1
|
Aleebrahim-Dehkordi E, Soveyzi F, Deravi N, Saghazadeh A, Rezaei N. Mental Healthcare in Pediatrics During the COVID-19 Pandemic: A Call for International Public Health Action. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1458:19-34. [PMID: 39102187 DOI: 10.1007/978-3-031-61943-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Public health measures associated with coronavirus disease 2019 (COVID-19), such as lockdowns and quarantine of suspected cases, can negatively affect children's mental health status. Although the current crisis provides personal growth and family cohesion opportunities, pitfalls appear to outweigh the benefits. The magnitude and quality of its impact on children depend on several factors, including anxiety, lack of social contact, and a reduced opportunity for stress regulation, along with an increased risk for parental mental health issues, child maltreatment, and domestic violence. Children with special needs and social disadvantages like trauma experiences, disabilities, pre-existing mental illness, e.g., autism spectrum disorders and hyperactivity, and low socioeconomic status, may be at higher risk in this context. Here, the potentials social support can provide for pediatrics, both healthy children and children with special needs, are reviewed after an overview of quarantine's adverse effects on this special population during a pandemic. The most common psychological issues associated with the COVID-19 pandemic are sleep disorders, mood swings, depression, anxiety, decreased attention, stress, irritability, anger, and fear. Moreover, the impact of COVID-19 on children's physical health includes weight gain, reduced physical activity, immune dysregulation, and cardiometabolic disorders. All support systems, involving parents, teachers/school counselors, pediatricians, mental healthcare workers, and Health and Art (HEART) groups, need to enter the scene and make their share of children's mental health care.
Collapse
Affiliation(s)
- Elahe Aleebrahim-Dehkordi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Faezeh Soveyzi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Radiology Resident at MUMS, Radiology Department Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Deravi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Student's Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amene Saghazadeh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, 14194, Tehran, Iran
- MetaCognition Interest Group (MCIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, 14194, Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
2
|
Tramuto F, Maida CM, Mazzucco W, Costantino C, Amodio E, Sferlazza G, Previti A, Immordino P, Vitale F. Molecular Epidemiology and Genetic Diversity of Human Respiratory Syncytial Virus in Sicily during Pre- and Post-COVID-19 Surveillance Seasons. Pathogens 2023; 12:1099. [PMID: 37764907 PMCID: PMC10534943 DOI: 10.3390/pathogens12091099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Human respiratory syncytial virus (hRSV) is an important pathogen of acute respiratory tract infection of global significance. In this study, we investigated the molecular epidemiology and the genetic variability of hRSV over seven surveillance seasons between 2015 and 2023 in Sicily, Italy. hRSV subgroups co-circulated through every season, although hRSV-B mostly prevailed. After the considerable reduction in the circulation of hRSV due to the widespread implementation of non-pharmaceutical preventive measures during the COVID-19 pandemic, hRSV rapidly re-emerged at a high intensity in 2022-2023. The G gene was sequenced for genotyping and analysis of deduced amino acids. A total of 128 hRSV-A and 179 hRSV-B G gene sequences were obtained. The phylogenetic analysis revealed that the GA2.3.5a (ON1) and GB5.0.5a (BA9) genotypes were responsible for the hRSV epidemics in Sicily.; only one strain belonged to the genotype GB5.0.4a. No differences were observed in the circulating genotypes during pre- and post-pandemic years. Amino acid sequence alignment revealed the continuous evolution of the G gene, with a combination of amino acid changes specifically appearing in 2022-2023. The predicted N-glycosylation sites were relatively conserved in ON1 and BA9 genotype strains. Our findings augment the understanding and prediction of the seasonal evolution of hRSV at the local level and its implication in the monitoring of novel variants worth considering in better design of candidate vaccines.
Collapse
Affiliation(s)
- Fabio Tramuto
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”—Hygiene Section, University of Palermo, 90134 Palermo, Italy; (C.M.M.); (W.M.); (C.C.); (E.A.); (P.I.); (F.V.)
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90127 Palermo, Italy; (G.S.); (A.P.)
| | - Carmelo Massimo Maida
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”—Hygiene Section, University of Palermo, 90134 Palermo, Italy; (C.M.M.); (W.M.); (C.C.); (E.A.); (P.I.); (F.V.)
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90127 Palermo, Italy; (G.S.); (A.P.)
| | - Walter Mazzucco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”—Hygiene Section, University of Palermo, 90134 Palermo, Italy; (C.M.M.); (W.M.); (C.C.); (E.A.); (P.I.); (F.V.)
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90127 Palermo, Italy; (G.S.); (A.P.)
| | - Claudio Costantino
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”—Hygiene Section, University of Palermo, 90134 Palermo, Italy; (C.M.M.); (W.M.); (C.C.); (E.A.); (P.I.); (F.V.)
