1
|
Gilar M, Redstone S, Gomes A. Impact of mobile and stationary phases on siRNA duplex stability in liquid chromatography. J Chromatogr A 2024; 1733:465285. [PMID: 39173502 DOI: 10.1016/j.chroma.2024.465285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/09/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
Nucleic acid duplexes are typically analyzed in non-denaturing conditions. Melting temperature (Tm) is the property used to measure duplex stability; however, it is not known how the chromatographic conditions and mobile phase composition affect the duplex stability. We employed differential scanning calorimetry (DSC) method to measure the melting temperature of chemically modified silencing RNA duplex (21 base pairs, 0.15 mM duplex concentration) in mobile phases commonly used in reversed-phase, ion-pair reversed-phase, size exclusion and hydrophilic interaction chromatography. We investigated mobile phases consisting of ammonium acetate, alkylammonium ion-pairing reagents, alkali-ion chlorides, magnesium chloride, and additives including methanol, ethanol, acetonitrile and hexafluoroisopropanol. Increasing buffer concentration enhanced the duplex stability (Tm was 67.1 - 78.2 °C for 10-100 mM [Na+] concentration). The melting temperature decreases with the increase in cation size (70.2 °C in 10 mM [Li+], 68.1 °C in 10 mM [NH4+], 65.6 °C in 10 mM [Cs+], and 56.6 °C in 10 mM [triethylammonium+] solutions). Inclusion of 20 % of organic solvent in buffer reduced the melting temperature by 1-3 °C, and denaturation power increases in the order MeOH
Collapse
Affiliation(s)
- Martin Gilar
- Waters Corporation, 34 Maple Street, Milford, MA, 01757, USA.
| | - Samuel Redstone
- Waters Corporation, 34 Maple Street, Milford, MA, 01757, USA
| | - Alexandre Gomes
- Waters Corporation, 34 Maple Street, Milford, MA, 01757, USA
| |
Collapse
|
2
|
Vosáhlová Z, Gilar M, Kalíková K. Impact of ion-pairing systems choice on diastereomeric selectivity of phosphorothioated oligonucleotides in reversed-phase liquid chromatography. J Chromatogr A 2024; 1730:465074. [PMID: 38870581 DOI: 10.1016/j.chroma.2024.465074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/28/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Ion-pairing reversed-phase liquid chromatography was utilized for the analysis of native and phosphorothioated oligonucleotides differing in the length (2-6mers and 21mer) and the number and position of phosphorothioate modifications. We investigated the influence of counterion (acetate vs. hexafluoroisopropanol) on the adsorption of eleven alkylamines on the stationary phases. A stronger adsorption of charged alkylamines on octadecyl- and phenyl-based stationary phases led to greater retention of oligonucleotides, and the adsorption of alkylamines was promoted with greater concentration of hexafluoroisopropanol in the mobile phase. Selected amines (triethylamine, dipropylamine, hexylamine) were used to study the resolution of n and n-x mers (main peak and its impurities shortened at 5´end), and diastereomeric separation of phosphorothioated oligonucleotides. The results confirmed a crucial role of alkylamine and counterion choice on the diastereomeric separation. The increasing hydrophobicity of alkylamine led to diminished diastereomeric selectivity which produced narrower phosphorothioated oligonucleotides peaks and led to improved n/n-x separation. Using hexafluoroisopropanol instead of acetate as counterion further enhances this effect (except for 100 mM concentration of hexafluoroisopropanol in combination with highly hydrophobic hexylamine). The elevated column temperature led to suppression of the diastereomeric resolution and improved resolution of n and n-x mers oligonucleotides. Baseline separation of oligonucleotides with different number of phosphorothioate linkages was achieved; this may be useful for therapeutic oligonucleotide analysis.
Collapse
Affiliation(s)
- Zuzana Vosáhlová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 12800, Czech Republic
| | - Martin Gilar
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | - Květa Kalíková
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 12800, Czech Republic.
| |
Collapse
|
3
|
Gilar M, Doneanu C, Gaye MM. Liquid Chromatography Methods for Analysis of mRNA Poly(A) Tail Length and Heterogeneity. Anal Chem 2023; 95:14308-14316. [PMID: 37696042 PMCID: PMC10535021 DOI: 10.1021/acs.analchem.3c02552] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Messenger RNA (mRNA) is a new class of therapeutic compounds. The current advances in mRNA technology require the development of efficient analytical methods. In this work, we describe the development of several methods for measurement of mRNA poly(A) tail length and heterogeneity. Poly(A) tail was first cleaved from mRNA with the RNase T1 enzyme. The average length of a liberated poly(A) tail was analyzed with the size exclusion chromatography method. Size heterogeneity of the poly(A) tail was estimated with high-resolution ion-pair reversed phase liquid chromatography (IP RP LC). The IP RP LC method provides resolution of poly(A) tail oligonucleotide variants up to 150 nucleotide long. Both methods use a robust ultraviolet detection suitable for mRNA analysis in quality control laboratories. The results were confirmed by the LC-mass spectrometry (LC MS) analysis of the same mRNA sample. The poly(A) tail length and heterogeneity results were in good agreement.
Collapse
Affiliation(s)
- Martin Gilar
- Separations
R&D, Waters Corporation, Milford, Massachusetts 01757, United States
| | - Catalin Doneanu
- Discovery
and Development, Waters Corporation, Milford, Massachusetts 01757, United States
| | - Maissa M. Gaye
- Consumables
Research, Waters Corporation, Milford, Massachusetts 01757, United States
| |
Collapse
|
4
|
Gau BC, Dawdy AW, Wang HL, Bare B, Castaneda CH, Friese OV, Thompson MS, Lerch TF, Cirelli DJ, Rouse JC. Oligonucleotide mapping via mass spectrometry to enable comprehensive primary structure characterization of an mRNA vaccine against SARS-CoV-2. Sci Rep 2023; 13:9038. [PMID: 37270636 DOI: 10.1038/s41598-023-36193-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/30/2023] [Indexed: 06/05/2023] Open
Abstract
Oligonucleotide mapping via liquid chromatography with UV detection coupled to tandem mass spectrometry (LC-UV-MS/MS) was recently developed to support development of Comirnaty, the world's first commercial mRNA vaccine which immunizes against the SARS-CoV-2 virus. Analogous to peptide mapping of therapeutic protein modalities, oligonucleotide mapping described here provides direct primary structure characterization of mRNA, through enzymatic digestion, accurate mass determinations, and optimized collisionally-induced fragmentation. Sample preparation for oligonucleotide mapping is a rapid, one-pot, one-enzyme digestion. The digest is analyzed via LC-MS/MS with an extended gradient and resulting data analysis employs semi-automated software. In a single method, oligonucleotide mapping readouts include a highly reproducible and completely annotated UV chromatogram with 100% maximum sequence coverage, and a microheterogeneity assessment of 5' terminus capping and 3' terminus poly(A)-tail length. Oligonucleotide mapping was pivotal to ensure the quality, safety, and efficacy of mRNA vaccines by providing: confirmation of construct identity and primary structure and assessment of product comparability following manufacturing process changes. More broadly, this technique may be used to directly interrogate the primary structure of RNA molecules in general.
Collapse
Affiliation(s)
- Brian C Gau
- BioTherapeutics Pharmaceutical Sciences, Pfizer Inc, Chesterfield, MO, USA.
| | - Andrew W Dawdy
- BioTherapeutics Pharmaceutical Sciences, Pfizer Inc, Chesterfield, MO, USA.
| | - Hanliu Leah Wang
- BioTherapeutics Pharmaceutical Sciences, Pfizer Inc, Chesterfield, MO, USA
| | - Bradley Bare
- BioTherapeutics Pharmaceutical Sciences, Pfizer Inc, Chesterfield, MO, USA
| | - Carlos H Castaneda
- BioTherapeutics Pharmaceutical Sciences, Pfizer Inc, Chesterfield, MO, USA
| | - Olga V Friese
- BioTherapeutics Pharmaceutical Sciences, Pfizer Inc, Chesterfield, MO, USA
| | | | - Thomas F Lerch
- BioTherapeutics Pharmaceutical Sciences, Pfizer Inc, Chesterfield, MO, USA
| | - David J Cirelli
- BioTherapeutics Pharmaceutical Sciences, Pfizer Inc, Andover, MA, USA
| | - Jason C Rouse
- BioTherapeutics Pharmaceutical Sciences, Pfizer Inc, Andover, MA, USA
| |
Collapse
|
5
|
Kuwayama T, Ozaki M, Shimotsuma M, Hirose T. Separation of long-stranded RNAs by RP-HPLC using an octadecyl-based column with super-wide pores. ANAL SCI 2023; 39:417-425. [PMID: 36566342 PMCID: PMC9789886 DOI: 10.1007/s44211-022-00253-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022]
Abstract
Messenger ribonucleic acids (mRNAs) have been used in vaccines for various diseases and are attracting attention as a new pharmaceutical paradigm. The purification of mRNAs is necessary because various impurities, such as template DNAs and transcription enzymes, remain in the crude product after mRNA synthesis. Among the various purification methods, reversed-phase high-performance liquid chromatography (RP-HPLC) is currently attracting attention. Herein, we optimized the pore size of the packing materials, the mobile phase composition, and the temperature of the process; we also evaluated changes in the separation patterns of RNA strands of various lengths via RP-HPLC. Additionally, single-stranded (50-1000 nucleotides in length) and double-stranded (80-500 base pairs in length) RNAs were separated while their non-denatured states were maintained by performing the analysis at 60 °C using triethylammonium acetate as the mobile phase and octadecyl-based RNA-RP1 with super-wide pores (> 30 nm) as the column. Furthermore, impurities in a long-stranded RNA of several thousand nucleotides synthesized by in vitro transcription were successfully separated using an RNA-RP1 column. The columns used in this study are expected to separate various RNA strands and the impurities contained in them.
Collapse
Affiliation(s)
- Tomomi Kuwayama
- Nacalai Tesque, Inc., Ishibashi Kaide-Cho, Muko, Kyoto, 617-0004, Japan
| | - Makoto Ozaki
- Nacalai Tesque, Inc., Ishibashi Kaide-Cho, Muko, Kyoto, 617-0004, Japan
| | | | - Tsunehisa Hirose
- Nacalai Tesque, Inc., Ishibashi Kaide-Cho, Muko, Kyoto, 617-0004, Japan.
| |
Collapse
|
6
|
Kadlecová Z, Kalíková K, Tesařová E, Gilar M. Phosphorothioate oligonucleotides separation in ion-pairing reversed-phase liquid chromatography: effect of temperature. J Chromatogr A 2022; 1681:463473. [PMID: 36113338 DOI: 10.1016/j.chroma.2022.463473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/27/2022] [Accepted: 09/01/2022] [Indexed: 11/15/2022]
Abstract
Analysis of diastereomers of phosphorothioate oligonucleotides in ion-pairing reversed-phase liquid chromatography is affected not only by the character and concentration of ion-pairing system, but also by the separation temperature. In this work, eight ion-pairing systems at two concentrations buffered with acetic acid were used with octadecyl column to investigate the effects of temperature (in the range from 20 °C to 90 °C) on retention, diastereomeric separation, resolution of mers of different length and resolution of oligonucleotides with different number of phosphorothioate linkages. It was observed that elevated temperature suppresses the diastereomeric separation and oligonucleotide peaks become narrower. This improves the resolution of n and n-1 mers at elevated temperature. Plots of ln k (k = retention factor) versus reciprocal absolute temperature show that for 100 mM ion-pairing systems the increase in temperature does not lead to simple decrease in oligonucleotides retention as generally observed in reversed-phase liquid chromatography. The aim of this work is to improve chromatographic method for analysis of phosphorothioate oligonucleotides.
