1
|
Batt AL, Brunelle LD, Quinete NS, Stebel EK, Ng B, Gardinali P, Chao A, Huba AK, Glassmeyer ST, Alvarez DA, Kolpin DW, Furlong ET, Mills MA. Investigating the chemical space coverage of multiple chromatographic and ionization methods using non-targeted analysis on surface and drinking water collected using passive sampling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176922. [PMID: 39426538 DOI: 10.1016/j.scitotenv.2024.176922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Multiple non-targeted analysis tools were used to look for a broad range of possible chemical contaminants present in surface and drinking water using liquid chromatography separation and high-resolution mass spectrometry detection, including both quadrupole time of flight (Q-ToF) and Orbitrap instruments. Two chromatographic techniques were evaluated on an LC-Q-ToF with electrospray ionization in both positive and negative modes: (1) the traditionally used reverse phase C18 and (2) the hydrophilic interaction liquid chromatography (HILIC) aimed to capture more polar contaminants that may be present in water. Multiple ionization modes were evaluated with an LC-Orbitrap, including electrospray (ESI) and atmospheric pressure chemical ionization (APCI), also in both positive and negative modes. A suspect screening library of over 1300 possible environmental contaminants, including pesticides, pharmaceuticals, personal care products, illicit drugs/drugs of abuse, and various anthropogenic markers was made with experimentally collected data with the LC-Q-ToF with both column types, with 227 chemicals being retained by the HILIC column. The non-targeted methods using multiple chromatographic and ionization modes were applied to environmental water samples collected with polar organic chemical integrative samplers (POCIS), including surface water upstream and downstream from wastewater effluent discharge, and the downstream drinking water intake and treated drinking water for three distinct sampling events. For the LC-Q-ToF, 442 chemical features were detected on the C18 column and 91 with the HILIC column in the POCIS extracts, while 556 features were found on the Orbitrap workflow by ESI and 131 features detected by APCI. Over 100 chemicals were tentatively identified by suspect screening and database searching. The comprehensive and systematic evaluation of these methods serve as a step in characterizing the chemical space covered when utilizing different chromatography and ionization methods, or different instrument workflows on complex environmental mixtures.
Collapse
Affiliation(s)
- Angela L Batt
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Cincinnati, OH 45268, United States.
| | - Laura D Brunelle
- Oak Ridge Institute for Science and Education (ORISE) Participant at the U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr, Cincinnati, OH 45268, United States
| | - Natalia S Quinete
- Florida International University, Institute of Environment, Department of Chemistry & Biochemistry, North Miami, FL 33181, United States
| | - Eva K Stebel
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Cincinnati, OH 45268, United States
| | - Brian Ng
- Florida International University, Institute of Environment, Department of Chemistry & Biochemistry, North Miami, FL 33181, United States
| | - Piero Gardinali
- Florida International University, Institute of Environment, Department of Chemistry & Biochemistry, North Miami, FL 33181, United States
| | - Alex Chao
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Research Triangle Park, NC 27709, United States
| | - Anna K Huba
- Florida International University, Institute of Environment, Department of Chemistry & Biochemistry, North Miami, FL 33181, United States
| | - Susan T Glassmeyer
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Cincinnati, OH 45268, United States
| | - David A Alvarez
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, United States
| | - Dana W Kolpin
- U.S. Geological Survey, Central Midwest Water Science Center, Iowa City, IA 52240, United States
| | - Edward T Furlong
- U.S. Geological Survey, Strategic Laboratory Services Branch, Laboratory Analytical Services Division, Denver, CO 80225, United States
| | - Marc A Mills
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Cincinnati, OH 45268, United States
| |
Collapse
|
2
|
Shi J, Yang Y, Zhang T, Liang K, Guo L, Deng R, Liu K, Ren Y. Multiple analyses of main flavor components in reconstituted tobacco and transfer behavior of their key substances during heating. J Sep Sci 2024; 47:e2400250. [PMID: 39034833 DOI: 10.1002/jssc.202400250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 07/23/2024]
Abstract
Reconstituted tobacco (RT) is a product made by reprocessing tobacco waste, experiencing a growing demand for heat-not-burn products. The purpose of this study is to analyze the main flavor ingredients in RT aerosol, as well as the transfer behavior of key flavor substances from substrates to aerosol and the concentrations of these compounds in the substrate after heating. First, we demonstrated that the odor of four RT aerosol samples could be distinguished using an electronic nose. Through non-targeted analysis, 93 volatile compounds were detected by gas chromatography-mass spectrometry, and 286 non/semi-volatile compounds were identified by ultra-high-performance liquid electrophoresis chromatography-mass spectrometry in aerosol. Furthermore, we found that the formation of RT aerosol involves primarily evaporation and distillation, however, the total content delivered from unheated RT samples to aerosol remains relatively low due to compound volatility and cigarette filtration. Thermal reactions during heating indicated the pyrolysis of chlorogenic acid to generate catechol and resorcinol, while Maillard reactions involving glucose and proline produced 2,3-dihydro-3,5-dihydroxy-6-methyl-4h-pyran-4-one. The study highlighted that heating RT at approximately 300°C could mitigate the production of harmful substances while still providing a familiar sensory experience with combusted tobacco.
