1
|
Viral agents (2nd section). Transfusion 2024; 64 Suppl 1:S19-S207. [PMID: 38394038 DOI: 10.1111/trf.17630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 02/25/2024]
|
2
|
Giang TNT, Ta CV, Ishihara S, Arakawa A, Okamura T, Dang-Nguyen TQ, Nguyen DV, Pham LD, Kikuchi K, Taniguchi M. Heritabilities for copy number variation of porcine endogenous retrovirus by a quantitative PCR. Anim Sci J 2024; 95:e70002. [PMID: 39564878 DOI: 10.1111/asj.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 11/21/2024]
Abstract
Pigs (Sus scrofa) have been expected to have organs transplanted to humans, but porcine endogenous retrovirus (PERV) is one of the risks because the PERV has the possibility to get infected with human cells. Therefore, the pigs are required to have as low a PERV copy number as possible. In this study, firstly, we investigated the estimates of heritabilities for the PERV copy numbers in the Vietnamese native breeds. Genomic heritabilities for four genes on PERV were estimated using the restricted maximum likelihood method with the genomic relationship matrix. The genomic heritability estimates of these genes ranged from 0.27 to 0.71, indicating that it would be possible for these genes not to follow the normal Mendelian inheritance. Secondly, we bred the pig population to reduce the pol gene number and estimated the heritability for the number. Despite the high heritability estimate for the pol gene (0.59), little improvement was progressed after selection for reducing the gene number in the three generations. In order to reduce the PERV copy numbers from the pig genome, it would be difficult to adapt only conventional breeding technology, and we need to consider using another technology like genome editing.
Collapse
Affiliation(s)
- Thanh-Nhan T Giang
- Key Laboratory of Animal Cell Technology, National Institute of Animal Science, Hanoi, Vietnam
| | - Can V Ta
- Thai Nguyen Center, National Institute of Animal Science, Thai Nguyen, Vietnam
| | - Shinya Ishihara
- Department of Animal Science, Nippon Veterinary and Life Science University, Musashino, Tokyo, Japan
| | - Aisaku Arakawa
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Toshihiro Okamura
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Thanh Q Dang-Nguyen
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Dai V Nguyen
- Thai Nguyen Center, National Institute of Animal Science, Thai Nguyen, Vietnam
| | - Lan D Pham
- Key Laboratory of Animal Cell Technology, National Institute of Animal Science, Hanoi, Vietnam
| | - Kazuhiro Kikuchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Masaaki Taniguchi
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|
3
|
Ogun OJ, Soremekun OS, Thaller G, Becker D. An In Silico Functional Analysis of Non-Synonymous Single-Nucleotide Polymorphisms of Bovine CMAH Gene and Potential Implication in Pathogenesis. Pathogens 2023; 12:pathogens12040591. [PMID: 37111477 PMCID: PMC10142285 DOI: 10.3390/pathogens12040591] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
The sugar molecule N-glycolylneuraminic acid (Neu5Gc) is one of the most common sialic acids discovered in mammals. Cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) catalyses the conversion of N-acetylneuraminic acid (Neu5Ac) to Neu5Gc, and it is encoded by the CMAH gene. On the one hand, food metabolic incorporation of Neu5Gc has been linked to specific human diseases. On the other hand, Neu5Gc has been shown to be highly preferred by some pathogens linked to certain bovine diseases. We used various computational techniques to perform an in silico functional analysis of five non-synonymous single-nucleotide polymorphisms (nsSNPs) of the bovine CMAH (bCMAH) gene identified from the 1000 Bull Genomes sequence data. The c.1271C>T (P424L) nsSNP was predicted to be pathogenic based on the consensus result from different computational tools. The nsSNP was also predicted to be critical based on sequence conservation, stability, and post-translational modification site analysis. According to the molecular dynamic simulation and stability analysis, all variations promoted stability of the bCMAH protein, but mutation A210S significantly promoted CMAH stability. In conclusion, c.1271C>T (P424L) is expected to be the most harmful nsSNP among the five detected nsSNPs based on the overall studies. This research could pave the way for more research associating pathogenic nsSNPs in the bCMAH gene with diseases.
