1
|
Hydrogen/Deuterium Exchange Mass Spectrometry for Probing the Isomeric Forms of Oleocanthal and Oleacin in Extra Virgin Olive Oils. Molecules 2023; 28:molecules28052066. [PMID: 36903312 PMCID: PMC10004237 DOI: 10.3390/molecules28052066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Reversed-phase liquid chromatography and electrospray ionization with Fourier-transform single and tandem mass spectrometry (RPLC-ESI-FTMS and FTMS/MS) were employed for the structural characterization of oleocanthal (OLEO) and oleacin (OLEA), two of the most important bioactive secoiridoids occurring in extra virgin olive oils (EVOOs). The existence of several isoforms of OLEO and OLEA was inferred from the chromatographic separation, accompanied, in the case of OLEA, by minor peaks due to oxidized OLEO recognized as oleocanthalic acid isoforms. The detailed analysis of the product ion tandem MS spectra of deprotonated molecules ([M-H]-) was unable to clarify the correlation between chromatographic peaks and specific OLEO/OLEA isoforms, including two types of predominant dialdehydic compounds, named Open Forms II, containing a double bond between carbon atoms C8 and C10, and a group of diasteroisomeric closed-structure (i.e., cyclic) isoforms, named Closed Forms I. This issue was addressed by H/D exchange (HDX) experiments on labile H atoms of OLEO and OLEA isoforms, performed using deuterated water as a co-solvent in the mobile phase. HDX unveiled the presence of stable di-enolic tautomers, in turn providing key evidence for the occurrence, as prevailing isoforms, of Open Forms II of OLEO and OLEA, different from those usually considered so far as the main isoforms of both secoiridoids (having a C=C bond between C8 and C9). It is expected that the new structural details inferred for the prevailing isoforms of OLEO and OLEA will help in understanding the remarkable bioactivity exhibited by the two compounds.
Collapse
|
2
|
Bioactive Compounds in Waste By-Products from Olive Oil Production: Applications and Structural Characterization by Mass Spectrometry Techniques. Foods 2021; 10:foods10061236. [PMID: 34072297 PMCID: PMC8227576 DOI: 10.3390/foods10061236] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 12/23/2022] Open
Abstract
In recent years, a remarkable increase in olive oil consumption has occurred worldwide, favoured by its organoleptic properties and the growing awareness of its health benefits. Currently, olive oil production represents an important economic income for Mediterranean countries, where roughly 98% of the world production is located. Both the cultivation of olive trees and the production of industrial and table olive oil generate huge amounts of solid wastes and dark liquid effluents, including olive leaves and pomace and olive oil mill wastewaters. Besides representing an economic problem for producers, these by-products also pose serious environmental concerns, thus their partial reuse, like that of all agronomical production residues, represents a goal to pursue. This aspect is particularly important since the cited by-products are rich in bioactive compounds, which, once extracted, may represent ingredients with remarkable added value for food, cosmetic and nutraceutical industries. Indeed, they contain considerable amounts of valuable organic acids, carbohydrates, proteins, fibers, and above all, phenolic compounds, that are variably distributed among the different wastes, depending on the employed production process of olive oils and table olives and agronomical practices. Yet, extraction and recovery of bioactive components from selected by-products constitute a critical issue for their rational valorization and detailed identification and quantification are mandatory. The most used analytical methods adopted to identify and quantify bioactive compounds in olive oil by-products are based on the coupling between gas- (GC) or liquid chromatography (LC) and mass spectrometry (MS), with MS being the most useful and successful detection tool for providing structural information. Without derivatization, LC-MS with electrospray (ESI) or atmospheric pressure chemical (APCI) ionization sources has become one of the most relevant and versatile instrumental platforms for identifying phenolic bioactive compounds. In this review, the major LC-MS accomplishments reported in the literature over the last two decades to investigate olive oil processing by-products, specifically olive leaves and pomace and olive oil mill wastewaters, are described, focusing on phenolics and related compounds.
Collapse
|
3
|
Ventura G, Calvano CD, Losito I, Viola A, Cinquepalmi V, Cataldi TRI. In vitro reactions of a cyanocobalamin-cisplatin conjugate with nucleoside monophosphates. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8945. [PMID: 32910479 DOI: 10.1002/rcm.8945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/13/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Cisplatin (CP) is a widely used anticancer drug characterized by toxic side effects that could be alleviated using novel delivery systems including CP prodrugs. The in vitro incubation of a putative prodrug, obtained from cyanocobalamin (CNCbl) and cis-diamminemonochloroplatinum(II) (mCP), with nucleoside monophosphates (NMPs) was investigated. METHODS The in vitro reactions between the putative prodrug CNCbl-mCP and the NMPs of adenosine (AMP), guanosine (GMP), cytidine (CMP) and uridine (UMP) were carried out in slightly acidic water-methanol solutions at 37°C for 24 h. Each sample was examined using reversed-phase liquid chromatography coupled with electrospray ionization in positive ion mode and tandem mass spectrometry (RPLC/ESI-MS/MS) by collision-induced dissociation in a linear ion-trap mass spectrometer. RESULTS Seven adducts were recognized as formed by substitution reactions of the chloride ligand in planar CP. Comparison between observed and theoretical isotopic patterns together with MS/MS fragmentation pathways revealed the presence of single or multiple binding sites depending on the NMP involved. The CNCbl-mCP conjugate was found to interact with N7 or O4 atoms of GMP and UMP, respectively, generating single adducts, while two isomeric adducts were observed for CMP. Finally, AMP gave rise to three isomeric adducts. CONCLUSIONS In agreement with literature data relevant to the interaction between CP and NMPs, the most reactive nucleotides were AMP and GMP. The present RPLC/ESI-MS/MS approach is very promising for investigation of the reactions of CP conjugates with ribonucleotides not only in vitro but also in vivo.
