1
|
Chen D, Wu J, Zhang F, Lyu R, You Q, Qian Y, Cai Y, Tian X, Tao H, He Y, Nawaz W, Wu Z. Trained immunity of intestinal tuft cells during infancy enhances host defense against enteroviral infections in mice. EMBO Mol Med 2024; 16:2516-2538. [PMID: 39261649 PMCID: PMC11479266 DOI: 10.1038/s44321-024-00128-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/23/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024] Open
Abstract
Innate immune cells have been acknowledged as trainable in recent years. While intestinal tuft cells are recognized for their crucial roles in the host defense against intestinal pathogens, there remains uncertainty regarding their trainability. Enterovirus 71 (EV71), a prevalent enterovirus that primarily infects children but rarely infects adults. At present, there is a significant expansion of intestinal tuft cells in the EV71-infected mouse model, which is associated with EV71-induced interleukin-25 (IL-25) production. Further, we found that IL-25 pre-treatment at 2 weeks old mouse enabled tuft cells to acquire immune memory. This was evidenced by the rapid expansion and stronger response of IL-25-trained tuft cells in response to EV71 infection at 6 weeks old, surpassing the reactivity of naïve tuft cells in mice without IL-25-trained progress. Interestingly, IL-25-trained intestinal tuft cells exhibit anti-enteroviral effect via producing a higher level of IL-25. Mechanically, IL-25 treatment upregulates spermidine/spermine acetyl-transferase enzyme (SAT1) expression, mediates intracellular polyamine deficiency, further inhibits enterovirus replication. In summary, tuft cells can be trained by IL-25, which supports faster and higher level IL-25 production in response to EV71 infection and further exhibits anti-enteroviral effect via SAT1-mediated intracellular polyamine deficiency. Given that IL-25 can be induced by multiple gut microbes during human growth and development, including shifts in gut flora abundance, which may partially explain the different susceptibility to enteroviral infections between adults and children.
Collapse
Affiliation(s)
- Deyan Chen
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, Bengbu, China
- Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Jing Wu
- Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Fang Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Ruining Lyu
- Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Qiao You
- Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yajie Qian
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yurong Cai
- School of Life Science, Ningxia University, Yinchuan, China
| | - Xiaoyan Tian
- Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Hongji Tao
- Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yating He
- Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Waqas Nawaz
- Hȏpital Maisonneuve-Rosemont, School of medicine, University of Montreal, Montreal, Canada
| | - Zhiwei Wu
- Medical School of Nanjing University, Nanjing, Jiangsu, China.
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu, China.
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China.
| |
Collapse
|
2
|
Dai B, Chen Y, Han S, Chen S, Wang F, Feng H, Zhang X, Li W, Chen S, Yang H, Duan G, Li G, Jin Y. Epidemiology and etiology of hand, foot, and mouth disease in Zhengzhou, China, from 2009 to 2021. INFECTIOUS MEDICINE 2024; 3:100114. [PMID: 38974346 PMCID: PMC11225680 DOI: 10.1016/j.imj.2024.100114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/18/2023] [Accepted: 04/02/2024] [Indexed: 07/03/2024]
Abstract
Background Hand, foot, and mouth disease (HFMD) is a common childhood infectious disease caused by a variety of enteroviruses (EVs). To explore the epidemiological characteristics and etiology of HFMD in Zhengzhou, China, we conducted a systematic analysis of HFMD surveillance data from Zhengzhou Center for Disease Control and Prevention from January 2009 to December 2021 (https://wjw.zhengzhou.gov.cn/). Methods Surveillance data were collected from Zhengzhou Center for Disease Control and Prevention from January 2009 to December 2021 (https://wjw.zhengzhou.gov.cn/). Cases were analyzed according to the time of onset, type of diagnosis, characteristics, viral serotype, and epidemiological trends. Results We found that the primary causative agent responsible for the HFMD outbreaks in Zhengzhou was Enterovirus A71 (EVA-71) (48.56%) before 2014. After 2015, other EVs gradually became the dominant strains (57.68%). The data revealed that the HFMD epidemics in Zhengzhou displayed marked seasonality, with major peaks occurring from April to June, followed by secondary peaks from October to November, except in 2020. Both the severity and case-fatality ratio of HFMD decreased following the COVID-19 pandemic (severity ‰: 13.46 vs. 0.17; case-fatality ‰: 0.21 vs. 0, respectively). Most severe cases were observed in patients aged 1 year and below, accounting for 45.81%. Conclusions Overall, the incidence rate of HFMD decreased in Zhengzhou following the introduction of the EVA-71 vaccine in 2016. However, it is crucial to acknowledge that HFMD prevalence continues to exhibit a distinct seasonal pattern and periodicity, and the occurrence of other EV infections poses a new challenge for children's health.
