1
|
Panda M, Kalita E, Singh S, Rao A, Prajapati VK. Application of functional proteomics in understanding RNA virus-mediated infection. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 138:301-325. [PMID: 38220429 DOI: 10.1016/bs.apcsb.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Together with the expansion of genome sequencing research, the number of protein sequences whose function is yet unknown is increasing dramatically. The primary goals of functional proteomics, a developing area of study in the realm of proteomic science, are the elucidation of the biological function of unidentified proteins and the molecular description of cellular systems at the molecular level. RNA viruses have emerged as the cause of several human infectious diseases with large morbidity and fatality rates. The introduction of high-throughput sequencing tools and genetic-based screening approaches over the last few decades has enabled researchers to find previously unknown and perplexing elements of RNA virus replication and pathogenesis on a scale never feasible before. Viruses, on the other hand, frequently disrupt cellular proteostasis, macromolecular complex architecture or stoichiometry, and post-translational changes to take over essential host activities. Because of these consequences, structural and global protein and proteoform monitoring is highly necessiated. Mass spectrometry (MS) has the potential to elucidate key details of virus-host interactions and speed up the identification of antiviral targets, giving precise data on the stoichiometry of cellular and viral protein complexes as well as mechanistic insights, has lately emerged as a key part of the RNA virus biology toolbox as a functional proteomics approach. Affinity-based techniques are primarily employed to identify interacting proteins in stable complexes in living organisms. A protein's biological role is strongly suggested by its relationship with other members of a certain protein complex that is involved in a particular process. With a particular emphasis on the most recent advancements in defining host responses and their translational implications to uncover novel tractable antiviral targets, this chapter provides insight on several functional proteomics techniques in RNA virus biology.
Collapse
Affiliation(s)
- Mamta Panda
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India; Department of Neurology. Experimental Research in Stroke and Inflammation (ERSI),University Medical Center Hamburg-Eppendorf Martinistraße Hamburg, Germany
| | - Elora Kalita
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Satyendra Singh
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Abhishek Rao
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
2
|
Le Luyer J, Schull Q, Auffret P, Lopez P, Crusot M, Belliard C, Basset C, Carradec Q, Poulain J, Planes S, Saulnier D. Dual RNAseq highlights the kinetics of skin microbiome and fish host responsiveness to bacterial infection. Anim Microbiome 2021; 3:35. [PMID: 33962693 PMCID: PMC8106148 DOI: 10.1186/s42523-021-00097-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Background Tenacibaculum maritimum is a fish pathogen known for causing serious damage to a broad range of wild and farmed marine fish populations worldwide. The recently sequenced genome of T. maritimum strain NCIMB 2154T provided unprecedented information on the possible molecular mechanisms involved in the virulence of this species. However, little is known about the dynamic of infection in vivo, and information is lacking on both the intrinsic host response (gene expression) and its associated microbiota. Here, we applied complementary omic approaches, including dual RNAseq and 16S rRNA gene metabarcoding sequencing using Nanopore and short-read Illumina technologies to unravel the host–pathogen interplay in an experimental infection system using the tropical fish Platax orbicularis as model. Results We showed that the infection of the host is characterised by an enhancement of functions associated with antibiotic and glucans catabolism functions but a reduction of sulfate assimilation process in T. maritimum. The fish host concurrently displays a large panel of immune effectors, notably involving innate response and triggering acute inflammatory response. In addition, our results suggest that fish activate an adaptive immune response visible through the stimulation of T-helper cells, Th17, with congruent reduction of Th2 and T-regulatory cells. Fish were, however, largely sensitive to infection, and less than 25% survived after 96 hpi. These surviving fish showed no evidence of stress (cortisol levels) or significant difference in microbiome diversity compared with controls at the same sampling time. The presence of T. maritimum in resistant fish skin and the total absence of any skin lesions suggest that these fish did not escape contact with the pathogen, but rather that some mechanisms prevented pathogens entry. In resistant individuals, we detected up-regulation of specific immune-related genes differentiating resistant individuals from controls at 96 hpi, which suggests a possible genomic basis of resistance, although no genetic variation in coding regions was found. Conclusion Here we focus in detail on the interplay between common fish pathogens and host immune response during experimental infection. We further highlight key actors of defence response, pathogenicity and possible genomic bases of fish resistance to T. maritimum. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-021-00097-1.
