1
|
Tkalec Ž, Runkel AA, Kosjek T, Horvat M, Heath E. Contaminants of emerging concern in urine: a review of analytical methods for determining diisocyanates, benzotriazoles, benzothiazoles, 4-methylbenzylidene camphor, isothiazolinones, fragrances, and non-phthalate plasticizers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95106-95138. [PMID: 37597142 PMCID: PMC10482756 DOI: 10.1007/s11356-023-29070-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 07/26/2023] [Indexed: 08/21/2023]
Abstract
Human biomonitoring (HBM) frameworks assess human exposure to hazardous chemicals. In this review, we discuss and summarize sample preparation procedures and analytical methodology for six groups of chemicals of emerging concern (CECs), namely diisocyanates, benzotriazoles, benzothiazoles, 4-methylbenzylidene camphor, isothiazolinones, fragrances, and non-phthalate plasticizers, which are increasingly detected in urine, however, are not yet widely included in HBM schemes, despite posing a risk to human health. The sample preparation procedures depend largely on the chemical group; however, solid-phase extraction (SPE) is most often used due to the minimized sample handling, lower sample volume, and generally achieving lower limits of quantification (LOQs) compared to other extraction techniques. In terms of sample analysis, LC-based methods generally achieve lower limits of quantification (LOQs) compared to GC-based methods for the selected six groups of chemicals owing to their broader chemical coverage. In conclusion, since these chemicals are expected to be more frequently included in future HBM studies, it becomes evident that there is a pressing need for rigorous quality assurance programs to ensure better comparability of data. These programs should include the reporting of measurement uncertainty and facilitate inter-laboratory comparisons among the reporting laboratories. In addition, high-resolution mass spectrometry should be more commonly employed to enhance the specificity and selectivity of the applied analytical methodology since it is underrepresented in HBM. Furthermore, due to the scarcity of data on the levels of these CECs in urine, large population HBM studies are necessary to gain a deeper understanding of the associated risks.
Collapse
Affiliation(s)
- Žiga Tkalec
- Department of Environmental Sciences (O2), Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Agneta Annika Runkel
- Department of Environmental Sciences (O2), Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Tina Kosjek
- Department of Environmental Sciences (O2), Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Milena Horvat
- Department of Environmental Sciences (O2), Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Ester Heath
- Department of Environmental Sciences (O2), Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia.
- Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Sabbioni G, Castaño A, Esteban López M, Göen T, Mol H, Riou M, Tagne-Fotso R. Literature review and evaluation of biomarkers, matrices and analytical methods for chemicals selected in the research program Human Biomonitoring for the European Union (HBM4EU). ENVIRONMENT INTERNATIONAL 2022; 169:107458. [PMID: 36179646 DOI: 10.1016/j.envint.2022.107458] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 06/16/2023]
Abstract
Humans are potentially exposed to a large amount of chemicals present in the environment and in the workplace. In the European Human Biomonitoring initiative (Human Biomonitoring for the European Union = HBM4EU), acrylamide, mycotoxins (aflatoxin B1, deoxynivalenol, fumonisin B1), diisocyanates (4,4'-methylenediphenyl diisocyanate, 2,4- and 2,6-toluene diisocyanate), and pyrethroids were included among the prioritized chemicals of concern for human health. For the present literature review, the analytical methods used in worldwide biomonitoring studies for these compounds were collected and presented in comprehensive tables, including the following parameter: determined biomarker, matrix, sample amount, work-up procedure, available laboratory quality assurance and quality assessment information, analytical techniques, and limit of detection. Based on the data presented in these tables, the most suitable methods were recommended. According to the paradigm of biomonitoring, the information about two different biomarkers of exposure was evaluated: a) internal dose = parent compounds and metabolites in urine and blood; and b) the biologically effective = dose measured as blood protein adducts. Urine was the preferred matrix used for deoxynivalenol, fumonisin B1, and pyrethroids (biomarkers of internal dose). Markers of the biological effective dose were determined as hemoglobin adducts for diisocyanates and acrylamide, and as serum-albumin-adducts of aflatoxin B1 and diisocyanates. The analyses and quantitation of the protein adducts in blood or the metabolites in urine were mostly performed with LC-MS/MS or GC-MS in the presence of isotope-labeled internal standards. This review also addresses the critical aspects of the application, use and selection of biomarkers. For future biomonitoring studies, a more comprehensive approach is discussed to broaden the selection of compounds.
