1
|
Nusrat N, Chowdhury K, Sinha S, Mehta M, Kumar S, Haque M. Clinical and Laboratory Features and Treatment Outcomes of Dengue Fever in Pediatric Cases. Cureus 2024; 16:e75840. [PMID: 39698191 PMCID: PMC11654319 DOI: 10.7759/cureus.75840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024] Open
Abstract
Background Globally, dengue fever (DF) is the leading cause of arthropod-borne viral illness, which considerably contributes to an atrocious death rate. The disease is now endemic in some parts of the world, including Bangladesh. The disorder exhibits a wide range of clinical and laboratory features in children. Judicial fluid resuscitation during the critical phase and prompt referral to the appropriate health facility can be lifesaving. Objectives This research appraised clinical and laboratory features and treatment outcomes of DF in pediatric cases. Methods This prospective investigative work was conducted at Islami Bank Hospital, Dhaka, India, from July to October 2023. The study included 135 admitted pediatric cases of DF, either dengue nonstructural protein 1 (NS1) or anti-dengue antibody IgM or IgG positive. Results Among the selected cases, boys were more predominant than girls, and most patients were in the age group of 5 to 10 years (n=46, 34%), most of them belonging to lower-middle-class families (n=56, 41.5%). All of the study participants had raised body temperatures, and most had abdominal pain (n=82, 60.7%), vomiting (n=77, 57%), cough (n=43, 31.9%), headache (n=38, 28.2%), body aches (n=32, 23.7%), and diarrhea (n=23, 17%). Dengue NS1 was positive in 91.1% (n=123) of cases. Raised hematocrit was found in 36.3% (n=49) of cases, leukopenia in 47% (n=63), and thrombocytopenia in 69.6% (n=94) of cases. Most of our patients were categorized as having DF (68.1%, n=92), followed by dengue with warning signs (16.3%, n=22), and severe dengue was present in 15.6% (n=21) of patients. Most were treated with crystalloid, and some with crystalloid and colloid solution. Fortunately, most of them recovered with no death. Conclusion DF may manifest with varied clinical and laboratory features in children. Appropriate treatment of critical phases, depending on clinical and laboratory features, is crucial to reducing dengue-induced miseries and fatal clinical outcomes among the pediatric population.
Collapse
Affiliation(s)
- Nadia Nusrat
- Department of Pediatrics, Delta Medical College and Hospital, Dhaka, BGD
| | - Kona Chowdhury
- Department of Pediatrics, Enam Medical College and Hospital, Dhaka, BGD
| | - Susmita Sinha
- Department of Physiology, Enam Medical College and Hospital, Dhaka, BGD
| | - Miral Mehta
- Department of Pedodontics and Preventive Dentistry, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Santosh Kumar
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Mainul Haque
- Department of Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
- Department of Research, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| |
Collapse
|
2
|
Yuya W, Yuansong Y, Susu L, Chen L, Yong W, Yining W, YouChun W, Changfa F. Progress and challenges in development of animal models for dengue virus infection. Emerg Microbes Infect 2024; 13:2404159. [PMID: 39312399 PMCID: PMC11423536 DOI: 10.1080/22221751.2024.2404159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/14/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024]
Abstract
ABSTRACTThe severity of the dengue epidemic is on the rise, with its geographic range had expanded to southern Europe by 2024. In this August, the WHO updated the pathogens that could spark the next pandemic, dengue virus was on the list. Vaccines and drugs serve as powerful tools for both preventing dengue infections and treating patients. Animal models play a pivotal role in vaccine development and drug screening. Available potential susceptible animals, including non-human primates, rodents, pigs, and tree shrews, have been extensively explored to establish animal models of dengue disease. Despite significant advancements, there are still notable limitations. Different animal models exhibit distinct constraining factors such as viraemia, host susceptibility, immune function of the host, clinical symptoms, ADE (antibody-dependent enhancement) phenomena, cytokine storm response to various serotypes and strain variations. Furthermore, despite extensive research on the dengue virus receptor in recent years, genetically modified animal models immunocompetent harbouring dengue virus susceptibility receptors have not yet been available. This work reviewed the research progress of dengue virus receptors and dengue animal models, suggesting that the development of genetically modified murine models expressing dengue virus functional receptors may hold a promise for future dengue disease research, especially for its vaccine development.
