1
|
Arnold IC, Munitz A. Spatial adaptation of eosinophils and their emerging roles in homeostasis, infection and disease. Nat Rev Immunol 2024:10.1038/s41577-024-01048-y. [PMID: 38982311 DOI: 10.1038/s41577-024-01048-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/11/2024]
Abstract
Eosinophils are bone marrow-derived granulocytes that are traditionally associated with type 2 immune responses, such as those that occur during parasite infections and allergy. Emerging evidence demonstrates the remarkable functional plasticity of this elusive cell type and its pleiotropic functions in diverse settings. Eosinophils broadly contribute to tissue homeostasis, host defence and immune regulation, predominantly at mucosal sites. The scope of their activities primarily reflects the breadth of their portfolio of secreted mediators, which range from cytotoxic cationic proteins and reactive oxygen species to multiple cytokines, chemokines and lipid mediators. Here, we comprehensively review basic eosinophil biology that is directly related to their activities in homeostasis, protective immunity, regeneration and cancer. We examine how dysregulation of these functions contributes to the physiopathology of a broad range of inflammatory diseases. Furthermore, we discuss recent findings regarding the tissue compartmentalization and adaptation of eosinophils, shedding light on the factors that likely drive their functional diversification within tissues.
Collapse
Affiliation(s)
- Isabelle C Arnold
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland.
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel.
| |
Collapse
|
2
|
Atwell JE, Lutz CS, Sparrow EG, Feikin DR. Biological factors that may impair transplacental transfer of RSV antibodies: Implications for maternal immunization policy and research priorities for low- and middle-income countries. Vaccine 2022; 40:4361-4370. [PMID: 35725783 PMCID: PMC9348036 DOI: 10.1016/j.vaccine.2022.06.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/19/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022]
Abstract
Respiratory syncytial virus (RSV) is the leading viral cause of acute lower respiratory tract infection (ALRI), including bronchiolitis and pneumonia, in infants and children worldwide. Protection against RSV is primarily antibody mediated and passively acquired RSV neutralizing antibody can protect infants from RSV ALRI. Maternal immunization is an attractive strategy for the prevention of RSV in early infancy when immune responses to active immunization may be suboptimal and most severe RSV disease and death occur. However, several biologic factors have been shown to potentially attenuate or interfere with the transfer of protective naturally acquired antibodies from mother to fetus and could therefore also reduce vaccine effectiveness through impairment of transfer of vaccine-induced antibodies. Many of these factors are prevalent in low- and middle-income countries (LMIC) which experience the greatest burden of RSV-associated mortality; more data are needed to understand these mechanisms in the context of RSV maternal immunization. This review will focus on what is currently known about biologic conditions that may impair RSV antibody transfer, including preterm delivery, low birthweight, maternal HIV infection, placental malaria, and hypergammaglobulinemia (high levels of maternal total IgG). Key data gaps and priority areas for research are highlighted and include improved understanding of the epidemiology of hypergammaglobulinemia and the mechanisms by which it may impair antibody transfer. Key considerations for ensuring optimal vaccine effectiveness in LMICs are also discussed.
Collapse
Affiliation(s)
- Jessica E Atwell
- Johns Hopkins Bloomberg School of Public Health, Department of International Health, Global Disease Epidemiology and Control, Baltimore, MD, USA
| | - Chelsea S Lutz
- Johns Hopkins Bloomberg School of Public Health, Department of International Health, Global Disease Epidemiology and Control, Baltimore, MD, USA
| | - Erin G Sparrow
- The World Health Organization, Department of Immunization, Vaccines and Biologicals, Geneva, Switzerland
| | - Daniel R Feikin
- The World Health Organization, Department of Immunization, Vaccines and Biologicals, Geneva, Switzerland
| |
Collapse
|
3
|
Gaur P, Zaffran I, George T, Alekberli FR, Ben-Zimra M, Levi-Schaffer F. The regulatory role of eosinophils in viral, bacterial, and fungal infections. Clin Exp Immunol 2022; 209:72-82. [PMID: 35467728 PMCID: PMC9307229 DOI: 10.1093/cei/uxac038] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/15/2022] [Accepted: 04/24/2022] [Indexed: 12/14/2022] Open
Abstract
Eosinophils are innate immune cells typically associated with allergic and parasitic diseases. However, in recent years, eosinophils have also been ascribed a role in keeping homeostasis and in fighting several infectious diseases. Indeed, these cells circulate as mature cells in the blood and can be quickly recruited to the infected tissue. Moreover, eosinophils have all the necessary cellular equipment such as pattern recognition receptors (PRRs), pro-inflammatory cytokines, anti-bacterial proteins, and DNA traps to fight pathogens and promote an efficient immune response. This review summarizes some of the updated information on the role of eosinophils' direct and indirect mediated interactions with pathogens.