Collapse
Affiliation(s)
- Gabriele Sabbioni
- Università della Svizzera Italiana (USI), Research and Transfer Service, Lugano, Switzerland; Institute of Environmental and Occupational Toxicology, Airolo, Switzerland; Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, Munich, Germany.
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain.
| | - Marta Esteban López
- National Centre for Environmental Health, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain.
| | - Thomas Göen
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg (IPASUM), Erlangen, Germany.
| | - Hans Mol
- Wageningen Food Safety Research, Part of Wageningen University & Research, Wageningen, the Netherlands.
| | - Margaux Riou
- Department of Environmental and Occupational Health, Santé publique France, The National Public Health Agency, Saint-Maurice, France.
| | - Romuald Tagne-Fotso
- Department of Environmental and Occupational Health, Santé publique France, The National Public Health Agency, Saint-Maurice, France.
| |
Collapse
|
3
|
Cai K, Lin Y, Ma Y, Yang Z, Yu L, Zhang J, Xu D, Zeng R, Gao W. Determination of Residual Diisocyanates and Related Diamines in Biodegradable Mulch Films Using N-Ethoxycarbonylation Derivatization and GC-MS. Molecules 2022; 27:molecules27196754. [PMID: 36235287 PMCID: PMC9572079 DOI: 10.3390/molecules27196754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 12/05/2022] Open
Abstract
Diisocyanates are highly reactive compounds with two functional isocyanate groups. The exposure of diisocyanates is associated with severely adverse health effects, such as asthma, inflammation in the respiratory tract, and cancer. The hydrolysis product from diisocyanates to related diamines is also a potential carcinogen. Here, we developed an effective, accurate, and precise method for simultaneous determination of residual diisocyanates and related diamines in biodegradable mulch films, based on N-ethoxycarbonylation derivatization and gas chromatography-mass spectrometry. The method development included the optimization of ultrasonic hydrolysis and extraction, screening of N-ethoxycarbonylation conditions with ethyl chloroformate, evaluation of the diamines degradation, and analysis of the fragmentation mechanisms. Under the optimum experimental conditions, good linearity was observed with R2 > 0.999. The extraction recoveries were found in the range of 93.9−101.2% with repeatabilities and reproducibilities in 0.89−8.12% and 2.12−10.56%, respectively. The limits of detection ranged from 0.0025 to 0.057 µg/mL. The developed method was applied to commercial polybutylene adipate co-terephthalate (PBAT) biodegradable mulch film samples for analysis of the diverse residual diisocyanates and related diamine additives. The components varied greatly among the sample from different origin. Overall, this study provides a reliable method for assessing safety in biodegradable mulch films.
Collapse
Affiliation(s)
- Kai Cai
- Guizhou Academy of Tobacco Science, Upland Flue-Cured Tobacco Quality & Ecology Key Laboratory of CNTC, Guiyang 550081, China
| | - Yechun Lin
- Guizhou Academy of Tobacco Science, Upland Flue-Cured Tobacco Quality & Ecology Key Laboratory of CNTC, Guiyang 550081, China
| | - Yunfei Ma
- Guizhou Academy of Tobacco Science, Upland Flue-Cured Tobacco Quality & Ecology Key Laboratory of CNTC, Guiyang 550081, China
| | - Zhixiao Yang
- Guizhou Academy of Tobacco Science, Upland Flue-Cured Tobacco Quality & Ecology Key Laboratory of CNTC, Guiyang 550081, China
| | - Lei Yu
- Key Laboratory for Degradation Technologies of Pesticide Residues with Superior Agricultural Products in Guizhou Ecological Environment, Guiyang University, Guiyang 550005, China
| | - Jie Zhang