Collapse
Affiliation(s)
- J Le Luyer
- Ifremer, IRD, Institut Louis-Malardé, Univ Polynésie Française, EIO, F-98719 Taravao, Tahiti, Polynésie Française.
| | - Q Schull
- Ifremer, IRD, Institut Louis-Malardé, Univ Polynésie Française, EIO, F-98719 Taravao, Tahiti, Polynésie Française.,MARBEC, Univ. Montpellier, Ifremer, IRD, CNRS, F-34200, Sète, France
| | - P Auffret
- Ifremer, IRD, Institut Louis-Malardé, Univ Polynésie Française, EIO, F-98719 Taravao, Tahiti, Polynésie Française
| | - P Lopez
- Ifremer, IRD, Institut Louis-Malardé, Univ Polynésie Française, EIO, F-98719 Taravao, Tahiti, Polynésie Française.,Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Université Paris-Saclay, Jouy-en-Josas, France
| | - M Crusot
- Ifremer, IRD, Institut Louis-Malardé, Univ Polynésie Française, EIO, F-98719 Taravao, Tahiti, Polynésie Française.,Univ Polynésie française, Ifremer, IRD, Institut Louis-Malardé, EIO, F-98702 Fa, 'a, Tahiti, Polynésie Française
| | - C Belliard
- Ifremer, IRD, Institut Louis-Malardé, Univ Polynésie Française, EIO, F-98719 Taravao, Tahiti, Polynésie Française
| | - C Basset
- Ifremer, IRD, Institut Louis-Malardé, Univ Polynésie Française, EIO, F-98719 Taravao, Tahiti, Polynésie Française
| | - Q Carradec
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - J Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - S Planes
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Moorea, Polynésie Française.,Laboratoire d'Excellence "CORAIL," USR 3278 CNRS-EPHE-UPVD CRIOBE, Perpignan, France
| | - D Saulnier
- Ifremer, IRD, Institut Louis-Malardé, Univ Polynésie Française, EIO, F-98719 Taravao, Tahiti, Polynésie Française
| |
Collapse
|
3
|
Advanced Pathology Techniques for Detecting Emerging Infectious Disease Pathogens. ADVANCED TECHNIQUES IN DIAGNOSTIC MICROBIOLOGY 2018. [PMCID: PMC7120861 DOI: 10.1007/978-3-319-95111-9_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2022]
|
4
|
Michaud S, Boncristiani HF, Gouw JW, Strand MK, Pettis J, Rueppell O, Foster LJ. Response of the honey bee (Apis mellifera) proteome to Israeli acute paralysis virus (IAPV) infection. CAN J ZOOL 2015. [DOI: 10.1139/cjz-2014-0181] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent declines in honey bee (Apis mellifera L., 1758) populations worldwide have spurred significant research into the impact of pathogens on colony health. The role of the Israeli acute paralysis virus (IAPV) on hive mortality has become of particular concern since being correlated with colony losses. However, the molecular interactions between IAPV and its host remain largely unknown. To investigate changes in host protein expression during IAPV infection, mass-spectrometry-based quantitative proteomics was used to compare IAPV-infected and healthy pupae. Proteins whose expression levels changed significantly during infection were identified and functional analysis was performed to determine host systems and pathways perturbed by IAPV infection. Among the A. mellifera proteins most affected by IAPV, those involving translation and the ubiquitin–proteasome pathway were most highly enriched and future investigation of these pathways will be useful in identifying host proteins required for infection. This analysis represents an important first step towards understanding the honey bee host response to IAPV infection through the systems-level analysis of protein expression.