Collapse
Affiliation(s)
- Wang Yuya
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Yang Yuansong
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Liu Susu
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Ling Chen
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
- College of Life Science school, Northwest University, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Xi’an, People’s Republic of China
| | - Wu Yong
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Wang Yining
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Wang YouChun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People’s Republic of China
| | - Fan Changfa
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| |
Collapse
|
3
|
Rehman B, Ahmed A, Khan S, Saleem N, Naseer F, Ahmad S. Exploring plant-based dengue therapeutics: from laboratory to clinic. Trop Dis Travel Med Vaccines 2024; 10:23. [PMID: 39543749 PMCID: PMC11566162 DOI: 10.1186/s40794-024-00232-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/09/2024] [Indexed: 11/17/2024] Open
Abstract
Dengue virus (DENV) is a mosquito-borne virus that causes dengue fever, a significant public health concern in many tropical and subtropical regions. Dengue is endemic in more than 100 countries, primarily in tropical and subtropical regions of the world. Each year, up to 400 million people get infected with dengue. Approximately 100 million people get sick from infection, and 40,000 die from severe dengue. Unfortunately, dengue vaccine development is also marred with various complicating factors, as the forefront candidate vaccine performed unsatisfactorily. Moreover, the only licensed vaccine (Dengvaxia) for children 9 through 16 years of age is available in just a few countries. The treatment difficulties are compounded by the absence of an effective antiviral agent. Exploring plant-based therapeutics for dengue from the laboratory to clinical application involves a multi-stage process, encompassing various scientific disciplines. Individual investigators have screened a wide range of plant extracts or compounds for potential antiviral activity against DENV. In vitro studies help identify candidates that exhibit inhibitory effects on viral replication. Some of the most promising medicinal plants showing in vitro activity against DENV include Andrographis paniculate, Acorus calamus, and Cladogynos orientalis. Further laboratory studies, both in vitro and in animal models (in vivo), elucidate the mechanisms of action by which the identified compounds exert antiviral effects. Medicinal plants such as Carica papaya, Cissampelos pareira, and Ipomea batata exhibited potent platelet-enhancing activities while Azadirachta indica and Curcuma longa showed promising effects in both in vitro and in vivo studies. Based on positive preclinical results, researchers design clinical trials. This involves careful planning of trial phases, patient recruitment criteria, ethical considerations, and endpoints. The most important medicinal plants showing efficacy and safety in clinical trials include Carica papaya and Cissampelos pareira. This review suggests that several promising medicinal plants exist that have the potential to be turned into clinical drugs to treat dengue infection. However, in addition to developing synthetic and plant-based therapies against dengue infection, vector management strategies should be made robust, emphasizing the need to focus on reducing disease incidence.
Collapse
Affiliation(s)
- Bisma Rehman
- Shifa College of Pharmaceutical Sciences, Shifa Tameer E Millat University, Islamabad, Pakistan
| | - Akhlaq Ahmed
- Department of Pharmacy, Hazara University, Mansehra, Pakistan
| | - Saeed Khan
- Dow International Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Nida Saleem
- Shifa College of Pharmaceutical Sciences, Shifa Tameer E Millat University, Islamabad, Pakistan
| | - Faiza Naseer
- Shifa College of Pharmaceutical Sciences, Shifa Tameer E Millat University, Islamabad, Pakistan.
- Department of Bioscience, Shifa Tameer E Millat University, Islamabad, Pakistan.
| | - Sagheer Ahmad
- Shifa College of Pharmaceutical Sciences, Shifa Tameer E Millat University, Islamabad, Pakistan.