Collapse
Affiliation(s)
- Jianyang Shi
- Harmful Components and Tar Reduction in Cigarette Key Laboratory of Sichuan Province, Chengdu, China
- New Tobacco Products Engineering and Technology Research Center of Sichuan Province, Chengdu, China
| | - Yunxia Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Ting Zhang
- Harmful Components and Tar Reduction in Cigarette Key Laboratory of Sichuan Province, Chengdu, China
| | - Kun Liang
- Harmful Components and Tar Reduction in Cigarette Key Laboratory of Sichuan Province, Chengdu, China
- New Tobacco Products Engineering and Technology Research Center of Sichuan Province, Chengdu, China
| | - Linqing Guo
- Harmful Components and Tar Reduction in Cigarette Key Laboratory of Sichuan Province, Chengdu, China
- New Tobacco Products Engineering and Technology Research Center of Sichuan Province, Chengdu, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Kai Liu
- Harmful Components and Tar Reduction in Cigarette Key Laboratory of Sichuan Province, Chengdu, China
- New Tobacco Products Engineering and Technology Research Center of Sichuan Province, Chengdu, China
| | - Yao Ren
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Lang G, Henao C, Almstetter M, Arndt D, Goujon C, Maeder S. Non-targeted analytical comparison of a heated tobacco product aerosol against mainstream cigarette smoke: does heating tobacco produce an inherently different set of aerosol constituents? Anal Bioanal Chem 2024; 416:1349-1361. [PMID: 38217698 PMCID: PMC10861380 DOI: 10.1007/s00216-024-05126-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Smoking-related diseases remain a significant public health concern, and heated tobacco products (HTPs) have emerged as a potential alternative to cigarettes. While several studies have confirmed that HTP aerosols contain lower levels of harmful and potentially harmful constituents (HPHCs) than cigarette smoke, less is known about constituents that are intrinsically higher in HTP aerosols. This study provides a comprehensive comparative assessment of an HTP aerosol produced with Tobacco Heating System 2.2 (THS) and comparator cigarette (CC) smoke aiming at identifying all unique or increased compounds in THS aerosol by applying a broad set of LC-MS and GC × GC-MS methods. To focus on differences due to heating versus burning tobacco, confounding factors were minimized by using the same tobacco in both test items and not adding flavorants. Of all analytical features, only 3.5%-corresponding to 31 distinctive compounds-were significantly more abundant in THS aerosol than in CC smoke. A notable subset of these compounds was identified as reaction products of glycerol. The only compound unique to THS aerosol was traced back to its presence in a non-tobacco material in the test item and not a direct product of heating tobacco. Our results demonstrate that heating a glycerol-containing tobacco substrate to the temperatures applied in THS does not introduce new compounds in the resulting aerosol compared to CC smoke which are detectable with the method portfolio applied in this study. Overall, this study contributes to a better understanding of the chemical composition of HTP aerosols and their potential impact on human health.
Collapse
Affiliation(s)
- Gerhard Lang
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Carlos Henao
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Martin Almstetter
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Daniel Arndt
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Catherine Goujon
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Serge Maeder
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| |
Collapse
|
4
|
Adeniji A, El-Hage R, Brinkman MC, El-Hellani A. Nontargeted Analysis in Tobacco Research: Challenges and Opportunities. Chem Res Toxicol 2023; 36:1656-1665. [PMID: 37903095 DOI: 10.1021/acs.chemrestox.3c00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Tobacco products are evolving at a pace that has outstripped tobacco control, leading to a high prevalence of tobacco use in the population. Researchers have been tirelessly developing suitable techniques to assess these products' emissions, toxicity, and public health impact. The nonclinical testing of tobacco products to assess the chemical profile of emissions is needed for evidence-based regulations. This testing has largely relied on targeted analytical methods that focus on constituent lists that may fall short in determining the toxicity of newly designed tobacco products. Nontargeted analysis (NTA), or the process of identifying and quantifying compounds within a complex matrix without prior knowledge of its chemical composition, is a promising technique for tobacco regulation, but it is not without challenges. The lack of standardized methods for sample generation, sample preparation, chromatographic separation, compound identification, and data analysis and reporting must be addressed so that the quality and reproducibility of the data generated by NTA can be benchmarked. This review discusses the challenges and highlights the opportunities of NTA in studying tobacco product constituents and emissions.