Collapse
Affiliation(s)
- Giovanni Ventura
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, Bari, 70126, Italy
| | - Cosima Damiana Calvano
- Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, Bari, 70126, Italy
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, Bari, 70126, Italy
| | - Ilario Losito
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, Bari, 70126, Italy
- Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, Bari, 70126, Italy
| | - Andrea Viola
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, Bari, 70126, Italy
| | - Valeria Cinquepalmi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, Bari, 70126, Italy
| | - Tommaso R I Cataldi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, Bari, 70126, Italy
- Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, Bari, 70126, Italy
| |
Collapse
|
4
|
Anticancer effects of olive oil polyphenols and their combinations with anticancer drugs. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2019; 69:461-482. [PMID: 31639094 DOI: 10.2478/acph-2019-0052] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/02/2019] [Indexed: 01/19/2023]
Abstract
Cancer presents one of the leading causes of death in the world. Current treatment includes the administration of one or more anticancer drugs, commonly known as chemotherapy. The biggest issue concerning the chemotherapeutics is their toxicity on normal cells and persisting side effects. One approach to the issue is chemoprevention and the other one is the discovery of more effective drugs or drug combinations, including combinations with polyphenols. Olive oil polyphenols (OOPs), especially hydroxytyrosol (HTyr), tyrosol (Tyr) and their derivatives oleuropein (Ole), oleacein and oleocanthal (Oc) express anticancer activity on different cancer models. Recent studies report that phenolic extract of virgin olive oil may be more effective than the individual phenolic compounds. Also, there is a growing body of evidence about the combined treatment of OOPs with various anticancer drugs, such as cisplatin, tamoxifen, doxorubicin and others. These novel approaches may present an advanced strategy in the prevention and treatment of cancer.
Collapse
|
5
|
Ventura G, Calvano CD, Abbattista R, Bianco M, De Ceglie C, Losito I, Palmisano F, Cataldi TRI. Characterization of bioactive and nutraceutical compounds occurring in olive oil processing wastes. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:1670-1681. [PMID: 31268208 DOI: 10.1002/rcm.8514] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE Several bioactive compounds, including phenolic acids and secoiridoids, are transferred from olive drupes to olive oil during the first stage of production. Here, the characterization of these low molecular weight (LMW) compounds in olive oil and in closely related processing materials, like olive leaves (OL) and olive mill wastewaters (OMW), was faced up, for the first time, by matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (TOF MS). METHODS A novel binary matrix composed of 1,8-bis(tetramethylguanidino)naphthalene (TMGN) and 9-aminoacridine (9AA) (1:1 molar ratio), displaying excellent ionization properties at low levels of laser energy, was employed in reflectron negative ion mode by a MALDI TOF/TOF system equipped with a neodymium-doped yttrium lithium fluoride (Nd:YLF) laser (345 nm). MS/MS experiments were performed by using ambient air as the collision gas. RESULTS Four major secoiridoids typically present in olive oil, i.e., the aglycones of oleuropein and ligstroside, and oleacein and olecanthal at m/z 377.1, 361.1, 319.1 and 303.1, respectively, were detected in virgin olive oil (VOO) extracts, along with some of their chemical/enzymatic hydrolysis by-products, such as elenolic (m/z 241.1), decarboxymethyl-elenolic acids (m/z 183.1) and hydroxytyrosol (m/z 153.1). Besides oleuropein aglycone and oleacein, hydroxylated derivatives of decarboxymethyl-elenolic acid and hydroxytyrosol were evidenced in OMW. CONCLUSIONS While oleuropein was confirmed in OL extracts, several interesting phenolic compounds, including hydroxytyrosol, were recognized in OMW. The proposed approach based on the use of a novel binary matrix for MALDI MS/MS analyses of LMW bioactive compounds can be considered a promising analytical tool for a rapid screening of the phenolic fraction in olive oils and related processing wastes.
Collapse
Affiliation(s)
- Giovanni Ventura
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
| | - Cosima D Calvano
- Centro di Ricerca Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
| | - Ramona Abbattista
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
| | - Mariachiara Bianco
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
| | - Cristina De Ceglie
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
| | - Ilario Losito
- Centro di Ricerca Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
| | - Francesco Palmisano
- Centro di Ricerca Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
| | - Tommaso R I Cataldi
- Centro di Ricerca Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
| |
Collapse
|