Collapse
Affiliation(s)
- Zuzana Kadlecová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12800, Prague, Czech Republic
| | - Květa Kalíková
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12800, Prague, Czech Republic.
| | - Eva Tesařová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12800, Prague, Czech Republic
| | - Martin Gilar
- Waters Corporation, 34 Maple Street, Milford, MA 01757, United States of America.
| |
Collapse
|
7
|
Lardeux H, Goyon A, Zhang K, Nguyen JM, Lauber MA, Guillarme D, D'Atri V. The impact of low adsorption surfaces for the analysis of DNA and RNA oligonucleotides. J Chromatogr A 2022; 1677:463324. [PMID: 35858489 DOI: 10.1016/j.chroma.2022.463324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/20/2022]
Abstract
As interest in oligonucleotide (ON) therapeutics is increasing, there is a need to develop suitable analytical methods able to properly analyze those molecules. However, an issue exists in the adsorption of ONs on different parts of the instrumentation during their analysis. The goal of the present paper was to comprehensively evaluate various types of bioinert materials used in ion-pairing reversed-phase (IP-RPLC) and hydrophilic interaction chromatography (HILIC) to mitigate this issue for 15- to 100-mer DNA and RNA oligonucleotides. The whole sample flow path was considered under both conditions, including chromatographic columns, ultra-high-performance liquid chromatography (UHPLC) system, and ultraviolet (UV) flow cell. It was found that a negligible amount of non-specific adsorption might be attributable to the chromatographic instrumentation. However, the flow cell of a detector should be carefully subjected to sample-based conditioning, as the material used in the UV flow cell was found to significantly impact the peak shapes of the largest ONs (60- to 100-mer). Most importantly, we found that the choice of column hardware had the most significant impact on the extent of non-specific adsorption. Depending on the material used for the column walls and frits, adsorption can be more or less pronounced. It was proved that any type of bioinert RPLC/HILIC column hardware offered some clear benefits in terms of adsorption in comparison to their stainless-steel counterparts. Finally, the evaluation of a large set of ONs was performed, including a DNA duplex and DNA or RNA ONs having different base composition, furanose sugar, and modifications occurring at the phosphate linkage or at the sugar moiety. This work represents an important advance in understanding the overall ON adsorption, and it helps to define the best combination of materials when analyzing a wide range of unmodified and modified 20-mer DNA and RNA ONs.
Collapse
Affiliation(s)
- Honorine Lardeux
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU-Rue Michel Servet 1, Geneva 4 1211, Switzerland; School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel Servet 1, Geneva 4 1211, Switzerland
| | - Alexandre Goyon
- Small Molecule Pharmaceutical Sciences, Genentech Inc., DNA Way, South San Francisco, CA 94080, USA
| | - Kelly Zhang
- Small Molecule Pharmaceutical Sciences, Genentech Inc., DNA Way, South San Francisco, CA 94080, USA
| | | | | | - Davy Guillarme
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU-Rue Michel Servet 1, Geneva 4 1211, Switzerland; School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel Servet 1, Geneva 4 1211, Switzerland
| | - Valentina D'Atri
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU-Rue Michel Servet 1, Geneva 4 1211, Switzerland; School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel Servet 1, Geneva 4 1211, Switzerland.
| |
Collapse
|
8
|
Kadlecová Z, Kalíková K, Tesařová E, Gilar M. Phosphorothioate oligonucleotides separation in ion-pairing reversed-phase liquid chromatography: effect of ion-pairing system. J Chromatogr A 2022; 1676:463201. [DOI: 10.1016/j.chroma.2022.463201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 02/04/2023]
|
9
|
Rentel C, Gaus H, Bradley K, Luu N, Kolkey K, Mai B, Madsen M, Pearce M, Bock B, Capaldi D. Assay, Purity, and Impurity Profile of Phosphorothioate Oligonucleotide Therapeutics by Ion Pair-High-Performance Liquid Chromatography-Mass Spectrometry. Nucleic Acid Ther 2022; 32:206-220. [PMID: 35238617 DOI: 10.1089/nat.2021.0056] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The relatively large molecular size, diastereoisomeric nature, and complex impurity profiles of therapeutic phosphorothioate oligonucleotides create significant analytical challenges for the quality control laboratory. To overcome the lack of selectivity inherent to traditional chromatographic approaches, an ion pair liquid chromatography-mass spectrometry (LCMS) method combining ultraviolet and mass spectrometry quantification was developed and validated for >35 different oligonucleotide drug substances and products, including several commercialized drugs. The selection of chromatographic and spectrometric conditions, data acquisition and processing, critical aspects of sample and buffer preparation and instrument maintenance, and results from method validation experiments are discussed.
Collapse
Affiliation(s)
- Claus Rentel
- Analytical Development Quality Control, Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Hans Gaus
- Analytical Development Quality Control, Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Kym Bradley
- Analytical Development Quality Control, Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Nhuy Luu
- Analytical Development Quality Control, Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Kimmy Kolkey
- Analytical Development Quality Control, Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Bao Mai
- Analytical Development Quality Control, Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Mark Madsen
- Analytical Development Quality Control, Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Megan Pearce
- Analytical Development Quality Control, Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Brandon Bock
- Analytical Development Quality Control, Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Daniel Capaldi
- Analytical Development Quality Control, Ionis Pharmaceuticals, Carlsbad, California, USA
| |
Collapse
|
10
|
Donegan M, Nguyen JM, Gilar M. Effect of ion-pairing reagent hydrophobicity on liquid chromatography and mass spectrometry analysis of oligonucleotides. J Chromatogr A 2022; 1666:462860. [PMID: 35123169 DOI: 10.1016/j.chroma.2022.462860] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
Abstract
We performed a systematic study of thirteen alkylamines used as ion-pairing reagents for ion-pair reversed-phase liquid chromatography (IP RP LC) separations of oligonucleotides on a C18 column. We proposed a method to classify the hydrophobicity of alkylamines by their retention in RP LC. The IP reagent hydrophobicity correlated with the retention and resolution of oligonucleotides in the corresponding IP mobile phases. The baseline resolution was achieved up to 30 mer for hydrophilic, or up to 50 mer for hydrophobic IP reagents. Hydrophobic alkylamines permitted useful oligonucleotide separations at relatively low buffer concentrations, such as 5-10 mM alkylamine-acetate IP systems. These buffers were compatible with mass spectrometry detection, however, replacement of acetic acid with hexafluoroisopropanol in the mobile phase improved the MS signal by 2-3 orders of magnitude. Experiments with native and chemically modified oligonucleotides highlighted the mixed-mode nature of IP RP LC. When using hydrophobic IP reagents, the ionic retention mechanism of oligonucleotides is enhanced while hydrophobic retention is diminished.
Collapse
Affiliation(s)
| | | | - Martin Gilar
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA.
| |
Collapse
|
11
|
Nguyen JM, Gilar M, Koshel B, Donegan M, MacLean J, Li Z, Lauber MA. Assessing the impact of nonspecific binding on oligonucleotide bioanalysis. Bioanalysis 2021; 13:1233-1244. [PMID: 34472373 DOI: 10.4155/bio-2021-0115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Aim: Accurate and reliable quantification of oligonucleotides can be difficult, which has led to an increased focus on bioanalytical methods for more robust analyses. Recent advances toward mitigating sample losses on liquid chromatography (LC) systems have produced recovery advantages for oligonucleotide separations. Results & methodology: LC instruments and columns constructed from MP35N metal alloy and stainless steel columns were compared against LC hardware modified with hybrid inorganic-organic silica surfaces. Designed to minimize metal-analyte adsorption, these surfaces demonstrated a 73% increase in 25-mer phosphorothioate oligonucleotide recovery using ion-pairing reversed-phase LC versus standard LC surfaces, most particularly upon initial use. Conclusion: Hybrid silica chromatographic surfaces improve the performance, detection limits and reproducibility of oligonucleotide bioanalytical assays.
Collapse
Affiliation(s)
- Jennifer M Nguyen
- School of Science, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg, Denmark
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | - Martin Gilar
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | - Brooke Koshel
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | | | - Jason MacLean
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | - Zhimin Li
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | | |
Collapse
|
12
|
Pontrelli S, Sauer U. Salt-Tolerant Metabolomics for Exometabolomic Measurements of Marine Bacterial Isolates. Anal Chem 2021; 93:7164-7171. [PMID: 33944555 DOI: 10.1021/acs.analchem.0c04795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Identifying and quantifying metabolites secreted by microbial isolates can aid in understanding the physiological traits of diverse species and their interaction with the environment. Mass spectrometry-based metabolomics has potential to provide a holistic view of the exometabolism of marine isolates, but the high salt content of such samples interferes with chromatography and ionization during the measurement of polar exometabolites. The most common desalting methods are faced with major limitations, including limited separation of small polar metabolites from salts, the use of organic solvents that cannot accommodate large salt quantities, and sample throughput. Here, we utilize a cyano stationary phase to develop a high-throughput, isocratic liquid chromatography-mass spectrometry (LC-MS) desalting method that mitigates these shortcomings. We demonstrate that counterions present in a common marine growth medium experience distinct elution times, which prevents their coelution with 73 physiologically relevant polar metabolites, effectively minimizing the effects of salt content on ion suppression. We determined optimal salt concentrations for quadrupole time-of-flight (QTOF) MS measurements and limits of quantification in the low micromolar range in the salty matrix. The efficacy of this method was demonstrated through the measurement of exometabolites secreted by three marine bacterial isolates originating from a carrageenan degrading microbial community. This method provides a simple, versatile desalting method for measuring exometabolites of environmental isolates and other biological matrices.