Collapse
Affiliation(s)
- Sarah Michaud
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, The University of British Columbia, 2125 East Mall, Vancouver, BC V6T 1Z4, Canada
| | | | - Joost W. Gouw
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, The University of British Columbia, 2125 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Micheline K. Strand
- Life Sciences Division, US Army Research Office, Research Triangle Park, NC 27709, USA
| | - Jeffrey Pettis
- US Department of Agriculture – Agricultural Research Service, Bee Research Laboratory, Beltsville, MD 20705, USA
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27403, USA
| | - Leonard J. Foster
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, The University of British Columbia, 2125 East Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
5
|
Bernhard OK, Diefenbach RJ, Cunningham AL. New insights into viral structure and virus–cell interactions through proteomics. Expert Rev Proteomics 2014; 2:577-88. [PMID: 16097890 DOI: 10.1586/14789450.2.4.577] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Although genomics techniques such as DNA microarrays have been widely used in virology, much more limited use has been made of proteomics. Although difficult, proteomics can greatly contribute to an understanding of virus-cell interactions, including the ternary structure of viral receptors at the cell surface, post-translational modifications and isoforms of critical viral and cellular proteins and even to the structure of viruses. Proteomics techniques also offer the potential for discovering markers for diagnostic and prognostic tests of viral infections in vivo. This review describes the use of several proteomic approaches for the analysis of HIV-cellular receptor interactions, the molecular mechanisms of transport of herpes simplex virus within neurons, and the structure of the tegument of herpes simplex virus.
Collapse
Affiliation(s)
- Oliver K Bernhard
- Joint ProteomicS Laboratory, The Ludwig Institute for Cancer Research & The Walter and Eliza Hall Institute for Medical Research, Royal Melbourne Hospital, Royal Parade, Parkville, VIC 3050, Australia.
| | | | | |
Collapse
|
6
|
Zhang CG, Chromy BA, McCutchen-Maloney SL. Host–pathogen interactions: a proteomic view. Expert Rev Proteomics 2014; 2:187-202. [PMID: 15892564 DOI: 10.1586/14789450.2.2.187] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Host-pathogen interactions reflect the balance of host defenses and pathogen virulence mechanisms. Advances in proteomic technologies now afford opportunities to compare protein content between complex biologic systems ranging from cells to animals and clinical samples. Thus, it is now possible to characterize host-pathogen interactions from a global proteomic view. Most reports to date focus on cataloging protein content of pathogens and identifying virulence-associated proteins or proteomic alterations in host response. A more in-depth understanding of host-pathogen interactions has the potential to improve our mechanistic understanding of pathogenicity and virulence, thereby defining novel therapeutic and vaccine targets. In addition, proteomic characterization of the host response can provide pathogen-specific host biomarkers for rapid pathogen detection and characterization, as well as for early and specific detection of infectious diseases. A review of host-pathogen interactions focusing on proteomic analyses of both pathogen and host will be presented. Relevant genomic studies and host model systems will be also be discussed.
Collapse
Affiliation(s)
- Celia G Zhang
- Lawrence Livermore National Laboratory, Biosciences Directorate, 7000 East Avenue, Livermore, CA 94550, USA.
| | | | | |
Collapse
|
7
|
Gibbs DL, Baratt A, Baric RS, Kawaoka Y, Smith RD, Orwoll ES, Katze MG, McWeeney SK. Protein co-expression network analysis (ProCoNA). J Clin Bioinforma 2013; 3:11. [PMID: 23724967 PMCID: PMC3695838 DOI: 10.1186/2043-9113-3-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 05/23/2013] [Indexed: 12/20/2022] Open
Abstract
Background Biological networks are important for elucidating disease etiology due to their ability to model complex high dimensional data and biological systems. Proteomics provides a critical data source for such models, but currently lacks robust de novo methods for network construction, which could bring important insights in systems biology. Results We have evaluated the construction of network models using methods derived from weighted gene co-expression network analysis (WGCNA). We show that approximately scale-free peptide networks, composed of statistically significant modules, are feasible and biologically meaningful using two mouse lung experiments and one human plasma experiment. Within each network, peptides derived from the same protein are shown to have a statistically higher topological overlap and concordance in abundance, which is potentially important for inferring protein abundance. The module representatives, called eigenpeptides, correlate significantly with biological phenotypes. Furthermore, within modules, we find significant enrichment for biological function and known interactions (gene ontology and protein-protein interactions). Conclusions Biological networks are important tools in the analysis of complex systems. In this paper we evaluate the application of weighted co-expression network analysis to quantitative proteomics data. Protein co-expression networks allow novel approaches for biological interpretation, quality control, inference of protein abundance, a framework for potentially resolving degenerate peptide-protein mappings, and a biomarker signature discovery.