Collapse
Affiliation(s)
- Pratibha Gaur
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Ilan Zaffran
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Tresa George
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Fidan Rahimli Alekberli
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Micha Ben-Zimra
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| |
Collapse
|
4
|
Roles of the Fc Receptor γ-Chain in Inducing Protective Immune Responses after Heterologous Vaccination against Respiratory Syncytial Virus Infection. Vaccines (Basel) 2021; 9:vaccines9030232. [PMID: 33800349 PMCID: PMC7998258 DOI: 10.3390/vaccines9030232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 11/17/2022] Open
Abstract
The roles of the Fc receptor (FcR) in protection or inflammatory disease after respiratory syncytial virus (RSV) vaccination and infection remain unknown. Virus-like particles containing RSV fusion proteins (RSV F-VLPs) induce T-helper type 1 antibody responses and protection against RSV. Heterologous RSV F-VLP prime and formalin-inactivated RSV (FI-RSV) boost vaccination has been reported to be effective in providing protection without inflammatory disease. Here, we investigated whether the FcRγ-chain is important for immune protection by the heterologous F-VLP and FI-RSV vaccination using FcRγ-chain knockout (-/-) mice. RSV F-VLP-primed and FI-RSV-boosted FcRγ -/- mice displayed less protective efficacy, as shown by higher lung viral titers upon RSV challenge, compared to RSV F-VLP-primed and FI-RSV-boosted immunized wild-type mice. RSV F-VLP and FI-RSV immunization induced lower levels of neutralizing activity and interferon-γ-producing CD8 T-cells in the bronchoalveolar lavage cells of FcRγ -/- mice than in those of wild-type mice. In addition, FcRγ -/- mice displayed a trend of enhancing lung histopathology after RSV vaccination and infection. This study suggests that the FcRγ-chain plays an important role in inducing antiviral protection and CD8 T-cell responses in RSV F-VLP prime and FI-RSV boost vaccination after RSV infections.
Collapse
|
5
|
Single-Domain Antibodies and Their Formatting to Combat Viral Infections. Antibodies (Basel) 2018; 8:antib8010001. [PMID: 31544807 PMCID: PMC6640686 DOI: 10.3390/antib8010001] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/18/2022] Open
Abstract
Since their discovery in the 1990s, single-domain antibodies (VHHs), also known as Nanobodies®, have changed the landscape of affinity reagents. The outstanding solubility, stability, and specificity of VHHs, as well as their small size, ease of production and formatting flexibility favor VHHs over conventional antibody formats for many applications. The exceptional ease by which it is possible to fuse VHHs with different molecular modules has been particularly explored in the context of viral infections. In this review, we focus on VHH formats that have been developed to combat viruses including influenza viruses, human immunodeficiency virus-1 (HIV-1), and human respiratory syncytial virus (RSV). Such formats may significantly increase the affinity, half-life, breadth of protection of an antiviral VHH and reduce the risk of viral escape. In addition, VHHs can be equipped with effector functions, for example to guide components of the immune system with high precision to sites of viral infection.