Collapse
Affiliation(s)
- Sammy Pontrelli
- Institute of Molecular Systems Biology, ETH Zürich, 8093 Zurich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zürich, 8093 Zurich, Switzerland
| |
Collapse
|
13
|
Evaluating the interplay among stationary phases/ion-pairing reagents/sequences for liquid chromatography mass spectrometry analysis of oligonucleotides. Anal Biochem 2021; 625:114194. [PMID: 33910045 DOI: 10.1016/j.ab.2021.114194] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/05/2021] [Accepted: 03/27/2021] [Indexed: 11/22/2022]
Abstract
The correlation among stationary phases, ion-pairing reagents (IPR) and sequences for ion-pair reversed-phase liquid chromatography mass spectrometry (IP-RP LC-MS) analysis of oligonucleotide (ODN) remains unclear. The present study aimed to evaluate such correlation using particle-packed C18 columns in order to search for the optimal combination among them. Five C18 columns packed with core-shell silica, polymer, porous silica and hybrid particles, respectively, were evaluated for the analysis of synthetic and chemically modified ODNs with six different IPRs. Our results showed that silica-based porous particles, compared to other particles, retained ODN the strongest no matter which IPR was used. Meanwhile, among the six IPRs hexylamine (HA) produced the longest retention for all ODNs, regardless of the types of C18 particles. For the separation of ODNs, C18 columns performed similarly under identical LC conditions. However, the separation ability of C18 columns is highly dependent on the type of IPR and ODN sequences. Moreover, the type of particles has little impact on the signals of ODNs for the majority of synthetic sequences, but such impact could be dramatic for chemically modified sequences. On the other hand, both the type of IPR and ODN sequence have a significant effect on MS signals for synthetic and chemically modified ODNs.
Collapse
|
14
|
Impurity profiling of siRNA by two-dimensional liquid chromatography-mass spectrometry with quinine carbamate anion-exchanger and ion-pair reversed-phase chromatography. J Chromatogr A 2021; 1643:462065. [PMID: 33780886 DOI: 10.1016/j.chroma.2021.462065] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/21/2022]
Abstract
A short RNA with the sequence of the antisense strand of Patisiran has been selected as test material for the investigation of its common impurities using three different two-dimensional liquid chromatography (2D-LC) platforms. On the one hand, a quinine (QN) carbamate-based weak anion-exchange (AX) stationary phase (QN-AX) and a classical C18 reversed phase (RP) stationary phase in ion-pair (IP) mode with tripropylammonium acetate, respectively, have been used in the first dimension (1D) to provide the selectivity for impurities formed during the synthesis of the RNA. In the next step, certain peaks of interest from 1D have been transferred by multiple-heart-cutting (MHC) into a 2D in which an ESI-MS-compatible non-ionpairing RP method has been used for desalting via a diverter valve to remove non-volatile phosphate buffer components and ion-pair agents, respectively. Thus, a sensitive electrospray-ionization quadrupole time of flight mass spectrometry (ESI-TOF-MS) analysis of resolved impurity peaks of the siRNA has become possible under MS-friendly conditions. With both 2D-LC setups, peak purity of the ON has been evaluated by selective comprehensive (high resolution) sampling of the main peak. In a third MHC 2D-LC approach, the QN-AX LC mode was online coupled with the IP-RPLC in the 2D using UV detection. It allows the separation of additional impurities which coeluted in the first dimension. The potential of these methods for comprehensive impurity profiling of ON therapeutics is illustrated and discussed.
Collapse
|
15
|
Pourshahian S. THERAPEUTIC OLIGONUCLEOTIDES, IMPURITIES, DEGRADANTS, AND THEIR CHARACTERIZATION BY MASS SPECTROMETRY. MASS SPECTROMETRY REVIEWS 2021; 40:75-109. [PMID: 31840864 DOI: 10.1002/mas.21615] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Oligonucleotides are an emerging class of drugs that are manufactured by solid-phase synthesis. As a chemical class, they have unique product-related impurities and degradants, characterization of which is an essential step in drug development. The synthesis cycle, impurities produced during the synthesis and degradation products are presented and discussed. The use of liquid chromatography combined with mass spectrometry for characterization and quantification of product-related impurities and degradants is reviewed. In addition, sequence determination of oligonucleotides by gas-phase fragmentation and indirect mass spectrometric methods is discussed. © 2019 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Soheil Pourshahian
- Janssen Pharmaceutical Companies of Johnson & Johnson, South San Francisco, CA, 94080
| |
Collapse
|
16
|
Kučera R, Sčensná A, Miletín M, Zimčík P. The chromatographic behaviour of new double-labelled oligodeoxynucleotide probes containing azaphthalocyanine dye as a quencher with respect to evaluation of their purity. Biomed Chromatogr 2020; 35:e5033. [PMID: 33226652 DOI: 10.1002/bmc.5033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/12/2020] [Accepted: 11/19/2020] [Indexed: 11/07/2022]
Abstract
The influence of experimental conditions on chromatographic behaviour of promising oligodeoxynucleotide double-labelled molecular probes containing an azaphthalocyanine macrocycle as a perspective dark quencher was studied. A recently introduced new stationary phase based on styrene-divinylbenzene copolymer was tested. The planar and hydrophobic structure of the azaphthalocyanine is considerably different from those of currently used fluorophores and quenchers. Thus, the most challenging issue was the separation of the double-labelled probe from its main impurity represented by a mono-labelled probe, containing only the azaphthalocyanine macrocycle. The absorbance measurement cannot simply determine this impurity, and its presence fundamentally compromises the biological assay. The commonly used gradient elution was not suitable and isocratic conditions seemed to be more appropriate. The azaphthalocyanine moiety influences the properties of the modified oligodeoxynucleotides substantially, and thus their chromatographic behaviour was determined predominantly by this quencher. Acetonitrile was the preferred organic solvent for the analysis of probes containing the azaphthalocyanine quencher and the effect of ion-pairing reagents was dependent on the probe structure. The temperature seemed to be an effective parameter for fine-tuning of the separation and mass transfer improvement. Generally, our findings could be helpful in method development for purity evaluation of double-labelled oligodeoxynucleotide probes and semipreparative methods.
Collapse
Affiliation(s)
- Radim Kučera
- Faculty of Pharmacy in Hradec Králové, Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Charles University, Hradec Králové, Czech Republic
| | - Anna Sčensná
- Faculty of Pharmacy in Hradec Králové, Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Charles University, Hradec Králové, Czech Republic
| | - Miroslav Miletín
- Faculty of Pharmacy in Hradec Králové, Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Charles University, Hradec Králové, Czech Republic
| | - Petr Zimčík
- Faculty of Pharmacy in Hradec Králové, Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
17
|
Kilanowska A, Studzińska S. In vivo and in vitro studies of antisense oligonucleotides - a review. RSC Adv 2020; 10:34501-34516. [PMID: 35514414 PMCID: PMC9056844 DOI: 10.1039/d0ra04978f] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/06/2020] [Indexed: 01/22/2023] Open
Abstract
The potential of antisense oligonucleotides in gene silencing was discovered over 40 years ago, which resulted in the growing interest in their chemistry, mechanism of action, and metabolic pathways. This review summarizes the selected mechanisms of antisense drug action, as well as therapeutics which are to date approved by the Food and Drug Administration and European Medicines Agency. Moreover, bioanalytical methods used for ASO pharmacokinetics and metabolism studies are briefly summarized. Special attention is paid to the primary pharmacokinetic properties of the different chemistry classes of antisense oligonucleotides. Moreover, in vivo and in vitro metabolic pathways of these compounds are widely described with the emphasis on the different animal models as well as in vitro models, including tissues homogenates, enzyme solutions, and human liver microsomes.
Collapse
Affiliation(s)
- Anna Kilanowska
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń 7 Gagarin Str. PL-87-100 Toruń Poland +48 56 6114837 +48 56 6114308
| | - Sylwia Studzińska
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń 7 Gagarin Str. PL-87-100 Toruń Poland +48 56 6114837 +48 56 6114308
| |
Collapse
|
18
|
Generation and Characterization of a DNA-GCN4 Oligonucleotide-Peptide Conjugate: The Impact DNA/Protein Interactions on the Sensitization of DNA. Molecules 2020; 25:molecules25163630. [PMID: 32784992 PMCID: PMC7466028 DOI: 10.3390/molecules25163630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/02/2020] [Accepted: 08/06/2020] [Indexed: 12/04/2022] Open
Abstract
Radiotherapy, the most common therapy for the treatment of solid tumors, exerts its effects by inducing DNA damage. To fully understand the extent and nature of this damage, DNA models that mimic the in vivo situation should be utilized. In a cellular context, genomic DNA constantly interacts with proteins and these interactions could influence both the primary radical processes (triggered by ionizing radiation) and secondary reactions, ultimately leading to DNA damage. However, this is seldom addressed in the literature. In this work, we propose a general approach to tackle these shortcomings. We synthesized a protein-DNA complex that more closely represents DNA in the physiological environment than oligonucleotides solution itself, while being sufficiently simple to permit further chemical analyses. Using click chemistry, we obtained an oligonucleotide-peptide conjugate, which, if annealed with the complementary oligonucleotide strand, forms a complex that mimics the specific interactions between the GCN4 protein and DNA. The covalent bond connecting the oligonucleotide and peptide constitutes a part of substituted triazole, which forms due to the click reaction between the short peptide corresponding to the specific amino acid sequence of GCN4 protein (yeast transcription factor) and a DNA fragment that is recognized by the protein. DNAse footprinting demonstrated that the part of the DNA fragment that specifically interacts with the peptide in the complex is protected from DNAse activity. Moreover, the thermodynamic characteristics obtained using differential scanning calorimetry (DSC) are consistent with the interaction energies calculated at the level of metadynamics. Thus, we present an efficient approach to generate a well-defined DNA-peptide conjugate that mimics a real DNA-peptide complex. These complexes can be used to investigate DNA damage under conditions very similar to those present in the cell.
Collapse
|
19
|
Abstract
The discovery and analysis of modifications on proteins and nucleic acids has provided functional information that has rapidly accelerated the field of epigenetics. While protein post-translational modifications (PTMs), especially on histones, have been highlighted as critical components of epigenetics, the post-transcriptional modification of RNA has been a subject of more recently emergent interest. Multiple RNA modifications have been known to be present in tRNA and rRNA since the 1960s, but the exploration of mRNA, small RNA, and inducible tRNA modifications remains nascent. Sequencing-based methods have been essential to the field by creating the first epitranscriptome maps of m6A, m5C, hm5C, pseudouridine, and inosine; however, these methods possess significant limitations. Here, we discuss the past, present, and future of the application of mass spectrometry (MS) to the study of RNA modifications.