Collapse
Affiliation(s)
- Ayomipo Adeniji
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Tobacco Research, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43214, United States
| | - Rachel El-Hage
- Department of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut 1107 2020, Lebanon
- Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, Virginia 23220, United States
| | - Marielle C Brinkman
- Division of Epidemiology, College of Public Health, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Tobacco Research, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43214, United States
| | - Ahmad El-Hellani
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Tobacco Research, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43214, United States
| |
Collapse
|
5
|
Konorev D, Bellamri M, Wu CF, Wu MT, Turesky RJ. High-Field Asymmetric Waveform Ion Mobility Spectrometry Analysis of Carcinogenic Aromatic Amines in Tobacco Smoke with an Orbitrap Tribrid Mass Spectrometer. Chem Res Toxicol 2023; 36:1419-1426. [PMID: 37462928 PMCID: PMC10530005 DOI: 10.1021/acs.chemrestox.3c00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Smoking is a risk factor for bladder cancer (BC), although the specific chemicals responsible for BC remain uncertain. Considerable research has focused on aromatic amines (AAs), including o-toluidine (o-tol), o-anisidine (o-anis), 2-naphthylamine (2-NA), and 4-aminobiphenyl (4-ABP), which are linked to human BC based on elevated BC incidence in occupationally exposed factory workers. These AAs arise at nanogram levels per combusted cigarette. The unambiguous identification of AAs, particularly low-molecular-weight monocyclic AAs in tobacco smoke extracts, by liquid chromatography-mass spectrometry (LC-MS) is challenging due to their poor performance on reversed-phase columns and co-elution with isobaric interferences from the complex tobacco smoke matrix. We employed a tandem liquid-liquid and solid-phase extraction method to isolate AAs from the basic fraction of tobacco smoke condensate (TSC) and utilized high-field asymmetric waveform ion mobility spectrometry (FAIMS) coupled to high-resolution accurate mass (HRAM) Orbitrap LC-MS2 to assay AAs in TSC. The employment of FAIMS greatly reduced sample complexity by removing precursor co-isolation interfering species at the MS1 scan stage, resulting in dramatically improved signal-to-noise of the precursor ions and cleaner, high-quality MS2 spectra for unambiguous identification and quantification of AAs in TSC. We demonstrate the power of LC/FAIMS/MS2 by characterizing and quantifying two low-molecular-weight carcinogenic AAs, o-tol and o-anis, in TSC, using stable isotopically labeled internal standards. These results demonstrate the power of FAIMS in trace-level analyses of AA carcinogens in the complex tobacco smoke matrix.
Collapse
Affiliation(s)
- Dmitri Konorev
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455
- IDEXX Laboratories, Inc, 1 IDEXX Dr, Westbrook, ME 04092
| | - Medjda Bellamri
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455
| | - Chia-Fang Wu
- International Master Program of Translational Medicine, National United University, Miaoli, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Ming Tsang Wu
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Robert J. Turesky
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
6
|
Manz KE, Feerick A, Braun JM, Feng YL, Hall A, Koelmel J, Manzano C, Newton SR, Pennell KD, Place BJ, Godri Pollitt KJ, Prasse C, Young JA. Non-targeted analysis (NTA) and suspect screening analysis (SSA): a review of examining the chemical exposome. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:524-536. [PMID: 37380877 PMCID: PMC10403360 DOI: 10.1038/s41370-023-00574-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
Non-targeted analysis (NTA) and suspect screening analysis (SSA) are powerful techniques that rely on high-resolution mass spectrometry (HRMS) and computational tools to detect and identify unknown or suspected chemicals in the exposome. Fully understanding the chemical exposome requires characterization of both environmental media and human specimens. As such, we conducted a review to examine the use of different NTA and SSA methods in various exposure media and human samples, including the results and chemicals detected. The literature review was conducted by searching literature databases, such as PubMed and Web of Science, for keywords, such as "non-targeted analysis", "suspect screening analysis" and the exposure media. Sources of human exposure to environmental chemicals discussed in this review include water, air, soil/sediment, dust, and food and consumer products. The use of NTA for exposure discovery in human biospecimen is also reviewed. The chemical space that has been captured using NTA varies by media analyzed and analytical platform. In each media the chemicals that were frequently detected using NTA were: per- and polyfluoroalkyl substances (PFAS) and pharmaceuticals in water, pesticides and polyaromatic hydrocarbons (PAHs) in soil and sediment, volatile and semi-volatile organic compounds in air, flame retardants in dust, plasticizers in consumer products, and plasticizers, pesticides, and halogenated compounds in human samples. Some studies reviewed herein used both liquid chromatography (LC) and gas chromatography (GC) HRMS to increase the detected chemical space (16%); however, the majority (51%) only used LC-HRMS and fewer used GC-HRMS (32%). Finally, we identify knowledge and technology gaps that must be overcome to fully assess potential chemical exposures using NTA. Understanding the chemical space is essential to identifying and prioritizing gaps in our understanding of exposure sources and prior exposures. IMPACT STATEMENT: This review examines the results and chemicals detected by analyzing exposure media and human samples using high-resolution mass spectrometry based non-targeted analysis (NTA) and suspect screening analysis (SSA).