Collapse
Affiliation(s)
- Oluwamayowa Joshua Ogun
- Institute of Animal Breeding and Husbandry, University of Kiel, Olshausenstraße 40, 24098 Kiel, Germany
| | - Opeyemi S Soremekun
- The African Computational Genomics (TACG) Research Group, MRC/UVRI and LSHTM, Entebbe 5159, Uganda
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, Westville Campus, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, University of Kiel, Olshausenstraße 40, 24098 Kiel, Germany
| | - Doreen Becker
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| |
Collapse
|
4
|
Ogun OJ, Thaller G, Becker D. An Overview of the Importance and Value of Porcine Species in Sialic Acid Research. BIOLOGY 2022; 11:biology11060903. [PMID: 35741423 PMCID: PMC9219854 DOI: 10.3390/biology11060903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 11/19/2022]
Abstract
Simple Summary Humans frequently interact with pigs and porcine meat is the most consumed red meat in the world. In addition, due to the many physiological and anatomical similarities shared between pigs and humans, in contrast to most mammalian species, pigs are a suitable model organism and pig organs can be used for xenotransplantation. However, one major challenge of porcine meat consumption and xenotransplantation is the xenoreactivity between red meat Neu5Gc sialic acid and human anti-Neu5Gc antibodies, which are associated with certain diseases and disorders. Furthermore, pigs express both α2-3 and α2-6 Sia linkages that could serve as viable receptors for viral infections, reassortments, and cross-species transmission of viruses. Therefore, pigs play a significant role in sialic acid research and, in general, in human health. Abstract Humans frequently interact with pigs, whose meat is also one of the primary sources of animal protein. They are one of the main species at the center of sialic acid (Sia) research. Sias are sugars at terminals of glycoconjugates, are expressed at the cell surfaces of mammals, and are important in cellular interactions. N-glycolylneuraminic acid (Neu5Gc) and N-acetylneuraminic acid (Neu5Ac) are notable Sias in mammals. Cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) encodes the CMAH enzyme that biosynthesizes Neu5Gc. Although humans cannot endogenously synthesize Neu5Gc due to the inactivation of this gene by a mutation, Neu5Gc can be metabolically incorporated into human tissues from red meat consumption. Interactions between Neu5Gc and human anti-Neu5Gc antibodies have been associated with certain diseases and disorders. In this review, we summarized the sialic acid metabolic pathway, its regulation and link to viral infections, as well as the importance of the pig as a model organism in Sia research, making it a possible source of Neu5Gc antigens affecting human health. Future research in solving the structures of crucial enzymes involved in Sia metabolism, as well as their regulation and interactions with other enzymes, especially CMAH, could help to understand their function and reduce the amount of Neu5Gc.
Collapse
Affiliation(s)
- Oluwamayowa Joshua Ogun
- Institute of Animal Breeding and Husbandry, University of Kiel, Olshausenstraße 40, 24098 Kiel, Germany;
- Correspondence: (O.J.O.); (D.B.)
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, University of Kiel, Olshausenstraße 40, 24098 Kiel, Germany;
| | - Doreen Becker
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
- Correspondence: (O.J.O.); (D.B.)
| |
Collapse
|
5
|
Denner J. Porcine Endogenous Retroviruses and Xenotransplantation, 2021. Viruses 2021; 13:v13112156. [PMID: 34834962 PMCID: PMC8625113 DOI: 10.3390/v13112156] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/06/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022] Open
Abstract
Porcine endogenous retroviruses (PERVs) are integrated in the genome of all pigs, and some of them are able to infect human cells. Therefore, PERVs pose a risk for xenotransplantation, the transplantation of pig cells, tissues, or organ to humans in order to alleviate the shortage of human donor organs. Up to 2021, a huge body of knowledge about PERVs has been accumulated regarding their biology, including replication, recombination, origin, host range, and immunosuppressive properties. Until now, no PERV transmission has been observed in clinical trials transplanting pig islet cells into diabetic humans, in preclinical trials transplanting pig cells and organs into nonhuman primates with remarkable long survival times of the transplant, and in infection experiments with several animal species. Nevertheless, in order to prevent virus transmission to the recipient, numerous strategies have been developed, including selection of PERV-C-free animals, RNA interference, antiviral drugs, vaccination, and genome editing. Furthermore, at present there are no more experimental approaches to evaluate the full risk until we move to the clinic.