Collapse
Affiliation(s)
- Bowen Dai
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Zhengzhou Center for Disease Control and Prevention, Zhengzhou 450007, China
| | - Yu Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shujie Han
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shouhang Chen
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou 450018, China
| | - Fang Wang
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou 450018, China
| | - Huifen Feng
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaolong Zhang
- NHC Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou 450002, China
| | - Wenlong Li
- Zhengzhou Center for Disease Control and Prevention, Zhengzhou 450007, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Guowei Li
- Zhengzhou Center for Disease Control and Prevention, Zhengzhou 450007, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou 450018, China
- NHC Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou 450002, China
| |
Collapse
|
3
|
Xia Z, Wang H, Chen W, Wang A, Cao Z. Scorpion Venom Antimicrobial Peptide Derivative BmKn2-T5 Inhibits Enterovirus 71 in the Early Stages of the Viral Life Cycle In Vitro. Biomolecules 2024; 14:545. [PMID: 38785952 PMCID: PMC11117539 DOI: 10.3390/biom14050545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Enterovirus 71 (EV71), a typical representative of unenveloped RNA viruses, is the main pathogenic factor responsible for hand, foot, and mouth disease (HFMD) in infants. This disease seriously threatens the health and lives of humans worldwide, especially in the Asia-Pacific region. Numerous animal antimicrobial peptides have been found with protective functions against viruses, bacteria, fungi, parasites, and other pathogens, but there are few studies on the use of scorpion-derived antimicrobial peptides against unenveloped viruses. Here, we investigated the antiviral activities of scorpion venom antimicrobial peptide BmKn2 and five derivatives, finding that BmKn2 and its derivative BmKn2-T5 exhibit a significant inhibitory effect on EV71. Although both peptides exhibit characteristics typical of amphiphilic α-helices in terms of their secondary structure, BmKn2-T5 displayed lower cellular cytotoxicity than BmKn2. BmKn2-T5 was further found to inhibit EV71 in a dose-dependent manner in vitro. Moreover, time-of-drug-addition experiments showed that BmKn2-T5 mainly restricts EV71, but not its virion or replication, at the early stages of the viral cycle. Interestingly, BmKn2-T5 was also found to suppress the replication of the enveloped viruses DENV, ZIKV, and HSV-1 in the early stages of the viral cycle, which suggests they may share a common early infection step with EV71. Together, the results of our study identified that the scorpion-derived antimicrobial peptide BmKn2-T5 showed valuable antiviral properties against EV71 in vitro, but also against other enveloped viruses, making it a potential new candidate therapeutic molecule.