Collapse
Affiliation(s)
- David L Gibbs
- Division of Bioinformatics and Computational Biology, Oregon Health & Science University, 3181 S,W, Sam Jackson Park Rd, Portland, OR 97239, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Földes-Papp Z. Viral Chip Technology in Genomic Medicine. GENOMIC AND PERSONALIZED MEDICINE 2009. [PMCID: PMC7149707 DOI: 10.1016/b978-0-12-369420-1.00048-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
9
|
Pinchuk GV, Lee SR, Nanduri B, Honsinger KL, Stokes JV, Pinchuk LM. Bovine viral diarrhea viruses differentially alter the expression of the protein kinases and related proteins affecting the development of infection and anti-viral mechanisms in bovine monocytes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1234-47. [DOI: 10.1016/j.bbapap.2008.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 05/05/2008] [Accepted: 05/06/2008] [Indexed: 10/22/2022]
|
10
|
Van Duyne R, Kehn-Hall K, Klase Z, Easley R, Heydarian M, Saifuddin M, Wu W, Kashanchi F. Retroviral proteomics and interactomes: intricate balances of cell survival and viral replication. Expert Rev Proteomics 2008; 5:507-28. [PMID: 18532916 DOI: 10.1586/14789450.5.3.507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Overall changes in the host cellular proteome upon retroviral infection intensify from the initial entry of the virus to the incorporation of viral DNA into the host genome, and finally to the consistent latent state of infection. The host cell reacts to both the entry of viral elements and the manipulation of host cellular machinery, resulting in a cascade of signaling events and pathway activation. Cell type- and tissue-specific responses are also characteristic of infection and can be classified based on the differential expression of genes and proteins between normal and disease states. The characterization of differentially expressed proteins upon infection is also critical in identifying potential biomarkers within infected bodily fluids. Biomarkers can be used to monitor the progression of infection, track the effectiveness of specific treatments and characterize the mechanisms of disease pathogenesis. Standard proteomic approaches have been applied to monitor the changes in global protein expression and localization in infected cells, tissues and fluids. Here we report on recent investigations into the characterization of proteomes in response to retroviral infection.
Collapse
Affiliation(s)
- Rachel Van Duyne
- The George Washington University, Department of Microbiology, Immunology, & Tropical Medicine, 2300 I Street, NW, Washington, DC 20037, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Klase ZA, Van Duyne R, Kashanchi F. Identification of potential drug targets using genomics and proteomics: a systems approach. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2008; 56:327-68. [PMID: 18086417 DOI: 10.1016/s1054-3589(07)56011-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zachary A Klase
- Department of Biochemistry, Medical Center, The George Washington University, Washington, DC 20037, USA
| | | | | |
Collapse
|
12
|
Abstract
Viruses have long been studied not only for their pathology and associated disease but also as model systems for molecular processes and as tools for identifying important cellular regulatory proteins and pathways. Recent advances in mass spectrometry methods coupled with the development of proteomic approaches have greatly facilitated the detection of virion components, protein interactions in infected cells, and virally induced changes in the cellular proteome, resulting in a more comprehensive understanding of viral infection. In addition, a rapidly increasing number of high-resolution structures for viral proteins have provided valuable information on the mechanism of action of these proteins as well as aided in the design and understanding of specific inhibitors that could be used in antiviral therapies. In this paper, we discuss proteomic studies conducted on all eukaryotic viruses and bacteriophages, covering virion composition, viral protein structures, virus-virus and virus-host protein interactions, and changes in the cellular proteome upon viral infection.