Collapse
Affiliation(s)
- Joachim Denner
- Department of Veterinary Medicine, Institute of Virology, Free University Berlin, 14163 Berlin, Germany
| |
Collapse
|
6
|
Gao C, Sow WT, Wang Y, Wang Y, Yang D, Lee BH, Matičić D, Fang L, Li H, Zhang C. Hydrogel composite scaffolds with an attenuated immunogenicity component for bone tissue engineering applications. J Mater Chem B 2021; 9:2033-2041. [PMID: 33587079 DOI: 10.1039/d0tb02588g] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Xenogeneic bones are potential templates for bone regeneration. In this study, decellularized porcine bone powder with attenuated immunogenicity was incorporated into a photocurable hydrogel, gelatin methacryloyl (GelMA), to obtain scaffolds with good mechanical properties for bone tissue engineering. The decellularized bone powder (DCB)-GelMA hybrid scaffolds had higher compressive strength and stiffness values when the DCB content was increased. In vitro evaluations revealed the biocompatibility of these scaffolds. The scaffolds could induce human bone marrow mesenchymal stem cells (hMSCs) to undergo osteogenic differentiation even in the absence of an induction medium. The efficiency of the scaffolds for bone regeneration applications was further evaluated using an in vivo cranial bone defect model in rats. Micro-CT images showed that the hybrid scaffolds with 20% DCB content had the best effect in promoting new bone regeneration. Thus, it was concluded that the DCB-GelMA hybrid scaffolds have high potential in bone tissue engineering applications.
Collapse
Affiliation(s)
- Chenyuan Gao
- Department of Orthopaedics, Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, P. R. China. and Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, P. R. China
| | - Wan Ting Sow
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, P. R. China
| | - Yingying Wang
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, P. R. China
| | - Yili Wang
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, P. R. China
| | - Dejun Yang
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, P. R. China and School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, P. R. China
| | - Bae Hoon Lee
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, P. R. China and School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, P. R. China
| | - DraŽen Matičić
- Faculty of Veterinary Medicine, University of Zagreb, Zagreb, 10000, Croatia
| | - Lian Fang
- ENT Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, P. R. China
| | - Huaqiong Li
- Department of Orthopaedics, Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, P. R. China. and Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, P. R. China
| | - Chunwu Zhang
- Department of Orthopaedics, Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, P. R. China.
| |
Collapse
|
7
|
Pan Q, Gao C, Wang Y, Wang Y, Mao C, Wang Q, Economidou SN, Douroumis D, Wen F, Tan LP, Li H. Investigation of bone reconstruction using an attenuated immunogenicity xenogenic composite scaffold fabricated by 3D printing. Biodes Manuf 2020. [DOI: 10.1007/s42242-020-00086-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Fishman JA. Prevention of infection in xenotransplantation: Designated pathogen‐free swine in the safety equation. Xenotransplantation 2020; 27:e12595. [DOI: 10.1111/xen.12595] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/06/2020] [Accepted: 02/18/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Jay A. Fishman
- MGH Transplant Center Transplantation Infectious Disease and Compromised Host Program Infectious Disease Division Massachusetts General Hospital Boston MA USA
- Harvard Medical School Boston MA USA
| |
Collapse
|
9
|
Ishihara S, Dang‐Nguyen TQ, Kikuchi K, Arakawa A, Mikawa S, Osaki M, Otoi T, Luu QM, Nguyen TS, Taniguchi M. Characteristic features of porcine endogenous retroviruses in Vietnamese native pigs. Anim Sci J 2020; 91:e13336. [PMID: 32219916 DOI: 10.1111/asj.13336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/25/2019] [Accepted: 12/06/2019] [Indexed: 12/14/2022]