Collapse
MESH Headings
- Animals
- Humans
- Mass Spectrometry
- Molecular Structure
- Nucleosides
- Nucleotides
- Protein Processing, Post-Translational
- RNA/chemistry
- RNA/genetics
- RNA/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
Collapse
Affiliation(s)
- Richard Lauman
- Biochemistry and Molecular Biophysics Graduate Group, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
20
|
Zhang N, Shi S, Yoo B, Yuan X, Li W, Zhang S. 2D-HELS MS Seq: A General LC-MS-Based Method for Direct and de novo Sequencing of RNA Mixtures with Different Nucleotide Modifications. J Vis Exp 2020:10.3791/61281. [PMID: 32716367 PMCID: PMC7398574 DOI: 10.3791/61281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Mass spectrometry (MS)-based sequencing approaches have been shown to be useful in direct sequencing RNA without the need for a complementary DNA (cDNA) intermediate. However, such approaches are rarely applied as a de novo RNA sequencing method, but used mainly as a tool that can assist in quality assurance for confirming known sequences of purified single-stranded RNA samples. Recently, we developed a direct RNA sequencing method by integrating a 2-dimensional mass-retention time hydrophobic end-labeling strategy into MS-based sequencing (2D-HELS MS Seq). This method is capable of accurately sequencing single RNA sequences as well as mixtures containing up to 12 distinct RNA sequences. In addition to the four canonical ribonucleotides (A, C, G, and U), the method has the capacity to sequence RNA oligonucleotides containing modified nucleotides. This is possible because the modified nucleobase either has an intrinsically unique mass that can help in its identification and its location in the RNA sequence, or can be converted into a product with a unique mass. In this study, we have used RNA, incorporating two representative modified nucleotides (pseudouridine (Ψ) and 5-methylcytosine (m5C)), to illustrate the application of the method for the de novo sequencing of a single RNA oligonucleotide as well as a mixture of RNA oligonucleotides, each with a different sequence and/or modified nucleotides. The procedures and protocols described here to sequence these model RNAs will be applicable to other short RNA samples (<35 nt) when using a standard high-resolution LC-MS system, and can also be used for sequence verification of modified therapeutic RNA oligonucleotides. In the future, with the development of more robust algorithms and with better instruments, this method could allow sequencing of more complex biological samples.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Biological and Chemical Sciences, New York Institute of Technology; Department of Chemical Engineering, Columbia University
| | - Shundi Shi
- Department of Chemical Engineering, Columbia University
| | - Barney Yoo
- Department of Chemistry, Hunter College, City University of New York
| | - Xiaohong Yuan
- Department of Biological and Chemical Sciences, New York Institute of Technology
| | - Wenjia Li
- Department of Computer Science, New York Institute of Technology
| | - Shenglong Zhang
- Department of Biological and Chemical Sciences, New York Institute of Technology;
| |
Collapse
|
21
|
Tsunehiro M, Sasaki K, Kinoshita-Kikuta E, Kinoshita E, Koike T. Phos-tag-based micropipette-tip method for analysis of phosphomonoester-type impurities in synthetic oligonucleotides. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1151:122198. [PMID: 32512534 DOI: 10.1016/j.jchromb.2020.122198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 11/22/2022]
Abstract
Various chromatographic techniques, combined with mass spectrometry, have been developed for the analysis of impurities in oligonucleotide drugs, but those methods have generally been less focused on possible phosphomonoester-type compounds. Here, we introduce a simple method for separating terminally phosphorylated impurities from parent oligonucleotides by using a phosphate-affinity micropipette tip (Phos-tag tip). All steps for the phosphate-affinity separation (binding, washing, and elution) are conducted in aqueous buffers at neutral pH. The entire separation protocol requires less than 30 min per sample. In practical examples, we demonstrated that phosphorylated impurities in natural-type and chemically modified oligonucleotides can be efficiently separated by the Phos-tag tip method and subsequently characterized by using ion-pairing reversed-phase liquid chromatography mass spectrometry (IP-RPLC-MS). Thus, a combination of the Phos-tag tip method and IP-RPLC-MS is useful for characterizing and identifying phosphomonoester-type impurities in oligonucleotide drugs.
Collapse
Affiliation(s)
- Masaya Tsunehiro
- Department of Functional Molecular Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Analytical Research Department, Production Technology and Supply Chain Management Division, Mitsubishi Tanabe Pharma Corporation, Osaka, Japan
| | - Kenji Sasaki
- Analytical Research Department, Production Technology and Supply Chain Management Division, Mitsubishi Tanabe Pharma Corporation, Osaka, Japan
| | - Emiko Kinoshita-Kikuta
- Department of Functional Molecular Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Eiji Kinoshita
- Department of Functional Molecular Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Tohru Koike
- Department of Functional Molecular Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
22
|
Goyon A, Yehl P, Zhang K. Characterization of therapeutic oligonucleotides by liquid chromatography. J Pharm Biomed Anal 2020; 182:113105. [PMID: 32004766 DOI: 10.1016/j.jpba.2020.113105] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/21/2019] [Accepted: 01/08/2020] [Indexed: 12/27/2022]
Abstract
Marketed therapies in the pharmaceutical landscape are rapidly evolving and getting more diverse. Small molecule medicines have dominated in the past while antibodies have grown dramatically in recent years. However, the failure of traditional small and large molecules in accessing certain targets has led to increased R&D efforts to develop alternative modalities. Therapeutic oligonucleotides (ONs) can accurately be directed against their ribonucleic acid (RNA) target and represent a promising approach in previously untreated diseases. Established automated synthesis of ONs coupled with chemical improvements and the advance of new drug delivery technologies has recently brought ONs to a heightened level of interest. The first part of the present review describes the different classes of oligonucleotides, namely antisense oligonucleotide (ASO), small interfering RNA (siRNA), microRNA (miRNA), aptamer and immunostimulatory ON, with a focus on their delivery systems relevant for future analytical characterization. The second part reviews the typical impurities in therapeutic ON products. The third part discusses the use of historical methods anion exchange chromatography (AEX), ion-pair reversed phase liquid chromatography (IP-RP), mixed-mode chromatography (MMC) and recent analytical methodologies of hydrophilic interaction liquid chromatography (HILIC), two-dimensional liquid chromatography (2D-LC) mass spectrometry for the characterization of ASO and siRNA modalities. The effects of physicochemical properties of RPLC columns and ion-pair agents on ON separation are specifically addressed with possible future directions for method development provided. Finally, some innovative analytical developments for the analysis of siRNAs and their delivery materials to pave the way toward the use of multi-attribute methods in the near future are discussed.
Collapse
Affiliation(s)
- Alexandre Goyon
- Small Molecules Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Peter Yehl
- Small Molecules Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kelly Zhang
- Small Molecules Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
23
|
Oligonucleotide quantification and metabolite profiling by high-resolution and accurate mass spectrometry. Bioanalysis 2020; 11:1967-1980. [PMID: 31829056 DOI: 10.4155/bio-2019-0137] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: Advancements in RNA interference therapeutics have triggered development of improved bioanalytical methods for oligonucleotide metabolite profiling and high-throughput quantification in biological matrices. Results & methodology: HPLC coupled with high-resolution mass spectrometry (LC-HRMS) methods were developed to investigate the metabolism of a REVERSIR™ molecule in vivo. Plasma and tissue samples were extracted using solid-phase extraction followed by LC-HRMS analysis for metabolite profiling and quantification. The method was qualified from 10 to 5000 ng/ml (plasma) and 100 to 50000 ng/g (liver and kidney). In rat liver, intra and interday accuracy ranged from 80.9 to 118.5% and 88.4 to 111.9%, respectively, with acceptable precision (<20% CV). Conclusion: The LC-HRMS method can be applied for metabolite profiling and quantification of oligonucleotides in biological matrices.
Collapse
|
24
|
Goyon A, Zhang K. Characterization of Antisense Oligonucleotide Impurities by Ion-Pairing Reversed-Phase and Anion Exchange Chromatography Coupled to Hydrophilic Interaction Liquid Chromatography/Mass Spectrometry Using a Versatile Two-Dimensional Liquid Chromatography Setup. Anal Chem 2020; 92:5944-5951. [DOI: 10.1021/acs.analchem.0c00114] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alexandre Goyon
- Research and Early Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Kelly Zhang
- Research and Early Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
25
|
McPherson RL, Ong SE, Leung AKL. Ion-Pairing with Triethylammonium Acetate Improves Solid-Phase Extraction of ADP-Ribosylated Peptides. J Proteome Res 2020; 19:984-990. [PMID: 31859514 DOI: 10.1021/acs.jproteome.9b00696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
ADP-ribosylation refers to the post-translational modification of protein substrates with monomers or polymers of the small molecule ADP-ribose. ADP-ribosylation is enzymatically regulated and plays roles in cellular processes including DNA repair, nucleic acid metabolism, cell death, cellular stress responses, and antiviral immunity. Recent advances in the field of ADP-ribosylation have led to the development of proteomics approaches to enrich and identify endogenous ADP-ribosylated peptides by liquid chromatography tandem mass spectrometry (LC-MS/MS). A number of these methods rely on reverse-phase solid-phase extraction as a critical step in preparing cellular peptides for further enrichment steps in proteomics workflows. The anionic ion-pairing reagent trifluoroacetic acid (TFA) is typically used during reverse-phase solid-phase extraction to promote retention of tryptic peptides. Here we report that TFA and other carboxylate ion-pairing reagents are inefficient for reverse-phase solid-phase extraction of ADP-ribosylated peptides. Substitution of TFA with cationic ion-pairing reagents, such as triethylammonium acetate (TEAA), improves recovery of ADP-ribosylated peptides. We further demonstrate that substitution of TFA with TEAA in a proteomics workflow specific for identifying ADP-ribosylated peptides increases identification rates of ADP-ribosylated peptides by LC-MS/MS.