Collapse
|
6
|
Wågström P, Yamada-Fowler N, Dahle C, Nilsdotter-Augustinsson Å, Bengnér M, Söderkvist P, Björkander J. Fcγ-receptor polymorphisms associated with clinical symptoms in patients with immunoglobulin G subclass deficiency. Infect Dis (Lond) 2018; 50:853-858. [PMID: 30298768 DOI: 10.1080/23744235.2018.1510183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Immunoglobulin G subclass deficiencies (IgGsd) are associated with recurrent respiratory tract infections. Immunoglobulin substitution therapy may be needed to prevent chronic lung tissue damage but tools for identifying the patients that will benefit from this treatment are still insufficient. Some FcγR polymorphisms seem to predispose for an increased risk for infections. In this study we wanted to evaluate if the FcγR-profile differs between individuals with IgGsd and a control population. METHODS Single nucleotide polymorphisms (SNPs) of FcγRIIa, FcγRIIIa and FcγRIIc in 36 IgGsd patients and 192 controls with similar sex and geographical distribution were analyzed by TaqMan allelic discrimination assay or Sanger sequencing. RESULTS In the IgGsd-group, homozygous frequency for FcγRIIa-R/R131 (low-binding capacity isoform) was higher (p = .03) as well as for non-classical FcγRIIc-ORF (p = .03) and classical FcγRIIc-ORF tended (p = .07) to be more common compared to the controls. There was no difference between the groups regarding FcγRIIIa. CONCLUSION The gene for classical FcγRIIc-ORF tended to be more frequent in individuals with immunoglobulin G subclass deficiency and the genes for non-classical FcγRIIc-ORF as well as low-binding capacity receptor FcγRIIa-R/R131 were more frequent. Further studies on the FcγR polymorphisms may pave way for identifying individuals that will benefit from immunoglobulin substitution.
Collapse
Affiliation(s)
- Per Wågström
- a Department of Infectious Diseases, Ryhov County Hospital, Jönköping and Department of Clinical and Experimental Medicine , Linköping University , Linköping , Sweden
| | - Naomi Yamada-Fowler
- b Department of Clinical and Experimental Medicine , Linköping University, Division of Cell Biology , Linköping , Sweden
| | - Charlotte Dahle
- c Department of Clinical Immunology and Transfusion Medicine and Department of Clinical and Experimental Medicine , Linköping University , Linköping , Sweden
| | - Åsa Nilsdotter-Augustinsson
- d Department of Infectious Diseases and Department of Clinical and Experimental Medicine , Linköping University , Linköping , Sweden
| | - Malin Bengnér
- e Office for Control of Communicable Diseases , Ryhov County Hospital , Jönköping , Sweden
| | - Peter Söderkvist
- b Department of Clinical and Experimental Medicine , Linköping University, Division of Cell Biology , Linköping , Sweden
| | - Janne Björkander
- f Division of Clinical Immunology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences , Linköping University , Sweden
| |
Collapse
|
7
|
In Vitro Enhancement of Respiratory Syncytial Virus Infection by Maternal Antibodies Does Not Explain Disease Severity in Infants. J Virol 2017; 91:JVI.00851-17. [PMID: 28794038 PMCID: PMC5640862 DOI: 10.1128/jvi.00851-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/12/2017] [Indexed: 01/09/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of severe respiratory illness in infants. At this young age, infants typically depend on maternally transferred antibodies (matAbs) and their innate immune system for protection against infections. RSV-specific matAbs are thought to protect from severe illness, yet severe RSV disease occurs mainly below 6 months of age, when neutralizing matAb levels are present. To investigate this discrepancy, we asked if disease severity is related to antibody properties other than neutralization. Some antibody effector functions are mediated via their Fc binding region. However, it has been shown that this binding may lead to antibody-dependent enhancement (ADE) of infection or reduction of neutralization, both possibly leading to more disease. In this study, we first showed that high levels of ADE of RSV infection occur in monocytic THP-1 cells in the presence of RSV antibodies and that neutralization by these antibodies was reduced in Vero cells when they were transduced with Fc gamma receptors. We then demonstrated that antibodies from cotton rats with formalin-inactivated (FI)-RSV-induced pulmonary pathology were capable of causing ADE. Human matAbs also caused ADE and were less neutralizing in vitro in cells that carry Fc receptors. However, these effects were unrelated to disease severity because they were seen both in uninfected controls and in infants hospitalized with different levels of RSV disease severity. We conclude that ADE and reduction of neutralization are unlikely to be involved in RSV disease in infants with neutralizing matAbs.IMPORTANCE It is unclear why severity of RSV disease peaks at the age when infants have neutralizing levels of maternal antibodies. Additionally, the exact reason for FI-RSV-induced enhanced disease, as seen in the 1960s vaccine trials, is still unclear. We hypothesized that antibodies present under either of these conditions could contribute to disease severity. Antibodies can have effects that may lead to more disease instead of protection. We investigated two of those effects: antibody-dependent enhancement of infection (ADE) and neutralization reduction. We show that ADE occurs in vitro with antibodies from FI-RSV-immunized RSV-infected cotton rats. Moreover, passively acquired maternal antibodies from infants had the capacity to induce ADE and reduction of neutralization. However, no clear association with disease severity was seen, ruling out that these properties explain disease in the presence of maternal antibodies. Our data contribute to a better understanding of the impact of antibodies on RSV disease in infants.