Collapse
Affiliation(s)
- Karen L Maxwell
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|
13
|
Dhingra V, Li X, Liu Y, Fu ZF. Proteomic profiling reveals that rabies virus infection results in differential expression of host proteins involved in ion homeostasis and synaptic physiology in the central nervous system. J Neurovirol 2007; 13:107-17. [PMID: 17505979 DOI: 10.1080/13550280601178226] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To understand how rabies virus (RV) infection results in neuronal dysfunction, the authors employed proteomics technology to profile host responses to RV infection. In mice infected with wild-type (wt) RV, the expression of proteins involved in ion homeostasis was altered. H(+) ATPase and Na(+)/K(+) ATPase were up-regulated whereas Ca(2+) ATPase was down-regulated, which resulted in reduction of the intracellular Na(+) and Ca(2+) concentrations. Furthermore, infection with wt RV resulted in down-regulation of soluble NSF attachment receptor proteins (SNAREs) such as alpha-synaptosome-associated protein (SNAP), tripartite motif-containing 9 (TRIM9), syntaxin, and pallidin, all of which are involved in docking and fusion of synaptic vesicles to and with presynaptic membrane. As a consequence, accumulation of synaptic vesicles was observed in the presynapses of mice infected with wt RV. These data demonstrate that infection with wt RV results in alteration of host protein expression, particularly those involved in ion homeostasis and docking and fusion of synaptic vesicles to presynaptic membrane, which may lead to neuronal dysfunction. On the other hand, attenuated RV up-regulated the expression of proteins involved in the induction of apoptosis, explaining why apoptosis is observed only in cells or animals infected with attenuated RV in previous studies.
Collapse
Affiliation(s)
- Vikas Dhingra
- Department of Pathology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|
14
|
Fernández-Arenas E, Cabezón V, Bermejo C, Arroyo J, Nombela C, Diez-Orejas R, Gil C. Integrated Proteomics and Genomics Strategies Bring New Insight into Candida albicans Response upon Macrophage Interaction. Mol Cell Proteomics 2007; 6:460-78. [PMID: 17164403 DOI: 10.1074/mcp.m600210-mcp200] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The interaction of Candida albicans with macrophages is considered a crucial step in the development of an adequate immune response in systemic candidiasis. An in vitro model of phagocytosis that includes a differential staining procedure to discriminate between internalized and non-internalized yeast was developed. Upon optimization of a protocol to obtain an enriched population of ingested yeasts, a thorough genomics and proteomics analysis was carried out on these cells. Both proteins and mRNA were obtained from the same sample and analyzed in parallel. The combination of two-dimensional PAGE with MS revealed a total of 132 differentially expressed yeast protein species upon macrophage interaction. Among these species, 67 unique proteins were identified. This is the first time that a proteomics approach has been used to study C. albicans-macrophage interaction. We provide evidence of a rapid protein response of the fungus to adapt to the new environment inside the phagosome by changing the expression of proteins belonging to different pathways. The clear down-regulation of the carbon-compound metabolism, plus the up-regulation of lipid, fatty acid, glyoxylate, and tricarboxylic acid cycles, indicates that yeast shifts to a starvation mode. There is an important activation of the degradation and detoxification protein machinery. The complementary genomics approach led to the detection of specific pathways related to the virulence of Candida. Network analyses allowed us to generate a hypothetical model of Candida cell death after macrophage interaction, highlighting the interconnection between actin cytoskeleton, mitochondria, and autophagy in the regulation of apoptosis. In conclusion, the combination of genomics, proteomics, and network analyses is a powerful strategy to better understand the complex host-pathogen interactions.