Collapse
Affiliation(s)
- Robert Lyle McPherson
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health , Johns Hopkins University , Baltimore , Maryland 21205 , United States
| | - Shao-En Ong
- Department of Pharmacology , University of Washington , Seattle , Washington 98195 , United States
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health , Johns Hopkins University , Baltimore , Maryland 21205 , United States.,Department of Molecular Biology and Genetics, School of Medicine , Johns Hopkins University , Baltimore , Maryland 21205 , United States.,Department of Oncology, School of Medicine , Johns Hopkins University , Baltimore , Maryland 21205 , United States
| |
Collapse
|
26
|
Zhang N, Shi S, Jia TZ, Ziegler A, Yoo B, Yuan X, Li W, Zhang S. A general LC-MS-based RNA sequencing method for direct analysis of multiple-base modifications in RNA mixtures. Nucleic Acids Res 2019; 47:e125. [PMID: 31504795 PMCID: PMC6847078 DOI: 10.1093/nar/gkz731] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/07/2019] [Accepted: 08/15/2019] [Indexed: 12/31/2022] Open
Abstract
A complete understanding of the structural and functional potential of RNA requires understanding of chemical modifications and non-canonical bases; this in turn requires advances in current sequencing methods to be able to sequence not only canonical ribonucleotides, but at the same time directly sequence these non-standard moieties. Here, we present the first direct and modification type-independent RNA sequencing method via introduction of a 2-dimensional hydrophobic end-labeling strategy into traditional mass spectrometry-based sequencing (2D HELS MS Seq) to allow de novo sequencing of RNA mixtures and enhance sample usage efficiency. Our method can directly read out the complete sequence, while identifying, locating, and quantifying base modifications accurately in both single and mixed RNA samples containing multiple different modifications at single-base resolution. Our method can also quantify stoichiometry/percentage of modified RNA versus its canonical counterpart RNA, simulating a real biological sample where modifications exist but may not be 100% at a particular site in the RNA. This method is a critical step towards fully sequencing real complex cellular RNA samples of any type and containing any modification type and can also be used in the quality control of modified therapeutic RNAs.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, NY 10023, USA
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Shundi Shi
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA
| | - Ashley Ziegler
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, NY 10023, USA
| | - Barney Yoo
- Department of Chemistry, Hunter College, City University of New York, New York, NY 10065, USA
| | - Xiaohong Yuan
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, NY 10023, USA
| | - Wenjia Li
- Department of Computer Science, New York Institute of Technology, New York, NY 10023, USA
| | - Shenglong Zhang
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, NY 10023, USA
| |
Collapse
|
27
|
An oligonucleotide bioanalytical LC-SRM methodology entirely liberated from ion-pairing. Bioanalysis 2019; 11:1157-1169. [PMID: 31241345 DOI: 10.4155/bio-2019-0031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Aim: Reliable quantitative LC-MS methodology has been established and validated for an oligonucleotide in plasma in a fresh and unique fashion, free of ion-pairing reagents and the various associated deleterious effects from primary solution preparation through sample preparation and extraction to the LC-MS analytical end point, offering a highly selective mixed-mode solid-phase extraction with hydrophilic-interaction liquid chromatography as the chromatographic element prior to SRM detection. Results: Inter- and intra-assay accuracy and precision ranged from 97.9 to 111% and 2.75 to 9.66%, respectively. Recoveries of 50% were attained, and there was no significant matrix effect manifestation. Conclusion: The method demonstrated rugged performance and reliability under the optimized conditions, indicating a possible exciting new avenue, free of ion-pairing, for general application in oligonucleotide quantitative LC-MS.
Collapse
|
28
|
Kaczmarkiewicz A, Nuckowski Ł, Studzińska S. Analysis of the first and second generation of antisense oligonucleotides in serum samples with the use of ultra high performance liquid chromatography coupled with tandem mass spectrometry. Talanta 2019; 196:54-63. [DOI: 10.1016/j.talanta.2018.12.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/05/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022]
|
29
|
Weng G, Sun B, Liu Z, Wang F, Pan Y. Analysis of oligonucleotides by ion-pair reversed-phase liquid chromatography coupled with positive mode electrospray ionization mass spectrometry. Anal Bioanal Chem 2019; 411:4167-4173. [PMID: 30989264 DOI: 10.1007/s00216-019-01819-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/12/2019] [Accepted: 03/28/2019] [Indexed: 11/28/2022]
Abstract
Oligonucleotides are usually analyzed by ion-pair reversed-phase liquid chromatography (IP-RPLC) coupled with negative mode electrospray ionization mass spectrometry (ESI-MS) due to their highly negative charged phosphodiester backbones. Herein, the signal suppression effect of triethylamine (TEA) adducts caused the ion-pair reagent TEA/hexafluoroisopropanol (HFIP) is greatly alleviated after improving the in-source energy in positive mode ESI-MS. This strategy is applied for different RNA sequencing through analyzing their formic acid hydrolysates via IP-RPLC MS. Comparing with negative ion mode, we demonstrate that IP-RPLC MS analysis in positive ion mode is more suitable for RNA sequencing with fewer contaminant interferences. Finally, simultaneous online separation and detection of oligonucleotides and protein digests are achieved in positive ion mode IP-RPLC MS analysis with little interference to each other.
Collapse
Affiliation(s)
- Guofeng Weng
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, China.,CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China
| | - Binwen Sun
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zheyi Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China.
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, China.
| |
Collapse
|
30
|
Oligonucleotide analysis by hydrophilic interaction liquid chromatography-mass spectrometry in the absence of ion-pair reagents. J Chromatogr A 2019; 1595:39-48. [PMID: 30772056 DOI: 10.1016/j.chroma.2019.02.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/02/2019] [Accepted: 02/06/2019] [Indexed: 01/09/2023]
Abstract
Improving our understanding of nucleic acids, both in biological and synthetic applications, remains a bustling area of research for both academic and industrial laboratories. As nucleic acids research evolves, so must the analytical techniques used to characterize nucleic acids. One powerful analytical technique has been coupled liquid chromatography - tandem mass spectrometry (LC-MS/MS). To date, the most successful chromatographic mode has been ion-pairing reversed-phase liquid chromatography. Hydrophilic interaction liquid chromatography (HILIC), in the absence of ion-pair reagents, has been investigated here as an alternative chromatographic approach to the analysis of oligonucleotides. By combining a mobile phase system using commonly employed in liquid chromatography-mass spectrometry (LC-MS) - i.e., water, acetonitrile, and ammonium acetate - and a new, commercially available diol-based HILIC column, high chromatographic and mass spectrometric performance for a wide range of oligonucleotides is demonstrated. Particular applications of HILIC-MS for the analysis of deoxynucleic acid (DNA) oligomers, modified and unmodified oligoribonucleotides, and phosphorothioate DNA oligonucleotides are presented. Based on the LC-MS performance, this HILIC-based approach provides an attractive, sensitive and robust alternative to prior ion-pairing dependent methods with potential utility for both qualitative and quantitative analyses of oligonucleotides without compromising chromatographic or mass spectrometric performance.
Collapse
|
31
|
Kaczmarkiewicz A, Nuckowski Ł, Studzińska S, Buszewski B. Analysis of Antisense Oligonucleotides and Their Metabolites with the Use of Ion Pair Reversed-Phase Liquid Chromatography Coupled with Mass Spectrometry. Crit Rev Anal Chem 2019; 49:256-270. [PMID: 30612436 DOI: 10.1080/10408347.2018.1517034] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Antisense oligonucleotides (ASOs) have been widely investigated as a potential drugs because of their ability to bind with the target DNA or RNA strands, which may lead to inhibition of translational processes. This review presents currently approved oligonucleotide (OGN) drugs and summarizes their modification types, mechanisms of action, and application of ion pair reversed phase liquid chromatography for the analysis. Special attention was paid to the stationary phases selection for the separation of OGNs and the impact of different compositions of mobile phases on retention and signal intensity in mass spectrometry (MS). Moreover, the application of ion pair liquid chromatography coupled with MS for the separation and determination of metabolites of ASOs was described. The type of matrix, time of analysis, lower limits of quantification and detection, as well as precision, accuracy, and linearity of developed methods have been included as part of this contribution.
Collapse
Affiliation(s)
- Anna Kaczmarkiewicz
- a Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry , Nicolaus Copernicus University , Toruń , Poland
| | - Łukasz Nuckowski
- a Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry , Nicolaus Copernicus University , Toruń , Poland
| | - Sylwia Studzińska
- a Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry , Nicolaus Copernicus University , Toruń , Poland
| | - Bogusław Buszewski
- a Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry , Nicolaus Copernicus University , Toruń , Poland
| |
Collapse
|
32
|
Li N, El Zahar NM, Saad JG, van der Hage ERE, Bartlett MG. Alkylamine ion-pairing reagents and the chromatographic separation of oligonucleotides. J Chromatogr A 2018; 1580:110-119. [PMID: 30409418 DOI: 10.1016/j.chroma.2018.10.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/11/2018] [Accepted: 10/19/2018] [Indexed: 11/17/2022]
Abstract
Alkylamines are commonly used to improve both chromatographic and mass spectral performance of electrospray ionization liquid chromatography mass spectrometry based methods for the analysis of oligonucleotides. Recently several new alkylamines have been introduced to enhance the electrospray mass spectral response for oligonucleotides; however, the chromatographic properties of these new alkylamines have not been rigorously assessed. We have investigated the retention, peak width, resolution and general chromatographic performance of fifteen different alkylamines for the separation of a model DNA, RNA and an antisense therapeutic oligonucleotide. Eleven of the fifteen alkylamines were shown to provide similar chromatographic performance across all three classes of oligonucleotides. Based on these findings, a model for the mechanism of retention of oligonucleotides using alkylamines and hexafluoroisopropanol mobile phases is proposed. Depending on the concentrations of alkylamines and pH adjustment, oligonucleotides can be retained by micellar chromatography and not the generally held ion-pairing mechanism. This conclusion is supported by light scattering, transmission electron microscopy and ion mobility experiments detecting three micron aggregates in the mobile phase at concentrations that are routinely used for LC-MS analysis of oligonucleotides. These aggregates are not detected at lower alkylamine concentrations where the retention mechanism follows an ion-pairing mechanism. The formation of these aggregates appears to be dependent on the pH of the mobile phase.
Collapse
Affiliation(s)
- Ning Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China; Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, 250 W. Green Street, Athens, GA, 30602-2352, USA
| | - N M El Zahar
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, 250 W. Green Street, Athens, GA, 30602-2352, USA; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abassia, Cairo, 11566, Egypt
| | - Jack G Saad
- Micromeritics Instrument Company, 4356 Communications Drive, Norcross, GA, 30093, USA
| | | | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, 250 W. Green Street, Athens, GA, 30602-2352, USA.
| |
Collapse
|
33
|
Black DM, Robles G, Lopez P, Bach SBH, Alvarez M, Whetten RL. Liquid Chromatography Separation and Mass Spectrometry Detection of Silver-Lipoate Ag 29(LA) 12 Nanoclusters: Evidence of Isomerism in the Solution Phase. Anal Chem 2018; 90:2010-2017. [PMID: 29260853 DOI: 10.1021/acs.analchem.7b04104] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Evidence for the existence of condensed-phase isomers of silver-lipoate clusters, Ag29(LA)12, where LA = (R)-α lipoic acid, was obtained by reversed-phase ion-pair liquid chromatography with in-line UV-vis and electrospray ionization (ESI)-MS detection. All components of a raw mixture were separated according to surface chemistry and increasing size via reversed-phase gradient HPLC methods and identified by their corresponding m/z ratio by ESI in the negative ionization mode. Aqueous and methanol mobile-phase mixtures, each containing 400 mM hexafluoroisopropanol (HFIP)-15 mM triethylamine (TEA), were employed to facilitate the interaction between the clusters and stationary phase via formation of ion-pairs. TEA-HFIP (triethylammonium-hexafluoroisopropoxide) had been shown to provide superior chromatographic peak shape and mass spectral signal compared with alternative modifiers such as TEAA (triethylammonium-acetate) for analysis of oligonucleotide samples. Liquid chromatographic separation prior to mass spectrometry detection facilitated sample analysis by production of simplified mass spectra for each eluting cluster species and provided insight into the existence of at least two major solution-phase isomers of Ag29(LA)12. UV-vis detection in-line with ESI analysis provided independent confirmation of the existence of the isomers and their similar electronic structure as judged from their identical optical spectra in the 300-500 nm range. [Diastereomerism provides a possible interpretation for the near-equal abundance of the two forms, based on a structurally defined nonaqueous homologue.].
