity to membrane. Similarly, protein mass spectrometry analysis of membrane proteins suggested an increased expression of carotenoid-converting enzymes in the membrane components. Conclusion This work therefore provides a novel molecular device, Cas9-Lag, which was proved to increase zeaxanthin and astaxanthin production and might be used to manipulate DNA cassette location.
Collapse
Affiliation(s)
- Qianwen Xie
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, P. R. China
| | - Siwei Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, P. R. China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Dongdong Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, P. R. China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Lijun Ye
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, P. R. China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Qingyan Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, P. R. China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, P. R. China. .,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, P. R. China. .,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
10
|
Wang Q, Bhattarai M, Zhao P, Alnsour T, Held M, Faik A, Chen H. Fast and Sensitive Detection of Oligosaccharides Using Desalting Paper Spray Mass Spectrometry (DPS-MS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2226-2235. [PMID: 32910855 PMCID: PMC8189650 DOI: 10.1021/jasms.0c00310] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Conventional mass spectrometry (MS)-based analytical methods for small carbohydrate fragments (oligosaccharides, degree of polymerization 2-12) are time-consuming due to the need for an offline sample pretreatment such as desalting. Herein, we report a new paper spray ionization method, named desalting paper spray (DPS), which employs a piece of triangular filter paper for both sample desalting and ionization. Unlike regular paper spray ionization (PSI) and nanoelectrospray ionization (nanoESI), DPS-MS allows fast and sensitive detection of oligosaccharides in biological samples having complex matrices (e.g., Tris, PBS, HEPES buffers, or urine). When an oligosaccharide sample is loaded onto the filter paper substrate (10 × 5 mm, height × base) made mostly of cellulose, oligosaccharides are adsorbed on the paper via hydrophilic interactions with cellulose. Salts and buffers can be washed away using an ACN/H2O (90/10 v/v) solution, while oligosaccharides can be eluted from the paper using a solution of ACN/H2O/formic acid (FA) (10/90/1 v/v/v) and directly spray-ionized from the tip of the paper. Various saccharides at trace levels (e.g., 50 fmol) in nonvolatile buffer can be quickly analyzed by DPS-MS (<5 min per sample). DPS-MS is also applicable for direct detection of oligosaccharides from glycosyltransferase (GT) reactions, a challenging task that typically requires a radioactive assay. Quantitative analysis of acceptor and product oligosaccharides shows increased product with increased GT enzymes used for the reaction, a result in line with the radioactivity assay. This work suggests that DPS-MS has potential for rapid oligosaccharide analysis from biological samples.
Collapse
Affiliation(s)
- Qi Wang
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey
| | - Matrika Bhattarai
- Department of Environmental and Plant Biology & Molecular and Cellular Biology Program, Ohio University, Athens, Ohio
| | - Pengyi Zhao
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey
| | - Tariq Alnsour
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey
| | - Michael Held
- Deparment of Chemistry and Biochemistry, Ohio University, Athens, Ohio
- Corresponding Authors: Hao Chen - Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey. , Ahmed Faik – Department of Environmental and Plant Biology, Ohio University, Athens, Ohio. , Michael Held – Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio.
| | - Ahmed Faik
- Department of Environmental and Plant Biology & Molecular and Cellular Biology Program, Ohio University, Athens, Ohio
- Corresponding Authors: Hao Chen - Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey. , Ahmed Faik – Department of Environmental and Plant Biology, Ohio University, Athens, Ohio. , Michael Held – Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio.
| | - Hao Chen
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey
- Corresponding Authors: Hao Chen - Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey. , Ahmed Faik – Department of Environmental and Plant Biology, Ohio University, Athens, Ohio. , Michael Held – Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio.