Collapse
Affiliation(s)
- Katherine E Manz
- School of Engineering, Brown University, Providence, RI, 02912, USA.
| | - Anna Feerick
- Agricultural & Environmental Chemistry Graduate Group, University of California, Davis, Davis, CA, 95616, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, 02912, USA
| | - Yong-Lai Feng
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Amber Hall
- Department of Epidemiology, Brown University, Providence, RI, 02912, USA
| | - Jeremy Koelmel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, 06520, USA
| | - Carlos Manzano
- Department of Chemistry, Faculty of Science, University of Chile, Santiago, RM, Chile
- School of Public Health, San Diego State University, San Diego, CA, USA
| | - Seth R Newton
- Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC, USA
| | - Kurt D Pennell
- School of Engineering, Brown University, Providence, RI, 02912, USA
| | - Benjamin J Place
- National Institute of Standards and Technology, 100 Bureau Dr, Gaithersburg, MD, 20899, USA
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, 06520, USA
| | - Carsten Prasse
- Department of Environmental Health & Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
- Risk Sciences and Public Policy Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Joshua A Young
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, 20993, USA
| |
Collapse
|
7
|
He Y, Yeo IKX, Guo C, Kai Y, Lu Y, Yang H. Elucidating the inhibitory mechanism on polyphenol oxidase from mushroom and melanosis formation by slightly acid electrolysed water. Food Chem 2023; 404:134580. [DOI: 10.1016/j.foodchem.2022.134580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/13/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022]
|
8
|
Non-Targeted Chemical Characterization of JUUL-Menthol-Flavored Aerosols Using Liquid and Gas Chromatography. SEPARATIONS 2022. [DOI: 10.3390/separations9110367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aerosol constituents generated from JUUL Menthol pods with 3.0% and 5.0% nicotine by weight (Me3 and Me5) are characterized by a non-targeted approach, which was developed to detect aerosol constituents that are not known to be present beforehand or that may be measured with targeted methods. Three replicates from three production batches (n = 9) were aerosolized using two puffing regimens (intense and non-intense). Each of the 18 samples were analyzed by gas chromatography electron ionization mass spectrometry and by liquid chromatography electrospray ionization high-resolving power mass spectrometry. All chemical constituents determined to differ from control were identified and semi-quantified. To have a complete understanding of the aerosol constituents and chemistry, each chemical constituent was categorized into one of five groups: (1) flavorants, (2) harmful and potentially harmful constituents, (3) leachables, (4) reaction products, and (5) chemical constituents that were unable to be identified or rationalized (e.g., chemical constituents that could not be categorized in groups (1–4). Under intense puffing, 74 chemical constituents were identified in Me3 aerosols and 68 under non-intense puffing, with 53 chemical constituents common between both regimens. Eighty-three chemical constituents were identified in Me5 aerosol using an intense puffing regimen and seventy-five with a non-intense puffing regimen, with sixty-two chemical constituents in common. Excluding primary constituents, reaction products accounted for the greatest number of chemical constituents (approximately 60% in all cases, ranging from about 0.05% to 0.1% by mass), and flavorants—excluding menthol—comprised the second largest number of chemical constituents (approximately 25%, ranging consistently around 0.01% by mass). The chemical constituents detected in JUUL aerosols were then compared to known constituents from cigarette smoke to determine the relative chemical complexities and commonalities/differences between the two. This revealed (1) a substantial decrease in the chemical complexity of JUUL aerosols vs. cigarette smoke and (2) that there are between 55 (Me3) and 61 (Me5) unique chemical constituents in JUUL aerosols not reported in cigarette smoke. Understanding the chemical complexity of JUUL aerosols is important because the health effects of combustible cigarette smoke are related to the combined effect of these chemical constituents through multiple mechanisms, not just the effects of any single smoke constituent.