Collapse
Affiliation(s)
- Zhiqiang Xia
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China;
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China;
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518057, China
| | - Huijuan Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China;
| | - Weilie Chen
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510060, China;
| | - Aili Wang
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China;
| | - Zhijian Cao
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China;
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China;
- Shenzhen Research Institute, Wuhan University, Shenzhen 518057, China
| |
Collapse
|
4
|
Wang H, Chen F, Wang S, Li Y, Liu T, Li Y, Deng H, Dong J, Pang J, Song D, Zhang D, Yu J, Wang Y. Evaluation and mechanism study of Pien Tze Huang against EV-A71 infection. Front Pharmacol 2023; 14:1251731. [PMID: 37954857 PMCID: PMC10637388 DOI: 10.3389/fphar.2023.1251731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
Hand, foot, and mouth disease (HFMD) caused by enterovirus A71 (EV-A71) infection, currently lacks specific preventive and therapeutic interventions. Here, we demonstrated that Pien Tze Huang (PZH) could dose-dependently inhibit EV-A71 replication at the cellular level, resulting in significant reductions in EV-A71 virus protein 1 (VP1) expression and viral yields in Vero and human rhabdomyosarcoma cells. More importantly, we confirmed that PZH could protect mice from EV-A71 infection for the first time, with Ribavirin serving as a positive control. PZH treatment reduced EV-A71 VP1 protein expression, viral yields in infected muscles, and improved muscle pathology. Additionally, we conducted a preliminary mechanism study using quantitative proteomics. The results suggested that the suppression of the PI3K/AKT/mTOR and NF-κB signaling pathways may contribute to the anti-EV-A71 activity of PZH. These findings provide strong evidence supporting the potential therapeutic application of PZH for EV-A71 infection management.
Collapse
Affiliation(s)
- Huiqiang Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fenbei Chen
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shicong Wang
- Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development, Zhangzhou, China
| | - Yuhuan Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Liu
- Institute for Drug Control, National Institute for Food and Drug Control, Beijing, China
| | - Yinghong Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongbin Deng
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingwen Dong
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Pang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Danqing Song
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dousheng Zhang
- Institute for Drug Control, National Institute for Food and Drug Control, Beijing, China
| | - Juan Yu
- Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development, Zhangzhou, China
| | - Yanxiang Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Yang Q, Liu F, Chang L, Lai S, Teng J, Duan J, Jian H, Liu T, Che G. Molecular epidemiology and clinical characteristics of enteroviruses associated HFMD in Chengdu, China, 2013-2022. Virol J 2023; 20:202. [PMID: 37661256 PMCID: PMC10476316 DOI: 10.1186/s12985-023-02169-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023] Open
Abstract
OBJECTIVES This study aims to investigate molecular epidemiology and clinical characteristics of enterovirus associated hand-foot-mouth disease (HFMD) in Chengdu, China, 2013-2022. Monitoring the molecular epidemiology and clinical features of HFMD for up to 10 years may provide some ideas for future protection and control measures. METHODS We conducted a retrospective analysis of the medical records of all patients with laboratory-confirmed HFMD-related enterovirus infection at the West China Second University Hospital from January 2013 to December 2022. We described the characteristics in serotype, age, sex distribution and hospitalization of enterovirus infection cases using data analysis and graphic description. RESULTS A total of 29,861 laboratory-confirmed cases of HFMD-related enterovirus infection were reported from 2013 to 2022. There was a significant reduction in the number and proportion of EV-A71 cases after 2016, from 1713 cases (13.60%) in 2013-2015 to 150 cases (1.83%) in 2017-2019. During the COVID-19 pandemic, EV-A71 cases even disappeared. The proportion of CV-A16 cases decreased from 13.96% in 2013-2015 to 10.84% in 2017-2019 and then to 4.54% in 2020-2022. Other (non-EV-A71 and non-CV-A16) serotypes accounted for 95.45% during 2020-2022, with CV-A6 accounting for 50.39% and CV-A10 accounting for 10.81%. Thus, CV-A6 and CV-A10 became the main prevalent serotypes. Furthermore, There was no significant difference in the enterovirus prevalence rate between males and females. The hospitalization rate of EV-A71 patients was higher that of other serotypes. In general, the proportion of HFMD hospitalizations caused by other pathogens except for EV-A71, CV-A16, CV-A10 and CV-A16 was second only to that caused by EV-A71. The proportion of children over 4 years old infected with enterovirus increased. CONCLUSION The incidence of HFMD associated with enterovirus infection has decreased significantly and CV-A6 has been the main pathogen of HFMD in Chengdu area in recent years. The potential for additional hospitalizations for other untested enterovirus serotypes suggested that attention should also be paid to the harms of infections with unknown enterovirus serotypes. Children with HFMD were older. The development of new diagnostic reagents and vaccines may play an important role in the prevention and control of enterovirus infection.