Collapse
Affiliation(s)
- David M Black
- Departments of Physics and ‡Chemistry, University of Texas , San Antonio, Texas 78249, United States
| | - Geronimo Robles
- Departments of Physics and ‡Chemistry, University of Texas , San Antonio, Texas 78249, United States
| | - Priscilla Lopez
- Departments of Physics and ‡Chemistry, University of Texas , San Antonio, Texas 78249, United States
| | - Stephan B H Bach
- Departments of Physics and ‡Chemistry, University of Texas , San Antonio, Texas 78249, United States
| | - Marcos Alvarez
- Departments of Physics and ‡Chemistry, University of Texas , San Antonio, Texas 78249, United States
| | - Robert L Whetten
- Departments of Physics and ‡Chemistry, University of Texas , San Antonio, Texas 78249, United States
| |
Collapse
|
34
|
El Zahar NM, Magdy N, El-Kosasy AM, Bartlett MG. Chromatographic approaches for the characterization and quality control of therapeutic oligonucleotide impurities. Biomed Chromatogr 2017; 32. [PMID: 28869310 DOI: 10.1002/bmc.4088] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/13/2017] [Accepted: 08/28/2017] [Indexed: 12/16/2022]
Abstract
Phosphorothioate (PS) oligonucleotides are a rapidly rising class of drugs with significant therapeutic applications. However, owing to their complex structure and multistep synthesis and purification processes, generation of low-level impurities and degradation products are common. Therefore, they require significant investment in quality control and impurity identification. This requires the development of advanced methods for analysis, characterization and quantitation. In addition, the presence of the PS linkage leads to the formation of chiral centers which can affect their biological properties and therapeutic efficiency. In this review, the different types of oligonucleotide impurities and degradation products, with an emphasis on their origin, mechanism of formation and methods to reduce, prevent or even eliminate their production, will be extensively discussed. This review will focus mainly on the application of chromatographic techniques to determine these impurities but will also discuss other approaches such as mass spectrometry, capillary electrophoresis and nuclear magnetic resonance spectroscopy. Finally, the chirality and formation of diastereomer mixtures of PS oligonucleotides will be covered as well as approaches used for their characterization and the application for the development of stereochemically-controlled PS oligonucleotides.
Collapse
Affiliation(s)
- N M El Zahar
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.,Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
| | - N Magdy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - A M El-Kosasy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
35
|
Weng G, Liu Z, Chen J, Wang F, Pan Y, Zhang Y. Enhancing the Mass Spectrometry Sensitivity for Oligonucleotide Detection by Organic Vapor Assisted Electrospray. Anal Chem 2017; 89:10256-10263. [PMID: 28872850 DOI: 10.1021/acs.analchem.7b01695] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There are two challenges in oligonucleotide detection by liquid chromatography coupled with mass spectrometry (LC-MS), the serious ion suppression effects caused by ion-pair reagents and the low detection sensitivity in positive mode MS. In this study, highly concentrated alcohol vapors were introduced into an enclosed electrospray ionization chamber, and oligonucleotides could be well detected in negative mode MS even with 100 mM triethylammonium acetate (TEAA) as an ion-pair reagent. The MS signal intensity was improved 600-fold (for standard oligonucleotide dT15) by the isopropanol vapor assisted electrospray, and effective ion-pair LC separation was feasibly coupled with high-sensitive MS detection. Then, oligonucleotides were successfully detected in positive mode MS with few adducts by propanoic acid vapor assisted electrospray. The signal intensity was enhanced more than 10-fold on average compared with adding acids into the electrospray solution. Finally, oligonucleotides and peptides or histones were simultaneously detected in MS with little interference with each other. Our strategy provides a useful alternative for investigating the biological functions of oligonucleotides.
Collapse
Affiliation(s)
- Guofeng Weng
- Department of Chemistry, Zhejiang University , Hangzhou 310027, China.,CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Zheyi Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Jin Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University , Hangzhou 310027, China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| |
Collapse
|
36
|
Studzińska S. Review on investigations of antisense oligonucleotides with the use of mass spectrometry. Talanta 2017; 176:329-343. [PMID: 28917758 DOI: 10.1016/j.talanta.2017.08.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 11/17/2022]
Abstract
Antisense oligonucleotides have been investigated as potential drugs for years. They inhibit target gene or protein expression. The present review summarizes their modifications, modes of action, and applications of liquid chromatography coupled with mass spectrometry for qualitative and quantitative analysis of these compounds. The most recent reports on a given topic were given prominence, while some early studies were reviewed in order to provide a theoretical background. The present review covers the issues of using ion-exchange chromatography, ion-pair reversed-phase high performance liquid chromatography and hydrophilic interaction chromatography for the separation of antisense oligonucleotides. The application of mass spectrometry was described with regard to the ionization type used for the determination of these potential therapeutics. Moreover, the current approaches and applications of mass spectrometry for quantitative analysis of antisense oligonucleotides and their metabolites as well as their impurities during in vitro and in vivo studies were discussed. Finally, certain conclusions and perspectives on the determination of therapeutic oligonucleotides in various samples were briefly described.
Collapse
Affiliation(s)
- Sylwia Studzińska
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin Str., PL-87-100 Toruń, Poland.
| |
Collapse
|
37
|
Studzińska S, Bocian S, Siecińska L, Buszewski B. Application of phenyl-based stationary phases for the study of retention and separation of oligonucleotides. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1060:36-43. [PMID: 28595118 DOI: 10.1016/j.jchromb.2017.05.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/15/2017] [Accepted: 05/27/2017] [Indexed: 12/11/2022]
Abstract
The main goal of our work was to apply three different phenyl-bonded stationary phases in ion pair chromatography for the analysis of synthetic oligonucleotides of various sequences. The influence of the stationary phase structure and the impact of ion-pairing reagent concentration on the retention of oligonucleotides were tested. Moreover the influence of oligonucleotide sequence on their interactions with phenyl-based stationary phases was also investigated. Such complex studies for analysis of oligonucleotides with these adsorbents were done for the first time. Investigations were implemented in the Quantitative Structure Retention Relationships analysis in order to improve the discussion on the retention mechanism of analyzed compounds. The retention of oligonucleotides was the lowest for polar embedded phenyl stationary phase, however its selectivity was high and allowed for complete separation of studied compounds in the shortest time. It was shown that the low retention factor value was observed for oligonucleotides forming secondary structures, such as hairpin loops. Moreover obtained data showed that except for electrostatic and hydrophobic interactions, π-π also influences on the retention mechanism. These interactions cause higher retention factor values for phenyl-based stationary phases compared to octadecyl ones.
Collapse
Affiliation(s)
- Sylwia Studzińska
- Chair of the Environmental Chemistry & Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin St., PL-87 100 Toruń, Poland.
| | - Szymon Bocian
- Chair of the Environmental Chemistry & Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin St., PL-87 100 Toruń, Poland
| | - Lena Siecińska
- Chair of the Environmental Chemistry & Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin St., PL-87 100 Toruń, Poland
| | - Bogusław Buszewski
- Chair of the Environmental Chemistry & Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin St., PL-87 100 Toruń, Poland
| |
Collapse
|
38
|
Goto R, Miyakawa S, Inomata E, Takami T, Yamaura J, Nakamura Y. De novo sequencing of highly modified therapeutic oligonucleotides by hydrophobic tag sequencing coupled with LC-MS. JOURNAL OF MASS SPECTROMETRY : JMS 2017; 52:78-93. [PMID: 27935159 DOI: 10.1002/jms.3902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/23/2016] [Accepted: 11/24/2016] [Indexed: 06/06/2023]
Abstract
Correct sequences are prerequisite for quality control of therapeutic oligonucleotides. However, there is no definitive method available for determining sequences of highly modified therapeutic RNAs, and thereby, most of the oligonucleotides have been used clinically without direct sequence determination. In this study, we developed a novel sequencing method called 'hydrophobic tag sequencing'. Highly modified oligonucleotides are sequenced by partially digesting oligonucleotides conjugated with a 5'-hydrophobic tag, followed by liquid chromatography-mass spectrometry analysis. 5'-Hydrophobic tag-printed fragments (5'-tag degradates) can be separated in order of their molecular masses from tag-free oligonucleotides by reversed-phase liquid chromatography. As models for the sequencing, the anti-VEGF aptamer (Macugen) and the highly modified 38-mer RNA sequences were analyzed under blind conditions. Most nucleotides were identified from the molecular weight of hydrophobic 5'-tag degradates calculated from monoisotopic mass in simple full mass data. When monoisotopic mass could not be assigned, the nucleotide was estimated using the molecular weight of the most abundant mass. The sequences of Macugen and 38-mer RNA perfectly matched the theoretical sequences. The hydrophobic tag sequencing worked well to obtain simple full mass data, resulting in accurate and clear sequencing. The present study provides for the first time a de novo sequencing technology for highly modified RNAs and contributes to quality control of therapeutic oligonucleotides. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- R Goto
- Bioanalysis Business Department, CMIC Pharma Science Co., Ltd., 17-18, Nakahata-cho, Nishiwaki-shi, Hyogo, 677-0032, Japan
| | - S Miyakawa
- Exploratory Research Laboratory, RIBOMIC Inc., 3-16-13, Shirokanedai, Minato-ku, Tokyo, 108-0071, Japan
| | - E Inomata
- Exploratory Research Laboratory, RIBOMIC Inc., 3-16-13, Shirokanedai, Minato-ku, Tokyo, 108-0071, Japan
| | - T Takami
- Bioanalysis Department, CMIC, Inc., Hoffman Estates, Illinois, 60192-3702, USA
| | - J Yamaura
- Exploratory Research Laboratory, RIBOMIC Inc., 3-16-13, Shirokanedai, Minato-ku, Tokyo, 108-0071, Japan
| | - Y Nakamura
- Exploratory Research Laboratory, RIBOMIC Inc., 3-16-13, Shirokanedai, Minato-ku, Tokyo, 108-0071, Japan
- Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| |
Collapse
|
39
|
Mikulášek K, Jaroň KS, Kulhánek P, Bittová M, Havliš J. Sequence-dependent separation of trinucleotides by ion-interaction reversed-phase liquid chromatography-A structure-retention study assisted by soft-modelling and molecular dynamics. J Chromatogr A 2016; 1469:88-95. [PMID: 27692640 DOI: 10.1016/j.chroma.2016.09.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/22/2016] [Accepted: 09/24/2016] [Indexed: 10/21/2022]
Abstract
We studied sequence-dependent retention properties of synthetic 5'-terminal phosphate absent trinucleotides containing adenine, guanine and thymine through reversed-phase liquid chromatography (RPLC) and QSRR modelling. We investigated the influence of separation conditions, namely mobile phase composition (ion interaction agent content, pH and organic constituent content), on sequence-dependent separation by means of ion-interaction RPLC (II-RPLC) using two types of models: experimental design-artificial neural networks (ED-ANN), and linear regression based on molecular dynamics data. The aim was to determine those properties of the above-mentioned analytes responsible for the retention dependence of the sequence. Our results show that there is a deterministic relation between sequence and II-RPLC retention properties of the studied trinucleotides. Further, we can conclude that the higher the content of ion-interaction agent in the mobile phase, the more prominent these properties are. We also show that if we approximate the polar component of solvation energy in QSRR by the electrostatic work in transferring molecules from vacuum to water, and the non-polar component by the solvent accessible surface area, these parameters best describe the retention properties of trinucleotides. There are some exceptions to this finding, namely sequences 5'-NAN-3', 5'-ANN-3', 5'-TGN-3', 5'-NTA-3'and 5'-NGA-3' (N stands for generic nucleotide). Their role is still unknown, but since linear regression including these specific constellations showed a higher observable variance coverage than the model with only the basic descriptors, we may assume that solvent-analyte interactions are responsible for the exceptional behaviour of 5'-NAN-3' & 5'-ANN-3' trinucleotides and some intramolecular interactions of neighbouring nucleobases for 5'-TGN-3', 5'-NTA-3'and 5'-NGA-3' trinucleotides.