Collapse
|
9
|
Mortazavi SA, Bevelacqua JJ, Rafiepour P, Ghadimi-Moghadam A, Saraie P, Jooyan N, Mortazavi SH, Javad Mortazavi SM, Welsh JS. Revisiting the Paradox of Smoking: Radioactivity in Tobacco Smoke or Suppressing the SARS-CoV-2 Receptor, Angiotensin-Converting Enzyme 2, via Aryl-Hydrocarbon Receptor Signal? Dose Response 2022; 20:15593258221075111. [PMID: 35392263 PMCID: PMC8980405 DOI: 10.1177/15593258221075111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/01/2022] [Indexed: 11/15/2022] Open
Abstract
Despite current controversies, some reports show a paradoxical mitigating effect associated with smoking in individuals with symptomatic COVID-19 compared to the general population. To explain the potential mechanisms behind the lower number of hospitalized COVID-19 patients, it has been hypothesized that cigarette smoking may reduce the odds of cytokine storm and related severe inflammatory responses through cholinergic-mediated anti-inflammatory mechanisms. Japanese scientists have recently identified a potential mechanism behind the lower numbers of COVID-19 cases amongst smokers compared to non-smokers. However, we believe that this mitigative effect may be due to the relatively high concentration of deposited energy of alpha particles emitted from naturally occurring radionuclides such as Po-210 in cigarette tobacco. Regarding COVID-19, other researchers and our team have previously addressed the anti-inflammatory and immune-modulating effects of low doses of ionizing radiation. MC-simulation using the Geant4 Monte Carlo toolkit shows that the radiation dose absorbed in a spherical cell with a radius of .9 μm for a single 5.5 MeV alpha particle is about 5.1 Gy. This energy deposition may trigger both anti-inflammatory and anti-thrombotic effects which paradoxically lower the risk of hospitalization due to COVID-19 in smokers.
Collapse
Affiliation(s)
| | | | - Payman Rafiepour
- Department of Nuclear Engineering, School of Mechanical Engineering, Shiraz University, Shiraz, Iran
| | | | - Pooya Saraie
- Radiology Department, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Jooyan
- Medical Physics and Engineering Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - James S Welsh
- Department of Radiation Oncology Edward Hines Jr VA Hospital Hines, IL, USA
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University, Chicago, IL, United States
| |
Collapse
|
10
|
NMR Spectroscopy Identifies Chemicals in Cigarette Smoke Condensate That Impair Skeletal Muscle Mitochondrial Function. TOXICS 2022; 10:toxics10030140. [PMID: 35324765 PMCID: PMC8955362 DOI: 10.3390/toxics10030140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/01/2022] [Accepted: 03/11/2022] [Indexed: 01/16/2023]
Abstract
Tobacco smoke-related diseases such as chronic obstructive pulmonary disease (COPD) are associated with high healthcare burden and mortality rates. Many COPD patients were reported to have muscle atrophy and weakness, with several studies suggesting intrinsic muscle mitochondrial impairment as a possible driver of this phenotype. Whereas much information has been learned about muscle pathology once a patient has COPD, little is known about how active tobacco smoking might impact skeletal muscle physiology or mitochondrial health. In this study, we examined the acute effects of cigarette smoke condensate (CSC) on muscle mitochondrial function and hypothesized that toxic chemicals present in CSC would impair mitochondrial respiratory function. Consistent with this hypothesis, we found that acute exposure of muscle mitochondria to CSC caused a dose-dependent decrease in skeletal muscle mitochondrial respiratory capacity. Next, we applied an analytical nuclear magnetic resonance (NMR)-based approach to identify 49 water-soluble and 12 lipid-soluble chemicals with high abundance in CSC. By using a chemical screening approach in the Seahorse XF96 analyzer, several CSC-chemicals, including nicotine, o-Cresol, phenylacetate, and decanoic acid, were found to impair ADP-stimulated respiration in murine muscle mitochondrial isolates significantly. Further to this, several chemicals, including nicotine, o-Cresol, quinoline, propylene glycol, myo-inositol, nitrosodimethylamine, niacinamide, decanoic acid, acrylonitrile, 2-naphthylamine, and arsenic acid, were found to significantly decrease the acceptor control ratio, an index of mitochondrial coupling efficiency.