| |
Collapse
|
11
|
Wu Q, Tian Y, Yang C, Liang Z, Shan Y, Zhang L, Zhang Y. Sequential amidation of peptide C-termini for improving fragmentation efficiency. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 56:e4529. [PMID: 32419269 DOI: 10.1002/jms.4529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/23/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Owing to the poor fragmentation efficiency caused by the lack of a positively charged basic group at the C-termini of peptides, the identification of nontryptic peptides in classical proteomics is known to be less efficient. Particularly, attaching positively charged basic groups to C-termini via chemical derivatizations is known to be able to enhance their fragmentation efficiency. In this study, we introduced a novel strategy, C-termini sequential amidation reaction (CSAR), to improve peptide fragmentation efficiency. By this strategy, C-terminal and side-chain carboxyl groups were firstly amidated by neutral methylamine (MA), and then C-terminal amide bonds were selectively deamidated through peptide amidase while side-chain amide bonds remained unchanged, followed by the secondary amidation of C-termini via basic agmatine (AG). We optimized the amidation reaction conditions to achieve the MA derivatization efficiency of >99% for side-chain carboxyl groups and AG derivatization efficiency of 80% for the hydrolytic C-termini. We applied CSAR strategy to identify bovine serum albumin (BSA) chymotryptic digests, resulting in the increased fragmentation efficiencies (improvement by 9-32%) and charge states (improvement by 39-52%) under single or multiple dissociation modes. The strategy described here might be a promising approach for the identification of peptides that suffered from poor fragmentation efficiency.
Collapse
Affiliation(s)
- Qiong Wu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| | - Yu'e Tian
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chao Yang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| | - Zhen Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| | - Yichu Shan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| |
Collapse
|
12
|
Zhou D, Xiao K, Tian Z. Separation and detection of minimal length glycopeptide neoantigen epitopes centering the GSTA region of MUC1 by liquid chromatography/mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8622. [PMID: 31658499 DOI: 10.1002/rcm.8622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE We previously isolated antibodies binding to glycopeptide neoantigen epitopes centering the GSTA sequence of the highly glycosylated tandem repeat region of MUC1. Epitopes centering the GSTA sequence are also predicted by NetMHC programs to bind to MHC molecules. Detecting MUC1 glycopeptide epitopes remains a challenge since antigenic epitopes are often shorter than 10 amino acids. METHODS In this study, we used pronase from Streptomyces griseus, which has no amino acid sequence preference for enzymatic cleavage sites, to digest synthetic glycopeptides RPAPGST (Tn)APPAHG and RPAPGS (Tn)TAPPAHG, and analyzed the digests by liquid chromatography/mass spectrometry (LC/MS) using electron transfer dissociation (ETD) and higher-energy collisional dissociation (HCD) methods with an Orbitrap Fusion Lumos Tribid mass spectrometer. RESULTS We found that short glycopeptides containing 8 to 11 amino acids could be efficiently generated by pronase digestion. Such glycopeptides of minimal epitope lengths were clearly distinguished by characteristic MS/MS ion patterns and LC elution profiles. A glycopeptide library was generated which may serve as a standard for measuring neoantigen epitopes centering the GSTA sequence. CONCLUSIONS Our data established the LC/MS/MS identities of a clinically relevant MUC1 glycopeptide neoantigen epitope centering the GSTA motif. A library of short MUC1 glycopeptides centered on the GSTA motif was created, which is a critical step for analysis of such antigen epitopes in real biological samples.
Collapse
Affiliation(s)
- Dapeng Zhou
- School of Medicine, Tongji University, Shanghai, 200092, China
| | - Kaijie Xiao
- School of Chemical Science and Engineering & Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, China
| | - Zhixin Tian
- School of Chemical Science and Engineering & Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, China
| |
Collapse
|
13
|
Mass spectrometry-based qualitative and quantitative N-glycomics: An update of 2017-2018. Anal Chim Acta 2019; 1091:1-22. [PMID: 31679562 DOI: 10.1016/j.aca.2019.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 12/14/2022]
Abstract
N-glycosylation is one of the most frequently occurring protein post-translational modifications (PTMs) with broad cellular, physiological and pathological relevance. Mass spectrometry-based N-glycomics has become the state-of-the-art instrumental analytical pipeline for sensitive, high-throughput and comprehensive characterization of N-glycans and N-glycomes. Improvement and new development of methods in N-glycan release, enrichment, derivatization, isotopic labeling, separation, ionization, MS, tandem MS and informatics accompany side-by-side wider and deeper application. This review provides a comprehensive update of mass spectrometry-based qualitative and quantitative N-glycomics in the years of 2017-2018.