- Guizhou Academy of Tobacco Science, Upland Flue-Cured Tobacco Quality & Ecology Key Laboratory of CNTC, Guiyang 550081, China
| | - Dongqing Xu
- Guizhou Academy of Tobacco Science, Upland Flue-Cured Tobacco Quality & Ecology Key Laboratory of CNTC, Guiyang 550081, China
| | - Rong Zeng
- School of Geography Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Weichang Gao
- Guizhou Academy of Tobacco Science, Upland Flue-Cured Tobacco Quality & Ecology Key Laboratory of CNTC, Guiyang 550081, China
- Correspondence: ; Tel.: +86-0851-84116908
| |
Collapse
|
4
|
Vorkamp K, Castaño A, Antignac JP, Boada LD, Cequier E, Covaci A, Esteban López M, Haug LS, Kasper-Sonnenberg M, Koch HM, Pérez Luzardo O, Osīte A, Rambaud L, Pinorini MT, Sabbioni G, Thomsen C. Biomarkers, matrices and analytical methods targeting human exposure to chemicals selected for a European human biomonitoring initiative. ENVIRONMENT INTERNATIONAL 2021; 146:106082. [PMID: 33227583 DOI: 10.1016/j.envint.2020.106082] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/11/2020] [Accepted: 08/19/2020] [Indexed: 05/27/2023]
Abstract
The major purpose of human biomonitoring is the mapping and assessment of human exposure to chemicals. The European initiative HBM4EU has prioritized seven substance groups and two metals relevant for human exposure: Phthalates and substitutes (1,2-cyclohexane dicarboxylic acid diisononyl ester, DINCH), bisphenols, per- and polyfluoroalkyl substances (PFASs), halogenated and organophosphorous flame retardants (HFRs and OPFRs), polycyclic aromatic hydrocarbons (PAHs), arylamines, cadmium and chromium. As a first step towards comparable European-wide data, the most suitable biomarkers, human matrices and analytical methods for each substance group or metal were selected from the scientific literature, based on a set of selection criteria. The biomarkers included parent compounds of PFASs and HFRs in serum, of bisphenols and arylamines in urine, metabolites of phthalates, DINCH, OPFRs and PAHs in urine as well as metals in blood and urine, with a preference to measure Cr in erythrocytes representing Cr (VI) exposure. High performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) was the method of choice for bisphenols, PFASs, the HFR hexabromocyclododecane (HBCDD), phenolic HFRs as well as the metabolites of phthalates, DINCH, OPFRs and PAHs in urine. Gas chromatographic (GC) methods were selected for the remaining compounds, e.g. GC-low resolution MS with electron capture negative ionization (ECNI) for HFRs. Both GC-MS and LC-MS/MS were suitable for arylamines. New developments towards increased applications of GC-MS/MS may offer alternatives to GC-MS or LC-MS/MS approaches, e.g. for bisphenols. The metals were best determined by inductively coupled plasma (ICP)-MS, with the particular challenge of avoiding interferences in the Cd determination in urine. The evaluation process revealed research needs towards higher sensitivity and non-invasive sampling as well as a need for more stringent quality assurance/quality control applications and assessments.
Collapse
Affiliation(s)
- Katrin Vorkamp
- Aarhus University, Department of Environmental Science, Denmark.
| | - Argelia Castaño
- Instituto de Salud Carlos III, National Centre for Environmental Health, Spain.
| | | | - Luis D Boada
- University of Las Palmas de Gran Canaria, Institute for Biomedical and Health Research, Spain.
| | | | - Adrian Covaci
- University of Antwerp, Toxicological Centre, Belgium.
| | - Marta Esteban López
- Instituto de Salud Carlos III, National Centre for Environmental Health, Spain.
| | - Line S Haug
- Norwegian Institute of Public Health, Norway.
| | - Monika Kasper-Sonnenberg
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr-University, Germany.