Collapse
|
8
|
Heath PT, Culley FJ, Jones CE, Kampmann B, Le Doare K, Nunes MC, Sadarangani M, Chaudhry Z, Baker CJ, Openshaw PJM. Group B streptococcus and respiratory syncytial virus immunisation during pregnancy: a landscape analysis. THE LANCET. INFECTIOUS DISEASES 2017; 17:e223-e234. [PMID: 28433702 DOI: 10.1016/s1473-3099(17)30232-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 02/02/2017] [Accepted: 02/07/2017] [Indexed: 12/30/2022]
Abstract
Group B streptococcus and respiratory syncytial virus are leading causes of infant morbidity and mortality worldwide. No licensed vaccines are available for either disease, but vaccines for both are under development. Severe respiratory syncytial virus disease can be prevented by passively administered antibody. The presence of maternal IgG antibody specific to respiratory syncytial virus is associated with reduced prevalence and severity of respiratory syncytial virus disease in the first few weeks of life, whereas maternal serotype-specific anticapsular antibody is associated with protection against both early-onset and late-onset group B streptococcus disease. Therefore, vaccination in pregnancy might protect infants against both diseases. This report describes what is known about immune protection against group B streptococcus and respiratory syncytial virus, identifies knowledge gaps regarding the immunobiology of both diseases, and aims to prioritise research directions in maternal immunisation.
Collapse
Affiliation(s)
- Paul T Heath
- Vaccine Institute, Institute for Infection and Immunity, St George's, University of London and St George's University Hospitals NHS Foundation Trust, London, UK.
| | - Fiona J Culley
- Respiratory Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Christine E Jones
- Faculty of Medicine and Institute for Life Sciences, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Beate Kampmann
- Centre for International Child Health, Department of Paediatrics, Imperial College London, London, UK; Medical Research Council Unit, Serrekunda, The Gambia
| | - Kirsty Le Doare
- Vaccine Institute, Institute for Infection and Immunity, St George's, University of London and St George's University Hospitals NHS Foundation Trust, London, UK; Centre for International Child Health, Department of Paediatrics, Imperial College London, London, UK
| | - Marta C Nunes
- Department of Science and Technology and National Research Foundation, Vaccine Preventable Diseases and Medical Research Council, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa; Respiratory and Meningeal Pathogens Research Unit, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa
| | - Manish Sadarangani
- Department of Paediatrics, University of Oxford, Oxford, UK; Vaccine Evaluation Centre, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Zain Chaudhry
- Respiratory Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Carol J Baker
- Department of Pediatrics, Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Peter J M Openshaw
- Respiratory Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
9
|
van Mechelen L, Luytjes W, de Haan CAM, Wicht O. RSV neutralization by palivizumab, but not by monoclonal antibodies targeting other epitopes, is augmented by Fc gamma receptors. Antiviral Res 2016; 132:1-5. [PMID: 27185625 DOI: 10.1016/j.antiviral.2016.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/29/2016] [Accepted: 05/04/2016] [Indexed: 11/25/2022]
Abstract
Palivizumab efficiently blocks respiratory syncytial virus (RSV) infection in vitro. However, virus neutralization assays generally omit Fc region-mediated effects. We investigated the neutralization activity of RSV-specific monoclonal antibodies on cells with Fc receptors. Subneutralizing concentrations of antibodies resulted in antibody-dependent enhancement of RSV infection in monocytic cells. Contrary to antibodies targeting other epitopes, the neutralization by palivizumab was augmented in cells with Fc receptors. This unrecognized characteristic of palivizumab may be relevant for its performance in vivo.