Collapse
Affiliation(s)
- Elena Fernández-Arenas
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
15
|
Stem cells and proteomics. Chin J Cancer Res 2006. [DOI: 10.1007/s11670-006-0161-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
16
|
Conejero-Goldberg C, Wang E, Yi C, Goldberg TE, Jones-Brando L, Marincola FM, Webster MJ, Torrey EF. Infectious pathogen detection arrays: viral detection in cell lines and postmortem brain tissue. Biotechniques 2006; 39:741-51. [PMID: 16312221 DOI: 10.2144/000112016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A unique array-based pathogen chip has been developed for the detection of viral RNA or DNA relevant to pathologies of the central nervous system. A total of 715 unique oligonucleotides (60-mer) representing approximately 100 pathogens were designed based on open reading frames (ORFs) from highly conserved and heterogenic regions within viral families. In addition, viral genes reflecting different stages of pathogen infection were also included to potentially define the stage of the viral infection. Viruses (double-stranded DNA, double- or single-stranded RNA, delta, retroid), parasites, and bacteria were included. Test samples labeled with Cy5 were examined by cohybridization with a reference RNA, labeled with Cy3, to the pathogen microarray chip. Good reproducibility of experiments was observed, based on data generated from duplicate hybridizations and duplicate spots on the microarray platform. A viral transcript detection sensitivity of 1 x 10(3) plaque-forming units (pfus) was achieved using selected cell lines and viruses. These findings suggest that the array-based platform described here is capable of detecting a broad spectrum of viruses in a single assay with relatively high sensitivity, specificity, and reproducibility. This method may be used to provide evidence of viral infection in postmortem tissue from psychiatric patients as well as a wide range of other diagnostic categories.
Collapse
|
17
|
Dowling RJO, Bienzle D. Gene-expression changes induced by Feline immunodeficiency virus infection differ in epithelial cells and lymphocytes. J Gen Virol 2005; 86:2239-2248. [PMID: 16033971 DOI: 10.1099/vir.0.80735-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Infection of cats with Feline immunodeficiency virus (FIV) is an important model for understanding comparative lentivirus biology. In vivo, FIV infects lymphocytes and monocyte/macrophages, but in vitro infection is commonly investigated in epithelial Crandell-Reese Feline Kidney (CRFK) cells. In this study, the transcriptional responses of CRFK cells and primary lymphocytes to infection with FIV 34TF, a cloned subtype A virus, and FIV USgaB01, a biological subtype B isolate, were determined. Reverse-transcribed mRNA from both cell types was hybridized to microarrays containing 1700 human expressed sequence tags in duplicate and data were analysed with Significance Analysis of Microarrays (sam) software. Results from six experiments assessing homeostatic cross-species hybridization excluded 3.48 % inconsistently detected transcripts. Analysis of data from five time points over 48 h after infection identified 132 and 24 differentially expressed genes in epithelial cells and lymphocytes, respectively. Genes involved in protein synthesis, the cell cycle, structure and metabolism were affected. The magnitude of gene-expression changes ranged from 0.62 to 1.62 and early gene induction was followed by downregulation after 4 h. Transcriptional changes in CRFK cells were distinct from those in lymphocytes, except for heat-shock cognate protein 71, which was induced at multiple time points in both cell types. These findings indicate that FIV infection induces transcriptional changes of a modest magnitude in a wide range of genes, which is probably reflective of the relatively non-cytopathic nature of virus infection.