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr-University, Germany.
| | - Octavio Pérez Luzardo
- University of Las Palmas de Gran Canaria, Institute for Biomedical and Health Research, Spain.
| | - Agnese Osīte
- University of Latvia, Department of Analytical Chemistry, Latvia.
| | - Loïc Rambaud
- Santé Publique France, Department of Environmental and Occupational Health, France.
| | | | | | | |
Collapse
|
5
|
Ma Z, Li S, He D, Wang Y, Jiang H, Zhou H, Jin J, Lin N. Rapid quantification of tenofovir in umbilical cord plasma and amniotic fluid in hepatitis B mono-infected pregnant women during labor by ultra-performance liquid chromatography/tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8728. [PMID: 31960519 DOI: 10.1002/rcm.8728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
RATIONALE Tenofovir (TFV) is a first-line antiviral agent against hepatitis B virus (HBV) and is recommended for the prevention of mother-to-infant transmission of HBV. To study the distribution of TFV in umbilical cord plasma and amniotic fluid of HBV-infected pregnant women, a rapid and sensitive method for TFV determination was developed and validated. METHODS The quantification method was developed using liquid chromatography coupled to tandem mass spectrometry (LC/MS/MS). The analytes were separated on an Acquity UPLC HSS T3 column under gradient elution with methanol and 0.01% ammonia solution in 10 mM ammonium acetate/water. This is the first reported method for the determination of TFV using alkaline rather than acidic mobile phases. Linearity, accuracy, precision, limit of quantification, specificity and stability were assessed. RESULTS Detection of TFV was achieved within 4 min. The calibration curves for TFV quantification showed excellent linearity in the range of 1-500 ng/mL. The intra- and interbatch precision and accuracy ranged from -4.35% to 6.92%. This method was successfully applied to determination of samples from 50 HBV mono-infected women undergoing tenofovir disoproxil fumarate therapy. The mean concentrations of TFV in the umbilical cord and amniotic fluid samples were 29.2 (4.6-86) and 470.9 (156-902) ng/mL, respectively, which showed a moderate positive correlation (r = 0.5299, P<0.001). CONCLUSIONS A simple, rapid but sensitive bioanalytical method to determine TFV concentration in both umbilical cord plasma and amniotic fluid using LC/MS/MS was developed and applied to HBV-infected women during labor who were undergoing TDF therapy, which will help us understand the efficacy and safety of tenofovir during pregnancy.
Collapse
Affiliation(s)
- Zhiyuan Ma
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Siying Li
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Daqiang He
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Yuqing Wang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Huidi Jiang
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, Hangzhou, P.R. China
| | - Hui Zhou
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, Hangzhou, P.R. China
| | - Jie Jin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Nengming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| |
Collapse
|
6
|
A validated UPLC-MS/MS method for the determination of aliphatic and aromatic isocyanate exposure in human urine. Anal Bioanal Chem 2019; 412:753-762. [PMID: 31872276 DOI: 10.1007/s00216-019-02295-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/28/2019] [Accepted: 11/19/2019] [Indexed: 10/25/2022]
Abstract
4,4'-Methylenediphenyldiisocyanate (MDI), toluenediisocyanate (2,4-TDI and 2,6-TDI), and 1,6'-hexamethylenediisocyanate (HDI) are all commonly used in the production of polyurethane-containing materials in different application areas. Workers exposed occupationally to these compounds may develop sensitization with the potential to lead to asthma. Isocyanates are metabolized in vivo by conjugation to macromolecules and/or by acetylation prior to being eliminated in urine. The hydrolysis of urine samples releases free amine compounds from these metabolites as biomarkers of exposure, specific to each parent isocyanate: 4,4'-methylenedianiline (MDA), toluenediamine (2,4-TDA and 2,6-TDA), and hexamethylenediamine (HDA). To address the need for a validated method that could be used for the simultaneous determination of biomarkers of aliphatic and aromatic isocyanates to monitor occupational exposure based on recommended thresholds, we have developed an UPLC-MS/MS method for the quantitation of MDA, TDA isomers, and HDA following acid hydrolysis, solid-phase extraction, and derivatization of urine samples. Free amine compounds were derivatized with acetic anhydride to augment chromatographic retention and signal intensity. The method was developed considering the biological guidance value (BGV) of MDA at 10 μg L-1, and biological exposure indices (BEI) of TDA isomers and HDA at 5 μg g-1 and 15 μg g-1 creatinine, respectively. Limits of detection allowed monitoring down to 6% of BGV/BEI, with precision within 8%. The accuracy and reliability of the method were assessed using inter-laboratory reference samples and deemed acceptable based on three rounds of measurements. This novel method has therefore been proven as useful for occupational safety and health assessments. Graphical Abstract.
Collapse
|