Collapse
Affiliation(s)
- Qiuxia Yang
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Fang Liu
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Li Chang
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Shuyu Lai
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jie Teng
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jiaxin Duan
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Hui Jian
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Ting Liu
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Guanglu Che
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
6
|
Siddiqui R, Muhammad JS, Alharbi AM, Alfahemi H, Khan NA. Can Acanthamoeba Harbor Monkeypox Virus? Microorganisms 2023; 11:microorganisms11040855. [PMID: 37110278 PMCID: PMC10146756 DOI: 10.3390/microorganisms11040855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Acanthamoeba is well known to host a variety of microorganisms such as viruses, bacteria, protozoa, and yeast. Given the recent number of cases of monkeypox infection, we speculate that amoebae may be aiding viral transmission to the susceptible hosts. Although there is no confirmatory evidence to suggest that Acanthamoeba is a host to monkeypox (a double-stranded DNA virus), the recent discovery of mimivirus (another double-stranded DNA virus) from Acanthamoeba, suggests that amoebae may shelter monkeypox virus. Furthermore, given the possible spread of monkeypox virus from animals to humans during an earlier outbreak, which came about after patients came in contact with prairie dogs, it is likely that animals may also act as mixing vessel between ubiquitously distributed Acanthamoeba and monkeypox virus, in addition to the environmental habitat that acts as an interface in complex interactions between diverse microorganisms and the host.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey
| | | | - Ahmad M. Alharbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Hasan Alfahemi
- Department of Medical Microbiology, Faculty of Medicine, Al-Baha University, Al-Baha 65799, Saudi Arabia
| | - Naveed Ahmed Khan
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: ; Tel.: +971-65057722
| |
Collapse
|
7
|
Sun J, Ma X, Sun L, Zhang Y, Hao C, Wang W. Inhibitory effects and mechanisms of proanthocyanidins against enterovirus 71 infection. Virus Res 2023; 329:199098. [PMID: 36944412 DOI: 10.1016/j.virusres.2023.199098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/25/2023] [Accepted: 03/17/2023] [Indexed: 03/23/2023]
Abstract
Proanthocyanidins (PC), a natural flavonoid compound, was reported to possess a variety of pharmacological activities such as anti-tumor and anti-viral effects. In this study, the anti-Enterovirus 71 (EV71) activities and mechanisms of PC were investigated both in vitro and in vivo. The results showed that PC possessed anti-EV71 activities in different cell lines with low toxicity. PC can block both the adsorption and entry processes of EV71 via directly binding to virus VP1 protein. PC may competitively interfere with the binding of VP1 to its receptor SCARB2. PC can also regulate three different MAPK signaling pathways to reduce EV71 infection and attenuate virus induced inflammatory responses. Importantly, intramuscular therapy of EV71-infected mice with PC markedly improved their survival and attenuated the severe clinical symptoms. Therefore, the natural compound PC has potential to be developed into a novel anti-EV71 agent targeting viral VP1 protein and MAPK pathways.
Collapse
Affiliation(s)
- Jiqin Sun
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, P. R. China
| | - Xiaoyao Ma
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, P. R. China
| | - Lishan Sun
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, P. R. China
| | - Yang Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, P. R. China
| | - Cui Hao
- Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, 266003, P. R. China.
| | - Wei Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, P. R. China.
| |
Collapse
|
8
|
Rational design of novel nucleoside analogues reveals potent antiviral agents for EV71. Eur J Med Chem 2023; 246:114942. [PMID: 36455356 DOI: 10.1016/j.ejmech.2022.114942] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/23/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022]
Abstract
Different viruses belonging to distinct viral families, such as enterovirus 71, rely on the host methyltransferase METTL3 for the completion of fundamental cytoplasmic stages of their life cycle. Modulation of the activity of this enzyme could therefore provide a broad-spectrum approach to interfere with viral infections caused by viruses that depend on its activity for the completion of their viral cycle. With the aim to identify antiviral therapeutics with this effect, a series of new nucleoside analogues was rationally designed to act as inhibitors of human METTL3, as a novel approach to interfere with a range of viral infections. Guided by molecular docking studies on the SAM binding pocket of the enzyme, 24 compounds were prepared following multiple-step synthetic protocols, and evaluated for their ability to interfere with the replication of different viruses in cell-based systems, and to directly inhibit the activity of METTL3. While different molecules displayed moderate inhibition of the human methyltransferase in vitro, multiple novel, potent and selective inhibitors of enterovirus 71 were identified.