Collapse
Affiliation(s)
- Kamil Mikulášek
- Masaryk University, Faculty of Science, Department of Chemistry, Kamenice 5, 62500 Brno, Czech Republic; Masaryk University, CEITEC - Central European Institute of Technology, Kamenice 5, 62500 Brno, Czech Republic
| | - Kamil S Jaroň
- Academy of Sciences of the Czech Republic, Institute of Vertebrate Biology, Květná 8, 603 65 Brno, Czech Republic
| | - Petr Kulhánek
- Masaryk University, CEITEC - Central European Institute of Technology, Kamenice 5, 62500 Brno, Czech Republic; Masaryk University, Faculty of Science, National Centre of Biomolecular Research, Kamenice 5, 62500 Brno, Czech Republic
| | - Miroslava Bittová
- Masaryk University, Faculty of Science, Department of Chemistry, Kamenice 5, 62500 Brno, Czech Republic
| | - Jan Havliš
- Masaryk University, CEITEC - Central European Institute of Technology, Kamenice 5, 62500 Brno, Czech Republic; Masaryk University, Faculty of Science, National Centre of Biomolecular Research, Kamenice 5, 62500 Brno, Czech Republic.
| |
Collapse
|
40
|
Miyaguchi H. Improved Polymerase Chain Reaction-restriction Fragment Length Polymorphism Genotyping of Toxic Pufferfish by Liquid Chromatography/Mass Spectrometry. J Vis Exp 2016:54402. [PMID: 27684516 PMCID: PMC5092034 DOI: 10.3791/54402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
An improved version of a polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) method for genotyping toxic pufferfish species by liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) is described. DNA extraction is carried out using a silica membrane-based DNA extraction kit. After the PCR amplification using a detergent-free PCR buffer, restriction enzymes are added to the solution without purifying the reaction solution. A reverse-phase silica monolith column and a Fourier transform high resolution mass spectrometer having a modified Kingdon trap analyzer are employed for separation and detection, respectively. The mobile phase, consisting of 400 mM 1,1,1,3,3,3-hexafluoro-2-propanol, 15 mM triethylamine (pH 7.9) and methanol, is delivered at a flow rate of 0.4 ml/min. The cycle time for LC/ESI-MS analysis is 8 min including equilibration of the column. Deconvolution software having an isotope distribution model of the oligonucleotide is used to calculate the corresponding monoisotopic mass from the mass spectrum. For analysis of oligonucleotides (range 26-79 nucleotides), mass accuracy was 0.62 ± 0.74 ppm (n = 280) and excellent accuracy and precision were sustained for 180 hr without use of a lock mass standard.
Collapse
|
41
|
Birdsall RE, Gilar M, Shion H, Yu YQ, Chen W. Reduction of metal adducts in oligonucleotide mass spectra in ion-pair reversed-phase chromatography/mass spectrometry analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:1667-1679. [PMID: 28328039 PMCID: PMC5094505 DOI: 10.1002/rcm.7596] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/28/2016] [Accepted: 05/01/2016] [Indexed: 05/09/2023]
Abstract
RATIONALE Electrospray ionization mass spectrometry (ESI-MS)-based techniques commonly used in oligonucleotide analyses are known to be sensitive to alkali metal adduct formation. Adducts directly impact the sensitivity of MS-based analyses as the available charge is distributed across the parent peak and adduct(s). The current study systematically evaluated common liquid chromatography (LC) components in LC/ESI-MS configurations used in oligonucleotide analysis to identify metal adduct contributions from LC instrumentation. METHODS A UPLC liquid chromatography system was configured with a single quadrupole MS detector (ACQUITY QDa, Waters Corp.) to monitor adduct formation in oligonucleotide separations. An ion-pairing mobile phase comprised of 15 mM triethylamine and 400 mM hexafluoro-2-propanol was used in conjunction with an oligonucleotide separation column (Waters OST BEH C18, 2.1 mm × 50 mm) for all separations. A 10-min method was used to provide statistical figures of merit and evaluate adduct formation over time. RESULTS Trace alkali metal salts in the mobile phase and reagents were determined to be the main source of metal salt adducts in LC/ESI-MS-based configurations. Non-specific adsorption sites located throughout the fluidic path contribute to adduct formation in oligonucleotide analyses. Ion-pairing mobile phases prepared at neutral or slightly basic pH result in up to a 57% loss of spectral abundance to adduct formation in the current study. CONCLUSIONS Implementation of a short low pH reconditioning step was observed to effectively displace trace metal salts non-specifically adsorbed to surfaces in the fluidic path and was able to maintain an average MS spectral abundance ≥94% with a high degree of repeatability (relative standard deviation (R.S.D.) 0.8%) over an extended time study. The proposed method offers the ability to rapidly regenerate adsorption sites with minimal impact on productivity while retaining assay sensitivity afforded by MS detection with reduced adduct formation. © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
| | - Martin Gilar
- Waters Corp., 34 Maple St, Milford, MA, 01757-3604, USA
| | - Henry Shion
- Waters Corp., 34 Maple St, Milford, MA, 01757-3604, USA
| | - Ying Qing Yu
- Waters Corp., 34 Maple St, Milford, MA, 01757-3604, USA
| | - Weibin Chen
- Waters Corp., 34 Maple St, Milford, MA, 01757-3604, USA
| |
Collapse
|
42
|
Close ED, Nwokeoji AO, Milton D, Cook K, Hindocha DM, Hook EC, Wood H, Dickman MJ. Nucleic acid separations using superficially porous silica particles. J Chromatogr A 2016; 1440:135-144. [PMID: 26948761 PMCID: PMC4801196 DOI: 10.1016/j.chroma.2016.02.057] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 01/31/2023]
Abstract
Ion pair reverse-phase liquid chromatography has been widely employed for nucleic acid separations. A wide range of alternative stationary phases have been utilised in conjunction with ion pair reverse-phase chromatography, including totally porous particles, non-porous particles, macroporous particles and monolithic stationary phases. In this study we have utilised superficially porous silica particles in conjunction with ion pair reverse-phase liquid chromatography for the analysis of nucleic acids. We have investigated a range of different pore-sizes and phases for the analysis of a diverse range of nucleic acids including oligonucleotides, oligoribonucleotides, phosphorothioate oligonucleotides and high molecular weight dsDNA and RNA. The pore size of the superficially porous silica particles was shown to significantly affect the resolution of the nucleic acids. Optimum separations of small oligonucleotides such as those generated in RNase mapping experiments were obtained with 80Å pore sizes and can readily be interfaced with mass spectrometry analysis. Improved resolution of larger oligonucleotides (>19mers) was observed with pore sizes of 150Å. The optimum resolution for larger dsDNA/RNA molecules was achieved using superficially porous silica particles with pore sizes of 400Å. Furthermore, we have utilised 150Å pore size solid-core particles to separate typical impurities of a fully phosphorothioated oligonucleotide, which are often generated in the synthesis of this important class of therapeutic oligonucleotide.
Collapse
Affiliation(s)
- Elizabeth D Close
- Department of Chemical and Biological Engineering, ChELSI Institute, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
| | - Alison O Nwokeoji
- Department of Chemical and Biological Engineering, ChELSI Institute, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
| | - Dafydd Milton
- Thermo Fisher Scientific, Stafford House, Boundary Way, Hemel Hempstead HP2 7GE, UK
| | - Ken Cook
- Thermo Fisher Scientific, Stafford House, Boundary Way, Hemel Hempstead HP2 7GE, UK
| | - Darsha M Hindocha
- GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | - Elliot C Hook
- GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | - Helen Wood
- GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | - Mark J Dickman
- Department of Chemical and Biological Engineering, ChELSI Institute, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK.
| |
Collapse
|
43
|
Abstract
A common feature of ribonucleic acids (RNAs) is that they can undergo a variety of chemical modifications. As nearly all of these chemical modifications result in an increase in the mass of the canonical nucleoside, mass spectrometry has long been a powerful approach for identifying and characterizing modified RNAs. Over the past several years, significant advances have been made in method development and software for interpreting tandem mass spectra resulting in approaches that can yield qualitative and quantitative information on RNA modifications, often at the level of sequence specificity. We discuss these advances along with instrumentation developments that have increased our ability to extract such information from relatively complex biological samples. With the increasing interest in how these modifications impact the epitranscriptome, mass spectrometry will continue to play an important role in bioanalytical investigations revolving around RNA.