Collapse
|
11
|
Sussman EM, Oktem B, Isayeva IS, Liu J, Wickramasekara S, Chandrasekar V, Nahan K, Shin HY, Zheng J. Chemical Characterization and Non-targeted Analysis of Medical Device Extracts: A Review of Current Approaches, Gaps, and Emerging Practices. ACS Biomater Sci Eng 2022; 8:939-963. [PMID: 35171560 DOI: 10.1021/acsbiomaterials.1c01119] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The developers of medical devices evaluate the biocompatibility of their device prior to FDA's review and subsequent introduction to the market. Chemical characterization, described in ISO 10993-18:2020, can generate information for toxicological risk assessment and is an alternative approach for addressing some biocompatibility end points (e.g., systemic toxicity, genotoxicity, carcinogenicity, reproductive/developmental toxicity) that can reduce the time and cost of testing and the need for animal testing. Additionally, chemical characterization can be used to determine whether modifications to the materials and manufacturing processes alter the chemistry of a patient-contacting device to an extent that could impact device safety. Extractables testing is one approach to chemical characterization that employs combinations of non-targeted analysis, non-targeted screening, and/or targeted analysis to establish the identities and quantities of the various chemical constituents that can be released from a device. Due to the difficulty in obtaining a priori information on all the constituents in finished devices, information generation strategies in the form of analytical chemistry testing are often used. Identified and quantified extractables are then assessed using toxicological risk assessment approaches to determine if reported quantities are sufficiently low to overcome the need for further chemical analysis, biological evaluation of select end points, or risk control. For extractables studies to be useful as a screening tool, comprehensive and reliable non-targeted methods are needed. Although non-targeted methods have been adopted by many laboratories, they are laboratory-specific and require expensive analytical instruments and advanced technical expertise to perform. In this Perspective, we describe the elements of extractables studies and provide an overview of the current practices, identified gaps, and emerging practices that may be adopted on a wider scale in the future. This Perspective is outlined according to the steps of an extractables study: information gathering, extraction, extract sample processing, system selection, qualification, quantification, and identification.
Collapse
Affiliation(s)
- Eric M Sussman
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Berk Oktem
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Irada S Isayeva
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Jinrong Liu
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Samanthi Wickramasekara
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Vaishnavi Chandrasekar
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Keaton Nahan
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Hainsworth Y Shin
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Jiwen Zheng
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| |
Collapse
|
12
|
Shah NH, Noe MR, Agnew-Heard KA, Pithawalla YB, Gardner WP, Chakraborty S, McCutcheon N, Grisevich H, Hurst TJ, Morton MJ, Melvin MS, Miller IV JH. Non-Targeted Analysis Using Gas Chromatography-Mass Spectrometry for Evaluation of Chemical Composition of E-Vapor Products. Front Chem 2021; 9:742854. [PMID: 34660534 PMCID: PMC8511636 DOI: 10.3389/fchem.2021.742854] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
The Premarket Tobacco Product Applications (PMTA) guidance issued by the Food and Drug Administration for electronic nicotine delivery systems (ENDSs) recommends that in addition to reporting harmful and potentially harmful constituents (HPHCs), manufacturers should evaluate these products for other chemicals that could form during use and over time. Although e-vapor product aerosols are considerably less complex than mainstream smoke from cigarettes and heated tobacco product (HTP) aerosols, there are challenges with performing a comprehensive chemical characterization. Some of these challenges include the complexity of the e-liquid chemical compositions, the variety of flavors used, and the aerosol collection efficiency of volatile and semi-volatile compounds generated from aerosols. In this study, a non-targeted analysis method was developed using gas chromatography-mass spectrometry (GC-MS) that allows evaluation of volatile and semi-volatile compounds in e-liquids and aerosols of e-vapor products. The method employed an automated data analysis workflow using Agilent MassHunter Unknowns Analysis software for mass spectral deconvolution, peak detection, and library searching and reporting. The automated process ensured data integrity and consistency of compound identification with >99% of known compounds being identified using an in-house custom mass spectral library. The custom library was created to aid in compound identifications and includes over 1,100 unique mass spectral entries, of which 600 have been confirmed from reference standard comparisons. The method validation included accuracy, precision, repeatability, limit of detection (LOD), and selectivity. The validation also demonstrated that this semi-quantitative method provides estimated concentrations with an accuracy ranging between 0.5- and 2.0-fold as compared to the actual values. The LOD threshold of 0.7 ppm was established based on instrument sensitivity and accuracy of the compounds identified. To demonstrate the application of this method, we share results from the comprehensive chemical profile of e-liquids and aerosols collected from a marketed e-vapor product. Applying the data processing workflow developed here, 46 compounds were detected in the e-liquid formulation and 55 compounds in the aerosol sample. More than 50% of compounds reported have been confirmed with reference standards. The profiling approach described in this publication is applicable to evaluating volatile and semi-volatile compounds in e-vapor products.