| |
Collapse
|
4
|
Zhong M, Wang X, Meng Y, Liao F, Li Z, Zheng W, Wang W, Dai W, Zhang S, Li G. Lithospermic acid inhibits dengue virus infection through binding with envelope proteins. Microb Pathog 2024; 197:107055. [PMID: 39442820 DOI: 10.1016/j.micpath.2024.107055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/07/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
The dengue virus has emerged as a global pandemic, highlighting the urgent need for the immediate development of antiviral therapeutics. Lithospermum erythrorhizon, a medicinal plant commonly used in China for various ailments including viral infections, inflammation, rheumatism, and cancer, showed promising antiviral properties in our research. Specifically, both the ethanol extract of Lithospermum erythrorhizon and its active component, lithospermic acid, demonstrated significant inhibitory effects on Dengue virus (DENV) replication in Vero cells, with EC50 values of 6.50 μg/mL(95 % CI: 2.25 to 18.98)and 15.00 μM(95 % CI: 12.13 to 18.07), respectively. Notably, lithospermic acid exhibited potent antiviral activity across multiple cell lines against DENV, impeding virus replication and specifically impeding the expression of viral E and NS3 proteins during the early stages of DENV infection. Experimental assays involving RNase digestion and sucrose density gradient analysis confirmed that lithospermic acid did not directly inactivate DENV but rather interfered with viral processes. Furthermore, the compound was found to bind to the E protein of DENV, effectively inhibiting viral infection and mitigating the cytopathic effects induced by DENV. Collectively, these findings underscore the potential of lithospermic acid as a promising candidate for the development of therapeutic strategies targeting DENV infection.
Collapse
Affiliation(s)
- Ming Zhong
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xianyang Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yu Meng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Feng Liao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zonghui Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wenjiang Zheng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wenbiao Wang
- Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Weiping Dai
- The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Center for Drug Non-clinical Evaluation and Research, Guangzhou General Pharmaceutical Research Institute Company Limited, China.
| | - Shengming Zhang
- Department of Health Management, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, 510317, China.
| | - Geng Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Lagrave A, Enfissi A, Tirera S, Demar MP, Jaonasoa J, Carod JF, Ramavoson T, Succo T, Carvalho L, Devos S, Dorleans F, Leon L, Berlioz-Arthaud A, Musso D, Lavergne A, Rousset D. Re-Emergence of DENV-3 in French Guiana: Retrospective Analysis of Cases That Circulated in the French Territories of the Americas from the 2000s to the 2023-2024 Outbreak. Viruses 2024; 16:1298. [PMID: 39205272 PMCID: PMC11360160 DOI: 10.3390/v16081298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/04/2024] Open
Abstract
French Guiana experienced an unprecedented dengue epidemic during 2023-2024. Prior to the 2023-2024 outbreak in French Guiana, DENV-3 had not circulated in an epidemic manner since 2005. We therefore studied retrospectively the strains circulating in the French Territories of the Americas (FTA)-French Guiana, Guadeloupe, and Martinique-from the 2000s to the current epidemic. To this end, DENV-3 samples from the collection of the National Reference Center for Arboviruses in French Guiana (NRCA-FG) were selected and sequenced using next-generation sequencing (NGS) based on Oxford Nanopore Technologies, ONT. Phylogenetic analysis showed that (i) the 97 FTA sequences obtained all belonged to genotype III (GIII); (ii) between the 2000s and 2013, the regional circulation of the GIII American-I lineage was the source of the FTA cases through local extinctions and re-introductions; (iii) multiple introductions of lineages of Asian origin appear to be the source of the 2019-2021 epidemic in Martinique and the 2023-2024 epidemic in French Guiana. Genomic surveillance is a key factor in identifying circulating DENV genotypes, monitoring strain evolution, and identifying import events.
Collapse
Affiliation(s)
- Alisé Lagrave
- Arbovirus National Reference Center, Virology Unit, Institut Pasteur de la Guyane, Cayenne 97300, French Guiana; (A.L.); (A.E.); (S.T.); (A.L.)
| | - Antoine Enfissi
- Arbovirus National Reference Center, Virology Unit, Institut Pasteur de la Guyane, Cayenne 97300, French Guiana; (A.L.); (A.E.); (S.T.); (A.L.)
| | - Sourakhata Tirera
- Arbovirus National Reference Center, Virology Unit, Institut Pasteur de la Guyane, Cayenne 97300, French Guiana; (A.L.); (A.E.); (S.T.); (A.L.)
| | - Magalie Pierre Demar
- Laboratoire Centre Hospitalier de Cayenne, Cayenne 97300, French Guiana; (M.P.D.); (J.J.)
| | - Jean Jaonasoa
- Laboratoire Centre Hospitalier de Cayenne, Cayenne 97300, French Guiana; (M.P.D.); (J.J.)
| | - Jean-François Carod
- Department of Biology, West French Guiana Hospital Center, Saint-Laurent-du-Maroni 97320, French Guiana; (J.-F.C.); (T.R.)