Collapse
Affiliation(s)
- R J O Dowling
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - D Bienzle
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
18
|
Handfield M, Mans JJ, Zheng G, Lopez MC, Mao S, Progulske-Fox A, Narasimhan G, Baker HV, Lamont RJ. Distinct transcriptional profiles characterize oral epithelium-microbiota interactions. Cell Microbiol 2005; 7:811-23. [PMID: 15888084 DOI: 10.1111/j.1462-5822.2005.00513.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transcriptional profiling, bioinformatics, statistical and ontology tools were used to uncover and dissect genes and pathways of human gingival epithelial cells that are modulated upon interaction with the periodontal pathogens Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. Consistent with their biological and clinical differences, the common core transcriptional response of epithelial cells to both organisms was very limited, and organism-specific responses predominated. A large number of differentially regulated genes linked to the P53 apoptotic network were found with both organisms, which was consistent with the pro-apoptotic phenotype observed with A. actinomycetemcomitans and anti-apoptotic phenotype of P. gingivalis. Furthermore, with A. actinomycetemcomitans, the induction of apoptosis did not appear to be Fas- or TNF(alpha)-mediated. Linkage of specific bacterial components to host pathways and networks provided additional insight into the pathogenic process. Comparison of the transcriptional responses of epithelial cells challenged with parental P. gingivalis or with a mutant of P. gingivalis deficient in production of major fimbriae, which are required for optimal invasion, showed major expression differences that reverberated throughout the host cell transcriptome. In contrast, gene ORF859 in A. actinomycetemcomitans, which may play a role in intracellular homeostasis, had a more subtle effect on the transcriptome. These studies help unravel the complex and dynamic interactions between host epithelial cells and endogenous bacteria that can cause opportunistic infections.
Collapse
Affiliation(s)
- Martin Handfield
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610-0424, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hervás F. Chip-mediated techniques: how close are we to generalised use in the infectious disease clinic? Clin Microbiol Infect 2004; 10:865-7. [PMID: 15373878 DOI: 10.1111/j.1469-0691.2004.00787.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This could be the beginning of a new molecular era for the diagnosis of infectious diseases. Biological chips (biochips or microarrays and labchips) offer a potentially important shortcut to early diagnosis and treatment. It is also possible to develop multiplex assays for use in complex diagnostic situations; however, this technology depends crucially on the robotics developed to support these functions, and the soundness of the mathematics employed to analyse the output. Although the number of research applications is increasing, the question as to when, or if, chip-mediated techniques will be used routinely in the infectious disease clinic remains unanswered at present.
Collapse
Affiliation(s)
- F Hervás
- Servicio de Microbiología Clinica, Hospital Central de la Defensa, Madrid, Spain.
| |
Collapse
|
20
|
McFadden G. Smallpox: an ancient disease enters the modern era of virogenomics. Proc Natl Acad Sci U S A 2004; 101:14994-5. [PMID: 15479762 PMCID: PMC524071 DOI: 10.1073/pnas.0406207101] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Grant McFadden
- Department of Microbiology and Immunology and Robarts Research Laboratory, Room 1-33, Siebens Drake Building, University of Western Ontario, 1400 Western Road, London, ON, Canada N6G 2V4.
| |
Collapse
|
21
|
Lucas A, McFadden G. Secreted Immunomodulatory Viral Proteins as Novel Biotherapeutics. THE JOURNAL OF IMMUNOLOGY 2004; 173:4765-74. [PMID: 15470015 DOI: 10.4049/jimmunol.173.8.4765] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many viruses have learned to evade or subvert the host antiviral immune responses by encoding and expressing immunomodulatory proteins that protect the virus from attack by elements of the innate and acquired immune systems. Some of these viral anti-immune regulators are expressed as secreted proteins that engage specific host immune targets in the extracellular environment, where they exhibit potent anti-immune properties. We review here viral immunomodulatory proteins that have been tested as anti-inflammatory reagents in animal models of disease caused by excessive inflammation or hyperactivated immune pathways. The potential for such viral molecules for the development of novel drugs to treat immune-based or inflammatory disorders is discussed.
Collapse
Affiliation(s)
- Alexandra Lucas
- BioTherapeutics Research Group, Robarts Research Institute, London, Ontario, Canada
| | | |
Collapse
|
22
|
Abstract
Over the last 30 years neurovirology has emerged as a major discipline which has much relevance to both human disease and many aspects of neuroscience. This overview of the field aims to define briefly most of the major neurovirological techniques, both "classical" and more recent, and to indicate how these have been used to gain knowledge about the pathogenesis, clinical investigation, and treatment of viral infections of the central nervous system.