Collapse
Affiliation(s)
- Lenny van Mechelen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Willem Luytjes
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Cornelis A M de Haan
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Oliver Wicht
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands; Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
10
|
Gómez RS, Ramirez BA, Céspedes PF, Cautivo KM, Riquelme SA, Prado CE, González PA, Kalergis AM. Contribution of Fcγ receptors to human respiratory syncytial virus pathogenesis and the impairment of T-cell activation by dendritic cells. Immunology 2016; 147:55-72. [PMID: 26451966 PMCID: PMC4693880 DOI: 10.1111/imm.12541] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 09/16/2015] [Accepted: 09/29/2015] [Indexed: 12/11/2022] Open
Abstract
Human respiratory syncytial virus (hRSV) is the leading cause of infant hospitalization related to respiratory disease. Infection with hRSV produces abundant infiltration of immune cells into the airways, which combined with an exacerbated pro-inflammatory immune response can lead to significant damage to the lungs. Human RSV re-infection is extremely frequent, suggesting that this virus may have evolved molecular mechanisms that interfere with host adaptive immunity. Infection with hRSV can be reduced by administering a humanized neutralizing antibody against the virus fusion protein in high-risk infants. Although neutralizing antibodies against hRSV effectively block the infection of airway epithelial cells, here we show that both, bone marrow-derived dendritic cells (DCs) and lung DCs undergo infection with IgG-coated virus (hRSV-IC), albeit abortive. Yet, this is enough to negatively modulate DC function. We observed that such a process is mediated by Fcγ receptors (FcγRs) expressed on the surface of DCs. Remarkably, we also observed that in the absence of hRSV-specific antibodies FcγRIII knockout mice displayed significantly less cellular infiltration in the lungs after hRSV infection, compared with wild-type mice, suggesting a potentially harmful, IgG-independent role for this receptor in hRSV disease. Our findings support the notion that FcγRs can contribute significantly to the modulation of DC function by hRSV and hRSV-IC. Further, we provide evidence for an involvement of FcγRIII in the development of hRSV pathogenesis.
Collapse
MESH Headings
- Adaptive Immunity
- Animals
- Antibodies, Neutralizing/pharmacology
- Antibodies, Viral/immunology
- Antibodies, Viral/metabolism
- Antiviral Agents/pharmacology
- Cells, Cultured
- Coculture Techniques
- Cytokines/metabolism
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/virology
- Disease Models, Animal
- Immunoglobulin G/immunology
- Immunoglobulin G/metabolism
- Lung/drug effects
- Lung/immunology
- Lung/metabolism
- Lung/virology
- Lymphocyte Activation/drug effects
- Mice, Inbred C57BL
- Mice, Knockout
- Palivizumab/pharmacology
- Receptors, IgG/deficiency
- Receptors, IgG/genetics
- Receptors, IgG/immunology
- Receptors, IgG/metabolism
- Respiratory Syncytial Virus Infections/drug therapy
- Respiratory Syncytial Virus Infections/genetics
- Respiratory Syncytial Virus Infections/immunology
- Respiratory Syncytial Virus Infections/metabolism
- Respiratory Syncytial Virus Infections/virology
- Respiratory Syncytial Virus, Human/drug effects
- Respiratory Syncytial Virus, Human/immunology
- Respiratory Syncytial Virus, Human/pathogenicity
- Signal Transduction
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/virology
- Viral Load
- Virus Replication
Collapse
Affiliation(s)
- Roberto S. Gómez
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiago de ChileChile
| | - Bruno A. Ramirez
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiago de ChileChile
| | - Pablo F. Céspedes
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiago de ChileChile
| | - Kelly M. Cautivo
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiago de ChileChile
| | - Sebastián A. Riquelme
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiago de ChileChile
- INSERM U1064NantesFrance
| | - Carolina E. Prado
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiago de ChileChile
| | - Pablo A. González
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiago de ChileChile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiago de ChileChile
- INSERM U1064NantesFrance
- Departamento de ReumatologíaFacultad de Medicina. Pontificia Universidad Católica de ChileSantiago de ChileChile
| |
Collapse
|