| | - Tsiriniaina Ramavoson
- Department of Biology, West French Guiana Hospital Center, Saint-Laurent-du-Maroni 97320, French Guiana; (J.-F.C.); (T.R.)
| | - Tiphanie Succo
- Santé Publique France, Cellule Guyane, Cayenne 97300, French Guiana; (T.S.); (L.C.); (S.D.)
| | - Luisiane Carvalho
- Santé Publique France, Cellule Guyane, Cayenne 97300, French Guiana; (T.S.); (L.C.); (S.D.)
| | - Sophie Devos
- Santé Publique France, Cellule Guyane, Cayenne 97300, French Guiana; (T.S.); (L.C.); (S.D.)
| | - Frédérique Dorleans
- Santé Publique France, Cellule Antilles, French Caribbean Islands; (F.D.); (L.L.)
| | - Lucie Leon
- Santé Publique France, Cellule Antilles, French Caribbean Islands; (F.D.); (L.L.)
| | | | - Didier Musso
- Laboratoires Eurofins Guyane, French Guiana; (A.B.-A.); (D.M.)
| | - Anne Lavergne
- Arbovirus National Reference Center, Virology Unit, Institut Pasteur de la Guyane, Cayenne 97300, French Guiana; (A.L.); (A.E.); (S.T.); (A.L.)
| | - Dominique Rousset
- Arbovirus National Reference Center, Virology Unit, Institut Pasteur de la Guyane, Cayenne 97300, French Guiana; (A.L.); (A.E.); (S.T.); (A.L.)
| |
Collapse
|
6
|
Wang M, Hao MC, Huangfu Y, Yang KZ, Zhang XQ, Zhang Y, Chen J, Zhang ZL. A Universal Aptamer for Influenza A Viruses: Selection, Recognition, and Infection Inhibition. ACS Pharmacol Transl Sci 2024; 7:249-258. [PMID: 38230279 PMCID: PMC10789145 DOI: 10.1021/acsptsci.3c00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/20/2023] [Accepted: 12/07/2023] [Indexed: 01/18/2024]
Abstract
It is crucial to develop universal inhibitors for viral inhibition due to the rapid mutation of viruses. Herein, a universal aptamer inhibitor was developed that enabled a single DNA molecule to recognize several hemeagglutinin (HA) protein subtypes, inducing broad neutralization against influenza A viruses (IAVs). Through a multi-channel enrichment (MCE) strategy, a high-affinity aptamer named UHA-2 was obtained, with its dissociation constants (Kd) for three different HA proteins being 1.5 ± 0.2 nM (H5N1), 3.7 ± 0.4 nM (H7N9), and 10.1 ± 1.1 nM (H9N2). The UHA-2 aptamer had a universal inhibition effect, by which it could broadly neutralize influenza A H5N1, H7N9, H9N2, H1N1, and H3N2 viruses. Universal aptamer inhibitors have the advantages of acquisition in vitro, stability, simple structure, small size, etc. This study not only develops a novel universal aptamer to achieve a broad inhibition effect on various IAVs, but also opens up an efficient strategy for the development of universal inhibitors against viruses.
Collapse
Affiliation(s)
- Meng Wang
- College
of Chemistry and Molecular Sciences, Wuhan
University, Wuhan, Hubei 430072, China
| | - Meng-Chan Hao
- Key
Laboratory of Special Pathogens and Biosafety, Wuhan Institute of
Virology, Center for Biosafety Mega-Science,
Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yueyue Huangfu
- College
of Chemistry and Molecular Sciences, Wuhan
University, Wuhan, Hubei 430072, China
| | - Ke-Zhu Yang
- College
of Chemistry and Molecular Sciences, Wuhan
University, Wuhan, Hubei 430072, China
| | - Xiao-Qing Zhang
- Key
Laboratory of Special Pathogens and Biosafety, Wuhan Institute of
Virology, Center for Biosafety Mega-Science,
Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Zhang
- Key
Laboratory of Special Pathogens and Biosafety, Wuhan Institute of
Virology, Center for Biosafety Mega-Science,
Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianjun Chen
- Key
Laboratory of Special Pathogens and Biosafety, Wuhan Institute of
Virology, Center for Biosafety Mega-Science,
Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Ling Zhang
- College
of Chemistry and Molecular Sciences, Wuhan
University, Wuhan, Hubei 430072, China
| |
Collapse
|