Collapse
|
9
|
Beig M, Mohammadi M, Nafe Monfared F, Nasereslami S. Monkeypox: An emerging zoonotic pathogen. World J Virol 2022; 11:426-434. [PMID: 36483104 PMCID: PMC9724206 DOI: 10.5501/wjv.v11.i6.426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/22/2022] [Accepted: 10/12/2022] [Indexed: 11/23/2022] Open
Abstract
Monkeypox virus (MPXV), which belongs to the orthopoxvirus genus, causes zoonotic viral disease. This review discusses the biology, epidemiology, and evolution of MPXV infection, particularly cellular, human, and viral factors, virus transmission dynamics, infection, and persistence in nature. This review also describes the role of recombination, gene loss, and gene gain in MPXV evol-vement and the role of signal transduction in MPXV infection and provides an overview of the current access to therapeutic options for the treatment and prevention of MPXV. Finally, this review highlighted gaps in knowledge and proposed future research endeavors to address the unresolved questions.
Collapse
Affiliation(s)
- Masoumeh Beig
- Department of Microbiology, Pasteur Institute of Iran, Tehran 5423566512, Iran
| | - Mehrdad Mohammadi
- Department of Immunology and Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan 8715973449, Iran
| | - Fatemeh Nafe Monfared
- Department of Virology, Tehran University of Medical Sciences, Tehran 5151561892, Iran
| | - Somaieh Nasereslami
- Department of Virology, Faculty of Medicine, Tarbiat Modares University, Tehran 5214632542, Iran
| |
Collapse
|
10
|
Zheng B, Zhou X, Tian L, Wang J, Zhang W. IFN-β1b induces OAS3 to inhibit EV71 via IFN-β1b/JAK/STAT1 pathway. Virol Sin 2022; 37:676-684. [PMID: 35934228 PMCID: PMC9583119 DOI: 10.1016/j.virs.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/27/2022] [Indexed: 11/03/2022] Open
Abstract
Enterovirus 71 (EV71) caused hand, foot and mouth disease (HFMD) is a serious threat to the health of young children. Although type I interferon (IFN-I) has been proven to control EV71 replication, the key downstream IFN-stimulated gene (ISG) remains to be clarified and investigated. Recently, we found that 2′-5′-oligoadenylate synthetases 3 (OAS3), as one of ISG of IFN-β1b, was antagonized by EV71 3C protein. Here, we confirm that OAS3 is the major determinant of IFN-β1b-mediated EV71 inhibition, which depends on the downstream constitutive RNase L activation. 2′-5′-oligoadenylate (2-5A) synthesis activity deficient mutations of OAS3 D816A, D818A, D888A, and K950A lost resistance to EV71 because they could not activate downstream RNase L. Further investigation proved that EV71 infection induced OAS3 but not RNase L expression by IFN pathway. Mechanically, EV71 or IFN-β1b-induced phosphorylation of STAT1, but not STAT3, initiated the transcription of OAS3 by directly binding to the OAS3 promoter. Our works elucidate the immune regulatory mechanism of the host OAS3/RNase L system against EV71 replication. OAS3 contributes important inhibition effect for IFN-β1b against EV71. OAS3 resistance to EV71 replication depends on RNase L activation. STAT1 initiates the transcription of OAS3 by directly binding to the OAS3 promoter.
Collapse
|
11
|
Xiao Y, Yang J, Zou L, Wu P, Li W, Yan Y, Li Y, Li S, Song H, Zhong W, Qin Y. Synthesis of 10,10′-bis(trifluoromethyl) marinopyrrole A derivatives and evaluation of their antiviral activities in vitro. Eur J Med Chem 2022; 238:114436. [DOI: 10.1016/j.ejmech.2022.114436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/26/2022]
|