Collapse
|
14
|
Wu Z, Zhao D, Li S, Wang J, Bi C, Zhang X. Combinatorial modulation of initial codons for improved zeaxanthin synthetic pathway efficiency in Escherichia coli. Microbiologyopen 2019; 8:e930. [PMID: 31532062 PMCID: PMC6925171 DOI: 10.1002/mbo3.930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 11/09/2022] Open
Abstract
A balanced and optimized metabolic pathway is the basis for efficient production of a target metabolite. Traditional strategies mostly involve the manipulation of promoters or ribosome-binding sites, which can encompass long sequences and can be complex to operate. In this work, we found that by changing only the three nucleotides of the initiation codons, expression libraries of reporter proteins RFP, GFP, and lacZ with a large dynamic range and evenly distributed expression levels could be established in Escherichia coli (E. coli). Thus, a novel strategy that uses combinatorial modulation of initial codons (CMIC) was developed for metabolic pathway optimization and applied to the three genes crtZ, crtY, and crtI of the zeaxanthin synthesis pathway in E. coli. The initial codons of these genes were changed to random nucleotides NNN, and the gene cassettes were assembled into vectors via an optimized strategy based on type II restriction enzymes. With minimal labor time, a combinatorial library was obtained containing strains with various zeaxanthin production levels, including a strain with a titer of 6.33 mg/L and specific production value of 1.24 mg/g DCW-a striking 10-fold improvement over the starting strain. The results demonstrated that CMIC was a feasible technique for conveniently optimizing metabolic pathways. To our best knowledge, this is the first metabolic engineering strategy that relies on manipulating the initiation codons for pathway optimization in E. coli.
Collapse
Affiliation(s)
- Zaiqiang Wu
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Dongdong Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308, China
| | - Siwei Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308, China
| | - Junsong Wang
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308, China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308, China
| |
Collapse
|
15
|
Gray CJ, Migas LG, Barran PE, Pagel K, Seeberger PH, Eyers CE, Boons GJ, Pohl NLB, Compagnon I, Widmalm G, Flitsch SL. Advancing Solutions to the Carbohydrate Sequencing Challenge. J Am Chem Soc 2019; 141:14463-14479. [PMID: 31403778 DOI: 10.1021/jacs.9b06406] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carbohydrates possess a variety of distinct features with stereochemistry playing a particularly important role in distinguishing their structure and function. Monosaccharide building blocks are defined by a high density of chiral centers. Additionally, the anomericity and regiochemistry of the glycosidic linkages carry important biological information. Any carbohydrate-sequencing method needs to be precise in determining all aspects of this stereodiversity. Recently, several advances have been made in developing fast and precise analytical techniques that have the potential to address the stereochemical complexity of carbohydrates. This perspective seeks to provide an overview of some of these emerging techniques, focusing on those that are based on NMR and MS-hybridized technologies including ion mobility spectrometry and IR spectroscopy.