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90127 Palermo, Italy; (G.S.); (A.P.)
| | - Emanuele Amodio
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”—Hygiene Section, University of Palermo, 90134 Palermo, Italy; (C.M.M.); (W.M.); (C.C.); (E.A.); (P.I.); (F.V.)
| | - Giuseppe Sferlazza
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90127 Palermo, Italy; (G.S.); (A.P.)
| | - Adriana Previti
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90127 Palermo, Italy; (G.S.); (A.P.)
| | - Palmira Immordino
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”—Hygiene Section, University of Palermo, 90134 Palermo, Italy; (C.M.M.); (W.M.); (C.C.); (E.A.); (P.I.); (F.V.)
| | - Francesco Vitale
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”—Hygiene Section, University of Palermo, 90134 Palermo, Italy; (C.M.M.); (W.M.); (C.C.); (E.A.); (P.I.); (F.V.)
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90127 Palermo, Italy; (G.S.); (A.P.)
| |
Collapse
|
5
|
Ishak A, Mehendale M, AlRawashdeh MM, Sestacovschi C, Sharath M, Pandav K, Marzban S. The association of COVID-19 severity and susceptibility and genetic risk factors: A systematic review of the literature. Gene 2022; 836:146674. [PMID: 35714803 PMCID: PMC9195407 DOI: 10.1016/j.gene.2022.146674] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/27/2022] [Accepted: 06/10/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND COVID-19 is associated with several risk factors such as distinct ethnicities (genetic ancestry), races, sexes, age, pre-existing comorbidities, smoking, and genetics. The authors aim to evaluate the correlation between variability in the host genetics and the severity and susceptibility towards COVID-19 in this study. METHODS Following the PRISMA guidelines, we retrieved all the relevant articles published until September 15, 2021, from two online databases: PubMed and Scopus. FINDINGS High-risk HLA haplotypes, higher expression of ACE polymorphisms, and several genes of cellular proteases such as TMPRSS2, FURIN, TLL-1 increase the risk of susceptibility and severity of COVID-19. In addition, upregulation of several genes encoding for both innate and acquired immune systems proteins, mainly CCR5, IFNs, TLR, DPPs, and TNF, positively correlate with COVID-19 severity. However, reduced expression or polymorphisms in genes affecting TLR and IFNλ increase COVID-19 severity. CONCLUSION Higher expression, polymorphisms, mutations, and deletions of several genes are linked with the susceptibility, severity, and clinical outcomes of COVID-19. Early treatment and vaccination of individuals with genetic predisposition could help minimize the severity and mortality associated with COVID-19.
Collapse
Affiliation(s)
- Angela Ishak
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA.
| | - Meghana Mehendale
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA
| | - Mousa M AlRawashdeh
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA; European University Cyprus - School of Medicine, Nicosia, Cyprus
| | - Cristina Sestacovschi
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA
| | - Medha Sharath
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA; Bangalore Medical College and Research Institute, Bangalore, Karnataka, India
| | - Krunal Pandav
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA
| | - Sima Marzban
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA
| |
Collapse
|
6
|
Feyaerts D, Hédou J, Gillard J, Chen H, Tsai ES, Peterson LS, Ando K, Manohar M, Do E, Dhondalay GKR, Fitzpatrick J, Artandi M, Chang I, Snow TT, Chinthrajah RS, Warren CM, Wittman R, Meyerowitz JG, Ganio EA, Stelzer IA, Han X, Verdonk F, Gaudillière DK, Mukherjee N, Tsai AS, Rumer KK, Jacobsen DR, Bjornson-Hooper ZB, Jiang S, Saavedra SF, Valdés Ferrer SI, Kelly JD, Furman D, Aghaeepour N, Angst MS, Boyd SD, Pinsky BA, Nolan GP, Nadeau KC, Gaudillière B, McIlwain DR. Integrated plasma proteomic and single-cell immune signaling network signatures demarcate mild, moderate, and severe COVID-19. Cell Rep Med 2022; 3:100680. [PMID: 35839768 PMCID: PMC9238057 DOI: 10.1016/j.xcrm.2022.100680] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/25/2022] [Accepted: 06/14/2022] [Indexed: 02/06/2023]
Abstract
The biological determinants underlying the range of coronavirus 2019 (COVID-19) clinical manifestations are not fully understood. Here, over 1,400 plasma proteins and 2,600 single-cell immune features comprising cell phenotype, endogenous signaling activity, and signaling responses to inflammatory ligands are cross-sectionally assessed in peripheral blood from 97 patients with mild, moderate, and severe COVID-19 and 40 uninfected patients. Using an integrated computational approach to analyze the combined plasma and single-cell proteomic data, we identify and independently validate a multi-variate model classifying COVID-19 severity (multi-class area under the curve [AUC]training = 0.799, p = 4.2e-6; multi-class AUCvalidation = 0.773, p = 7.7e-6). Examination of informative model features reveals biological signatures of COVID-19 severity, including the dysregulation of JAK/STAT, MAPK/mTOR, and nuclear factor κB (NF-κB) immune signaling networks in addition to recapitulating known hallmarks of COVID-19. These results provide a set of early determinants of COVID-19 severity that may point to therapeutic targets for prevention and/or treatment of COVID-19 progression.