Collapse
Affiliation(s)
- Niti H. Shah
- Center for Research and Technology, Altria Client Services LLC, Richmond, VA, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Non-Targeted Chemical Characterization of JUUL Virginia Tobacco Flavored Aerosols Using Liquid and Gas Chromatography. SEPARATIONS 2021. [DOI: 10.3390/separations8090130] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The chemical constituents of JUUL Virginia Tobacco pods with 3.0% and 5.0% nicotine by weight (VT3 and VT5) were characterized by non-targeted analyses, an approach to detect chemicals that are not otherwise measured with dedicated methods or that are not known beforehand. Aerosols were generated using intense and non-intense puffing regimens and analyzed by gas chromatography electron ionization mass spectrometry and liquid chromatography electrospray ionization high resolving power mass spectrometry. All compounds above 0.7 µg/g for GC–MS analysis or above 0.5 µg/g for LC–HRMS analysis and differing from blank measurements were identified and semi-quantified. All identifications were evaluated and categorized into five groups: flavorants, harmful and potentially harmful constituents, extractables and/or leachables, reaction products, and compounds that could not be identified/rationalized. For VT3, 79 compounds were identified using an intense puffing regimen and 69 using a non-intense puffing regimen. There were 60 compounds common between both regimens. For VT5, 85 compounds were identified with an intense puffing regimen and 73 with a non-intense puffing regimen; 67 compounds were in common. For all nicotine concentrations, formulations and puffing regimens, reaction products accounted for the greatest number of compounds (ranging from 70% to 75%; 0.08% to 0.1% by mass), and flavorants comprised the second largest number of compounds (ranging from for 15% to 16%; 0.1 to 0.2% by mass). A global comparison of the compounds detected in JUUL aerosol to those catalogued in cigarette smoke indicated an approximate 50-fold decrease in chemical complexity. Both VT3 and VT5 aerosols contained 59 unique compounds not identified in cigarette smoke.
Collapse
|
14
|
Marques H, Cruz-Vicente P, Rosado T, Barroso M, Passarinha LA, Gallardo E. Recent Developments in the Determination of Biomarkers of Tobacco Smoke Exposure in Biological Specimens: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1768. [PMID: 33670326 PMCID: PMC7918937 DOI: 10.3390/ijerph18041768] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 11/26/2022]
Abstract
Environmental tobacco smoke exposure (ETS) and smoking have been described as the most prevalent factors in the development of certain diseases worldwide. According to the World Health Organization, more than 8 million people die every year due to exposure to tobacco, around 7 million due to direct ETS and the remaining due to exposure to second-hand smoke. Both active and second-hand exposure can be measured and controlled using specific biomarkers of tobacco and its derivatives, allowing the development of more efficient public health policies. Exposure to these compounds can be measured using different methods (involving for instance liquid- or gas-chromatographic procedures) in a wide range of biological specimens to estimate the type and degree of tobacco exposure. In recent years, a lot of research has been carried out using different extraction methods and different analytical equipment; this way, liquid-liquid extraction, solid-phase extraction or even miniaturized procedures have been used, followed by chromatographic analysis coupled mainly to mass spectrometric detection. Through this type of methodologies, second-hand smokers can be distinguished from active smokers, and this is also valid for e-cigarettes and vapers, among others, using their specific biomarkers. This review will focus on recent developments in the determination of tobacco smoke biomarkers, including nicotine and other tobacco alkaloids, specific nitrosamines, polycyclic aromatic hydrocarbons, etc. The methods for their detection will be discussed in detail, as well as the potential use of threshold values to distinguish between types of exposure.
Collapse
Affiliation(s)
- Hernâni Marques
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilhã, Portugal; (H.M.); (P.C.-V.); (T.R.); (L.A.P.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, 6200-284 Covilhã, Portugal
| | - Pedro Cruz-Vicente
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilhã, Portugal; (H.M.); (P.C.-V.); (T.R.); (L.A.P.)