Collapse
Affiliation(s)
- Collin Wetzel
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, PO Box 210172. and University of Cincinnati, Cincinnati, OH 45221-0172, USA.
| | | |
Collapse
|
44
|
Gong L. Comparing ion-pairing reagents and counter anions for ion-pair reversed-phase liquid chromatography/electrospray ionization mass spectrometry analysis of synthetic oligonucleotides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:2402-2410. [PMID: 26563710 DOI: 10.1002/rcm.7409] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/18/2015] [Accepted: 09/29/2015] [Indexed: 06/05/2023]
Abstract
RATIONALE Ion-pair reversed-phase liquid chromatography/electrospray ionization mass spectrometry (IP-RP-LC/ESI-MS) has been widely used for the quality control of oligonucleotides. However, researchers are still looking to improve mobile phase systems for IP-RP-LC/ESI-MS analysis of oligonucleotides. This study compared the performance of six ion-pairing reagents with three different counter anions for IP-RP-LC/ESI-MS analysis of oligonucleotides. METHODS The study was performed using a Waters ultra-performance liquid chromatography (UPLC®) system coupled to a Waters LCT Premier XE mass spectrometer by using a UPLC® OST column (2.1 mm × 100 mm, 1.7 µm). Buffer systems containing acetate, bicarbonate, and hexafluoroisopropanolate salts of six ion-pairing reagents (triethylamine, tripropylamine, hexylamine, N,N-dimethylbutylamine, dibutylamine, N,N-diisopropylethylamine), respectively, were optimized for IP-RP-LC/ESI-MS analysis of oligonucleotides, and then the optimized conditions were applied for the separation of oligonucleotides. RESULTS Counter anions definitely play a role in IP-RP-LC/ESI-MS analysis of oligonucleotides. Buffer containing 30 mM diisopropylethylamine and 200 mM hexafluoroisopropanol provided the highest separation of unmodified heterogeneous oligonucleotides, but tripropylammonium hexafluoroisopropanolate achieved the most enhanced separation of sequence isomers. However, triethylammonium acetate and bicarbonate had equally the highest separation for positional isomers. CONCLUSIONS IP-RP-LC/ESI-MS separation of oligonucleotides is mainly sequence dependent, but it is also dependent on both the type of ion-pairing reagent and counter anion present in the mobile phase.
Collapse
Affiliation(s)
- Lingzhi Gong
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
45
|
Miyaguchi H, Yamamuro T, Ohta H, Nakahara H, Suzuki S. Genotyping of Toxic Pufferfish Based on Specific PCR-RFLP Products As Determined by Liquid Chromatography/Quadrupole-Orbitrap Hybrid Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9363-9371. [PMID: 26429637 DOI: 10.1021/acs.jafc.5b03703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A method based on liquid chromatography-electrospray mass spectrometric analysis of the enzymatically digested amplicons derived from the mitochondrial 16S rRNA gene was established for the discrimination of toxic pufferfish. A MonoBis C18 narrow-bore silica monolith column (Kyoto Monotech) and a Q Exactive mass spectrometer (Thermo Fisher) were employed for separation and detection, respectively. Monoisotopic masses of the oligonucleotides were calculated using Protein Deconvolution 3.0 software (Thermo Fisher). Although a lock mass standard was not used, excellent accuracy (mass error, 0.83 ppm on average) and precision (relative standard deviation, 0.49 ppm on average) were achieved, and a mass accuracy of <2.8 ppm was maintained for at least 180 h without additional calibration. The present method was applied to 29 pufferfish samples, and results were consistent with Sanger sequencing.
Collapse
Affiliation(s)
- Hajime Miyaguchi
- National Research Institute of Police Science , 6-3-1 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Tadashi Yamamuro
- National Research Institute of Police Science , 6-3-1 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Hikoto Ohta
- National Research Institute of Police Science , 6-3-1 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Hiroaki Nakahara
- National Research Institute of Police Science , 6-3-1 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Shinichi Suzuki
- National Research Institute of Police Science , 6-3-1 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| |
Collapse
|
46
|
Sinha ND, Jung KE. Analysis and Purification of Synthetic Nucleic Acids Using HPLC. ACTA ACUST UNITED AC 2015; 61:10.5.1-10.5.39. [PMID: 26344225 DOI: 10.1002/0471142700.nc1005s61] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Chromatographic methods have been essential tools for analysis and purification of synthetic oligonucleotides since the 1970s. Significant developments in terms of instruments and stationary phases (media) have been made during the past several decades; among the latest are sub-micron to micron particles for the media, as well as ultra performance liquid chromatography (UPLC). Micron and sub-micron particles have increased product resolution. Applications of recently developed methods such as IP-RP-HPLC and LC-MS have been discussed for analysis, along with use of various methods for purification. Utilization of UPLC has decreased analysis time, increasing the throughput for analysis. Commonly used methods for analysis and purification of synthetic oligonucleotides have been described in this unit.
Collapse
|
47
|
Studzińska S, Buszewski B. Different approaches to quantitative structure-retention relationships in the prediction of oligonucleotide retention. J Sep Sci 2015; 38:2076-84. [PMID: 25866200 DOI: 10.1002/jssc.201401395] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 11/05/2022]
Abstract
Quantitative structure-retention relationships studies were performed for cholesterol and alkylamide stationary phases, which were previously applied in the analysis of nucleotides and oligonucleotides. An octadecyl column was also tested. Twenty-four oligonucleotides of various sequences and length were chosen; next, their structural descriptors were determined with the use of quantum-mechanics method. The sequence features were related mainly to their surface area, hydrophobicity, and the nature of nucleobases. Moreover, for the first time models employing experimentally derived descriptors (the sum of retention factor for individual nucleotides) were developed in the quantitative structure-retention relationship studies of these compounds. The retention of oligonucleotides for alkylamide and cholesterol stationary phases may be effectively predicted with the use of quantitative structure-retention relationship models based only on molecularly modeled descriptors, as well as with models employing experimentally derived descriptors. Therefore, we recommend the first approach, since descriptors may be easily and quickly calculated. However, oligonucleotide retention prediction for octadecyl phases gives better results, when individual nucleotide retention factors are known and utilized for the creation of a mathematical model.
Collapse
Affiliation(s)
- Sylwia Studzińska
- Chair of the Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Torun, Poland
| | - Bogusław Buszewski
- Chair of the Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Torun, Poland
| |
Collapse
|
48
|
Gwinn E, Schultz D, Copp SM, Swasey S. DNA-Protected Silver Clusters for Nanophotonics. NANOMATERIALS 2015; 5:180-207. [PMID: 28347005 PMCID: PMC5312861 DOI: 10.3390/nano5010180] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/05/2015] [Indexed: 01/08/2023]
Abstract
DNA-protected silver clusters (AgN-DNA) possess unique fluorescence properties that depend on the specific DNA template that stabilizes the cluster. They exhibit peak emission wavelengths that range across the visible and near-IR spectrum. This wide color palette, combined with low toxicity, high fluorescence quantum yields of some clusters, low synthesis costs, small cluster sizes and compatibility with DNA are enabling many applications that employ AgN-DNA. Here we review what is known about the underlying composition and structure of AgN-DNA, and how these relate to the optical properties of these fascinating, hybrid biomolecule-metal cluster nanomaterials. We place AgN-DNA in the general context of ligand-stabilized metal clusters and compare their properties to those of other noble metal clusters stabilized by small molecule ligands. The methods used to isolate pure AgN-DNA for analysis of composition and for studies of solution and single-emitter optical properties are discussed. We give a brief overview of structurally sensitive chiroptical studies, both theoretical and experimental, and review experiments on bringing silver clusters of distinct size and color into nanoscale DNA assemblies. Progress towards using DNA scaffolds to assemble multi-cluster arrays is also reviewed.
Collapse
Affiliation(s)
- Elisabeth Gwinn
- Department of Physics, The University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Danielle Schultz
- Department of Chemistry and Biochemistry, The University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Stacy M Copp
- Department of Physics, The University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Steven Swasey
- Department of Chemistry and Biochemistry, The University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
49
|
Reaction profiling by ultra high-pressure liquid chromatography/time-of-flight mass spectrometry in support of the synthesis of DNA-encoded libraries. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 971:120-5. [PMID: 25282130 DOI: 10.1016/j.jchromb.2014.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 09/01/2014] [Accepted: 09/03/2014] [Indexed: 11/21/2022]
Abstract
An ultra high-pressure liquid chromatography/mass spectrometry (UHPLC/MS) separation and analysis method has been devised for open access analysis of synthetic reactions used in the production of DNA-encoded chemical libraries. The aqueous mobile phase is 100mM hexafluoroisopropanol and 8.6mM triethylamine; the organic mobile phase is methanol. The UHPLC separation uses a C18 OST column (50mm×2.1mm×1.7μm) at 60°C, with a flow rate of 0.6mL/min. Gradient concentration is from 10 to 40% B in 1.0min, increasing to 95% B at 1.2min. Cycle time was about 5min. This method provides a detection limit of a 20-mer oligonucleotide by mass spectrometry of better than 1pmol on-column. Linear UV response for 20-mer extends from 2 to 200pmol/μL in concentration, same-day relative average deviations are less than 5% and bias (observed minus expected) is less than 10%. Deconvoluted mass spectra are generated for components in the predicted mass range using a maximum entropy algorithm. Mass accuracy of deconvoluted spectra is typically 20ppm or better for isotopomers of oligonucleotides up to 7000Da.
Collapse
|
50
|
Gong L, McCullagh JSO. Comparing ion-pairing reagents and sample dissolution solvents for ion-pairing reversed-phase liquid chromatography/electrospray ionization mass spectrometry analysis of oligonucleotides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:339-350. [PMID: 24395501 DOI: 10.1002/rcm.6773] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/19/2013] [Accepted: 10/20/2013] [Indexed: 06/03/2023]
Abstract
RATIONALE A sensitive and selective liquid chromatography/mass spectrometry (LC/MS) method is essential for quality control of synthetic oligonucleotides. However, researchers are still searching for improvements to ion-pairing reagents for ion-pairing reversed-phase LC/MS. This study performed a comprehensive comparison of six ion-pairing reagents to determine their performance as mobile phase modifiers for oligonucleotide LC/MS. METHODS The study was performed using a Waters ultra-performance liquid chromatography (UPLC®) system coupled to a Waters LCT premier XE ESI-TOF mass spectrometer by using a UPLC® OST column (2.1 mm × 100 mm, 1.7 µm). Buffer systems containing ion-pairing reagents (triethylamine, tripropylamine, hexylamine, N,N-dimethylbutylamine, dibutylamine, N,N-diisopropylethylamine) and hexafluoro-2-propanol were compared by measuring the adduct ion formation, chromatographic separation, and MS signal intensity of four oligonucleotides (10mer to 40mer). The effect of dissolution solvents on MS signal intensity and adduct ion formation was also investigated. RESULTS Results showed that the type of dissolution solvent can have a signficiant impact on adduct ion formation with oligonucleotides. Results also showed that the maximum separation for small, medium and large oligonucleotides occured when using tripropylamine, N,N-dimethylbutylamine, and dibutylamine, respectively. However, on average 15 mM hexylamine and 50 mM hexafluoro-2-propanol provided the best chromtatographic performance (resolution values: 14.1 ± 0.34, 11.0 ± 0.17, and 6.4 ± 0.11 for the pairs of oligonucleotides T10 & T15, T15 & T25, and T25 & T40, respectively (3 replicates)). CONCLUSIONS The impact of dissolution solvent on the MS signal of oligonucleotides depends on the type of ion-pairing reagent. Buffer combining 15 mM hexylamine and 50 mM hexafluoro-2-propanol produced the highest overall performance for oligonucleotides (10mer to 40mer) with respect to chromatographic resolution and mass detection.
Collapse
Affiliation(s)
- Lingzhi Gong
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | | |
Collapse
|