Collapse
Affiliation(s)
- Dorien Feyaerts
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Julien Hédou
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Joshua Gillard
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Center for Molecular and Biomolecular Informatics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Han Chen
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Eileen S Tsai
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura S Peterson
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Kazuo Ando
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Monali Manohar
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA; Department of Medicine, Stanford University, Stanford, CA, USA
| | - Evan Do
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA; Department of Medicine, Stanford University, Stanford, CA, USA
| | - Gopal K R Dhondalay
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA; Department of Medicine, Stanford University, Stanford, CA, USA
| | - Jessica Fitzpatrick
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA; Department of Medicine, Stanford University, Stanford, CA, USA
| | - Maja Artandi
- Department of Primary Care and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Iris Chang
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA; Department of Medicine, Stanford University, Stanford, CA, USA
| | - Theo T Snow
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA; Department of Medicine, Stanford University, Stanford, CA, USA
| | - R Sharon Chinthrajah
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA; Department of Medicine, Stanford University, Stanford, CA, USA; Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Stanford University, Stanford, CA, USA; Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christopher M Warren
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA; Department of Medicine, Stanford University, Stanford, CA, USA
| | - Richard Wittman
- Department of Primary Care and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Justin G Meyerowitz
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Edward A Ganio
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ina A Stelzer
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Xiaoyuan Han
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA; Department of Biomedical Sciences, University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, CA, USA
| | - Franck Verdonk
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Dyani K Gaudillière
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Nilanjan Mukherjee
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Amy S Tsai
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Kristen K Rumer
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Danielle R Jacobsen
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Zachary B Bjornson-Hooper
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sizun Jiang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sergio Fragoso Saavedra
- Departamento de Neurología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico; Plan de Estudios Combinados en Medicina (MD/PhD Program), Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sergio Iván Valdés Ferrer
- Departamento de Neurología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - J Daniel Kelly
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, USA; Institute for Global Health Sciences, UCSF, San Francisco, CA, USA; F.I. Proctor Foundation, UCSF, San Francisco, CA, USA
| | - David Furman
- Buck Artificial Intelligence Platform, Buck Institute for Research on Aging, Novato, CA, USA; Stanford 1000 Immunomes Project, Stanford University School of Medicine, Stanford, CA, USA; Austral Institute for Applied Artificial Intelligence, Institute for Research in Translational Medicine (IIMT), Universidad Austral, CONICET, Pilar, Buenos Aires, Argentina
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA; Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA; Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Martin S Angst
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Scott D Boyd
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA; Department of Medicine, Stanford University, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Benjamin A Pinsky
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Kari C Nadeau
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA; Department of Medicine, Stanford University, Stanford, CA, USA; Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Stanford University, Stanford, CA, USA; Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA, USA
| | - Brice Gaudillière
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA; Department of Pediatrics, Stanford University, Stanford, CA, USA.
| | - David R McIlwain
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
9
|
Pourriyahi H, Saghazadeh A, Rezaei N. Altered immunoemotional regulatory system in COVID-19: From the origins to opportunities. J Neuroimmunol 2021; 356:577578. [PMID: 33933818 PMCID: PMC8050399 DOI: 10.1016/j.jneuroim.2021.577578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/19/2021] [Accepted: 04/13/2021] [Indexed: 10/26/2022]
Abstract
The emergence of the novel coronavirus (SARS-CoV-2) and the worldwide spread of the coronavirus disease (COVID-19) have led to social regulations that caused substantial changes in manners of daily life. The subsequent loneliness and concerns of the pandemic during social distancing, quarantine, and lockdown are psychosocial stressors that negatively affect the immune system. These effects occur through mechanisms controlled by the sympathetic nervous system (SNS) and the hypothalamic-pituitary-adrenocortical (HPA) axis that alter immune regulation, namely the conserved transcriptional response to adversity (CTRA), which promotes inflammation and diminishes antiviral responses, leading to inadequate protection against viral disease. Unhealthy eating habits, physical inactivity, sleep disturbances, and mental health consequences of COVID-19 add on to the pathological effects of loneliness, making immunity against this ferocious virus an even tougher fight. Therefore, social isolation, with its unintended consequences, has inherently paradoxical effects on immunity in relation to viral disease. Though this paradox can present a challenge, its acknowledgment can serve as an opportunity to address the associated issues and find ways to mitigate the adverse effects. In this review, we aim to explore, in detail, the pathological effects of the new social norms on immunity and present suggested methods to improve our physical, psychological, and healthcare abilities to fight viral infection in the context of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Homa Pourriyahi
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amene Saghazadeh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; MetaCognition Interest Group (MCIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|