- UCIBIO, Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Tiago Rosado
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilhã, Portugal; (H.M.); (P.C.-V.); (T.R.); (L.A.P.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, 6200-284 Covilhã, Portugal
- C4—Centro de Competências em Cloud Computing da Universidade da Beira Interior, 6200-284 Covilhã, Portugal
| | - Mário Barroso
- Serviço de Química e Toxicologia Forenses, Instituto Nacional de Medicina Legal e Ciências Forenses, Delegação do Sul, 1150-219 Lisboa, Portugal;
| | - Luís A. Passarinha
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilhã, Portugal; (H.M.); (P.C.-V.); (T.R.); (L.A.P.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, 6200-284 Covilhã, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilhã, Portugal; (H.M.); (P.C.-V.); (T.R.); (L.A.P.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, 6200-284 Covilhã, Portugal
| |
Collapse
|
15
|
Chromatographic Profiling with Machine Learning Discriminates the Maturity Grades of Nicotiana tabacum L. Leaves. SEPARATIONS 2021. [DOI: 10.3390/separations8010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nicotiana tabacum L. (NTL) is an important agricultural and economical crop. Its maturity is one of the key factors affecting its quality. Traditionally, maturity is discriminated visually by humans, which is subjective and empirical. In this study, we concentrated on detecting as many compounds as possible in NTL leaves from different maturity grades using ultra-performance liquid chromatography ion trap time-of-flight mass spectrometry (UPLC-IT-TOF/MS). Then, the low-dimensional embedding of LC-MS dataset by t-distributed stochastic neighbor embedding (t-SNE) clearly showed the separation of the leaves from different maturity grades. The discriminant models between different maturity grades were established using orthogonal partial least squares discriminant analysis (OPLS-DA). The quality metrics of the models are R2Y = 0.939 and Q2 = 0.742 (unripe and ripe), R2Y = 0.900 and Q2 = 0.847 (overripe and ripe), and R2Y = 0.972 and Q2 = 0.930 (overripe and unripe). The differential metabolites were screened by their variable importance in projection (VIP) and p-Values. The existing tandem mass spectrometry library of plant metabolites, the user-defined library of structures, and MS-FINDER were combined to identify these metabolites. A total of 49 compounds were identified, including 12 amines, 14 lipids, 10 phenols, and 13 others. The results can be used to discriminate the maturity grades of the leaves and ensure their quality.
Collapse
|
16
|
An assessment of quality assurance/quality control efforts in high resolution mass spectrometry non-target workflows for analysis of environmental samples. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116063] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Guo Z, Huang S, Wang J, Feng YL. Recent advances in non-targeted screening analysis using liquid chromatography - high resolution mass spectrometry to explore new biomarkers for human exposure. Talanta 2020; 219:121339. [DOI: 10.1016/j.talanta.2020.121339] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/16/2020] [Accepted: 06/09/2020] [Indexed: 12/29/2022]
|
18
|
Bentley MC, Almstetter M, Arndt D, Knorr A, Martin E, Pospisil P, Maeder S. Comprehensive chemical characterization of the aerosol generated by a heated tobacco product by untargeted screening. Anal Bioanal Chem 2020; 412:2675-2685. [PMID: 32072212 PMCID: PMC7136312 DOI: 10.1007/s00216-020-02502-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 11/30/2022]
Abstract
A suite of untargeted methods has been applied for the characterization of aerosol from the Tobacco Heating System 2.2 (THS2.2), a heated tobacco product developed by Philip Morris Products S.A. and commercialized under the brand name IQOS®. A total of 529 chemical constituents, excluding water, glycerin, and nicotine, were present in the mainstream aerosol of THS2.2, generated by following the Health Canada intense smoking regimen, at concentrations ≥ 100 ng/item. The majority were present in the particulate phase (n = 402), representing more than 80% of the total mass determined by untargeted screening; a proportion were present in both particulate and gas-vapor phases (39 compounds). The identities for 80% of all chemical constituents (representing > 96% of the total determined mass) were confirmed by the use of authentic analytical reference materials. Despite the uncertainties that are recognized to be associated with aerosol-based untargeted approaches, the reported data remain indicative that the uncharacterized fraction of TPM generated by THS2.2 has been evaluated to the fullest practicable extent. To the best of our knowledge, this work represents the most comprehensive chemical characterization of a heated tobacco aerosol to date. Graphical abstract.
Collapse
Affiliation(s)
- Mark C Bentley
- Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 3, 2000, Neuchâtel, Switzerland.
| | - Martin Almstetter
- Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 3, 2000, Neuchâtel, Switzerland
| | - Daniel Arndt
- Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 3, 2000, Neuchâtel, Switzerland
| | - Arno Knorr
- Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 3, 2000, Neuchâtel, Switzerland
| | - Elyette Martin
- Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 3, 2000, Neuchâtel, Switzerland
| | - Pavel Pospisil
- Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 3, 2000, Neuchâtel, Switzerland
| | - Serge Maeder
- Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 3, 2000, Neuchâtel, Switzerland
| |
Collapse
|