Collapse
Affiliation(s)
- P G E Kennedy
- Division of Clinical Neurosciences, Department of Neurology, Institute of Neurological Sciences, Southern General Hospital, Glasgow G51 4TF, Scotland, UK.
| |
Collapse
|
23
|
Boonham N, Walsh K, Smith P, Madagan K, Graham I, Barker I. Detection of potato viruses using microarray technology: towards a generic method for plant viral disease diagnosis. J Virol Methods 2003; 108:181-7. [PMID: 12609685 DOI: 10.1016/s0166-0934(02)00284-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Currently, most diagnostic methodology is geared towards detection of a very specific target species and often a number of assays need to be run in parallel to reach a result. The generic methods that are available for virus testing tends to give identification to the genus level only. The method described in this paper addresses this problem by exploiting a technology that has potential to test for a large number of targets in a single assay. Using the array constructed, the method was able to detect several common potato viruses (PVY, PVX, PVA, PVS) in single and mixed infections. The method was shown to be able to discriminate sequences with less than 80% sequence identity but was able to detect sequence variants with greater than 90% sequence identity. Thus the method should be useful for discriminating at the species level, but able to cope well with the intrinsic variability found within the genomes of RNA viruses. The sensitivity of the assay was found to be comparable with ELISA. The paper illustrates a significant step forward in the development of diagnostic methodologies by presenting for the first time a method that could theoretically be used not just for viruses, but for all the plant pathogens and pests that a modern diagnostic laboratory would want to test for, in a single completely generic and highly parallel format.
Collapse
Affiliation(s)
- N Boonham
- Central Science Laboratory, Sand Hutton, YO41 1LZ, York, UK.
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Varicella-zoster virus (VZV) is a human herpesvirus which causes varicella (chickenpox) as a primary infection, and, following a variable period during which it remains in latent form in trigeminal and dorsal root ganglia, reactivates in later life to cause herpes zoster (shingles). VZV is a significant cause of neurological disease including post-herpetic neuralgia which may be persistent and highly resistant to treatment, and small and large vessel encephalitis. VZV infections are more frequent with advancing age and in immunocompromised individuals. An understanding of the mechanisms of latency is crucial in developing effective therapies for VZV infections of the nervous system. Such studies have been hampered by the difficulties in working with the virus and also the lack of a good animal model of VZV latency. It is known that the ganglionic VZV burden during latency is low. Two of the key questions that have been addressed are the cellular site of latent VZV and the identity of the viral genes which are transcribed during latency. There is now a consensus that latent VZV resides predominantly in ganglionic neurons with less frequent infection of non-neuronal satellite cells. There is considerable evidence to show that at least five viral genes are transcribed during latency. Unlike herpes simplex virus-1 latency, viral protein expression has been demonstrated during VZV latency. A precise knowledge of which viral genes are expressed is crucial in devising novel antiviral therapy using expressed genes as therapeutic targets. Whether gene expression at both the transcriptional and translational levels is more extensive than currently reported will require much more work and probably new molecular technology.
Collapse
Affiliation(s)
- Peter G E Kennedy
- Glasgow University Department of Neurology, Institute of Neurological Sciences, Southern General Hospital, Glasgow G51 4TF, Scotland, UK.
| |
Collapse
|
25
|
Abstract
The action of interferons (IFNs) on virus-infected cells and surrounding tissues elicits an antiviral state that is characterized by the expression and antiviral activity of IFN-stimulated genes. In turn, viruses encode mechanisms to counteract the host response and support efficient viral replication, thereby minimizing the therapeutic antiviral power of IFNs. In this review, we discuss the interplay between the IFN system and four medically important and challenging viruses -- influenza, hepatitis C, herpes simplex and vaccinia -- to highlight the diversity of viral strategies. Understanding the complex network of cellular antiviral processes and virus-host interactions should aid in identifying new and common targets for the therapeutic intervention of virus infection. This effort must take advantage of the recent developments in functional genomics, bioinformatics and other emerging technologies.
Collapse
Affiliation(s)
- Michael G Katze
- Department of Microbiology, University of Washington, Seattle, Washington 98195-8070, USA.
| | | | | |
Collapse
|
26
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2002. [PMCID: PMC2447281 DOI: 10.1002/cfg.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|