Collapse
Affiliation(s)
- Christopher J Gray
- School of Chemistry & Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Lukasz G Migas
- School of Chemistry & Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Perdita E Barran
- School of Chemistry & Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Kevin Pagel
- Institute for Chemistry and Biochemistry , Freie Universität Berlin , Takustraße 3 , 14195 Berlin , Germany
| | - Peter H Seeberger
- Biomolecular Systems Department , Max Planck Institute for Colloids and Interfaces , Am Muehlenberg 1 , 14476 Potsdam , Germany
| | - Claire E Eyers
- Department of Biochemistry, Institute of Integrative Biology , University of Liverpool , Crown Street , Liverpool L69 7ZB , U.K
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center , University of Georgia , Athens , Georgia 30602 , United States
| | - Nicola L B Pohl
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Isabelle Compagnon
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS , Université de Lyon , 69622 Villeurbanne Cedex , France.,Institut Universitaire de France IUF , 103 Blvd St Michel , 75005 Paris , France
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory , Stockholm University , S-106 91 Stockholm , Sweden
| | - Sabine L Flitsch
- School of Chemistry & Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| |
Collapse
|
16
|
Wu T, Li S, Ye L, Zhao D, Fan F, Li Q, Zhang B, Bi C, Zhang X. Engineering an Artificial Membrane Vesicle Trafficking System (AMVTS) for the Excretion of β-Carotene in Escherichia coli. ACS Synth Biol 2019; 8:1037-1046. [PMID: 30990999 DOI: 10.1021/acssynbio.8b00472] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Large hydrophobic molecules, such as carotenoids, cannot be effectively excreted from cells by natural transportation systems. These products accumulate inside the cells and affect normal cellular physiological functions, which hinders further improvement of carotenoid production by microbial cell factories. In this study, we proposed to construct a novel artificial transport system utilizing membrane lipids to carry and transport hydrophobic molecules. Membrane lipids allow the physiological mechanism of membrane dispersion to be reconstructed and amplified to establish a novel artificial membrane vesicle transport system (AMVTS). Specifically, a few proteins in E. coli were reported or proposed to be related to the formation mechanism of outer membrane vesicles, and were individually knocked out or overexpressed to test their physiological functions. The effects on tolR and nlpI were the most significant. Knocking out both tolR and nlpI resulted in a 13.7% increase of secreted β-carotene with a 35.6% increase of specific production. To supplement the loss of membrane components of the cells due to the increased membrane vesicle dispersion, the synthesis pathway of phosphatidylethanolamine was engineered. While overexpression of AccABCD and PlsBC in TW-013 led to 15% and 17% increases of secreted β-carotene, respectively, the overexpression of both had a synergistic effect and caused a 53-fold increase of secreted β-carotene, from 0.2 to 10.7 mg/g dry cell weight (DCW). At the same time, the specific production of β-carotene increased from 6.9 to 21.9 mg/g DCW, a 3.2-fold increase. The AMVTS was also applied to a β-carotene hyperproducing strain, CAR025, which led to a 24-fold increase of secreted β-carotene, from 0.5 to 12.7 mg/g DCW, and a 61% increase of the specific production, from 27.7 to 44.8 mg/g DCW in shake flask fermentation. The AMVTS built in this study establishes a novel artificial transport mechanism different from natural protein-based cellular transport systems, which has great potential to be applied to various cell factories for the excretion of a wide range of hydrophobic compounds.
Collapse
Affiliation(s)
- Tao Wu
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300314, PR China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Siwei Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Lijun Ye
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Dongdong Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Feiyu Fan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Qinyan Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Bolin Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| |
Collapse
|
17
|
Wu Z, Wang J, Liu J, Wang Y, Bi C, Zhang X. Engineering an electroactive Escherichia coli for the microbial electrosynthesis of succinate from glucose and CO 2. Microb Cell Fact 2019; 18:15. [PMID: 30691454 PMCID: PMC6348651 DOI: 10.1186/s12934-019-1067-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 01/20/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Electrochemical energy is a key factor of biosynthesis, and is necessary for the reduction or assimilation of substrates such as CO2. Previous microbial electrosynthesis (MES) research mainly utilized naturally electroactive microbes to generate non-specific products. RESULTS In this research, an electroactive succinate-producing cell factory was engineered in E. coli T110(pMtrABC, pFccA-CymA) by expressing mtrABC, fccA and cymA from Shewanella oneidensis MR-1, which can utilize electricity to reduce fumarate. The electroactive T110 strain was further improved by incorporating a carbon concentration mechanism (CCM). This strain was fermented in an MES system with neutral red as the electron carrier and supplemented with HCO3+, which produced a succinate yield of 1.10 mol/mol glucose-a 1.6-fold improvement over the parent strain T110. CONCLUSIONS The strain T110(pMtrABC, pFccA-CymA, pBTCA) is to our best knowledge the first electroactive microbial cell factory engineered to directly utilize electricity for the production of a specific product. Due to the versatility of the E. coli platform, this pioneering research opens the possibility of engineering various other cell factories to utilize electricity for bioproduction.
Collapse
Affiliation(s)
- Zaiqiang Wu
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Junsong Wang
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Jun Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308, China
| | - Yan Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308, China
| | - Changhao Bi
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308, China.
| | - Xueli Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308, China.
| |
Collapse
|