Abstract
We aimed to clarify the genomic characteristics of porcine endogenous retroviruses (PERVs) in Vietnamese native pig (VnP) breeds. First, we investigated genetic polymorphisms in β- and γ-like PERVs, and we then measured the copy numbers of infectious γ-like PERVs (PERV-A, B, and C). We purified genomic DNA from 15 VnP breeds from 12 regions all over the country and three Western pig breeds as controls, and investigated genetic polymorphisms in all known PERVs, including the beta (β)1-4 and gamma (γ)1-5 groups. PERVs of β1, β2, β3, and γ4 were highly polymorphic with VnP-specific haplotypes. We did not identify genetic polymorphisms in β4, γ1, or γ2 PERVs. We then applied a real-time polymerase chain reaction-based method to estimate copy numbers of the gag, pol, and env genes of γ1 PERVs (defined as A, B, and C). VnP breeds showed significantly lower copy number of the PERV genes compared with the Western pig breeds (on average, 16.2 and 35.7 copies, respectively, p < .05). Two VnP breeds showed significantly higher copy number compared with the other VnPs (p < .05). Our results elucidated that VnPs have specific haplotypes and a low copy number of PERV genes.
Collapse
Affiliation(s)
- Shinya Ishihara
- Institute of Agrobiological Sciences National Agriculture and Food Research Organization Tsukuba Japan
| | - Thanh Q. Dang‐Nguyen
- Institute of Agrobiological Sciences National Agriculture and Food Research Organization Tsukuba Japan
| | - Kazuhiro Kikuchi
- Institute of Agrobiological Sciences National Agriculture and Food Research Organization Tsukuba Japan
| | - Aisaku Arakawa
- Institute of Livestock and Grassland Science National Agriculture and Food Research Organization Tsukuba Japan
| | - Satoshi Mikawa
- Institute of Agrobiological Sciences National Agriculture and Food Research Organization Tsukuba Japan
| | - Makoto Osaki
- National Institute of Animal Health National Agriculture and Food Research Organization Tsukuba Japan
| | - Takeshige Otoi
- Faculty of Bioscience and Bioindustry Tokushima University Tokushima Japan
| | - Quang Minh Luu
- Key Laboratory of Animal Cell Technology National Institute of Animal Science Hanoi Vietnam
| | - Thanh Son Nguyen
- Key Laboratory of Animal Cell Technology National Institute of Animal Science Hanoi Vietnam
| | - Masaaki Taniguchi
- Institute of Livestock and Grassland Science National Agriculture and Food Research Organization Tsukuba Japan
| |
Collapse
|
10
|
Hirata M, Wittayarat M, Hirano T, Nguyen NT, Le QA, Namula Z, Fahrudin M, Tanihara F, Otoi T. The Relationship between Embryonic Development and the Efficiency of Target Mutations in Porcine Endogenous Retroviruses (PERVs) Pol Genes in Porcine Embryos. Animals (Basel) 2019; 9:ani9090593. [PMID: 31443357 PMCID: PMC6770129 DOI: 10.3390/ani9090593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/30/2019] [Accepted: 08/19/2019] [Indexed: 12/17/2022] Open
Abstract
Porcine endogenous retrovirus (PERV) is a provirus found in the pig genome that may act as an infectious pathogen in humans who receive pig organ xenotransplantation. Inactivation of the PERV pol gene in porcine cells reportedly affects cell growth. Therefore, the mutation of PERV pol gene in porcine embryos using genome editing may affect the embryonic development. The present study was carried out to investigate the relationship between the mutation of the PERV pol gene in porcine embryos and their development. We introduced, either alone or in combination, three different gRNAs (gRNA1, 2, and 3) into porcine zygotes by genome editing using electroporation of the Cas9 protein (GEEP) system. All three gRNAs targeted the PERV pol gene, and we assessed their effects on porcine embryonic development. Our results showed that the blastocyst formation rates of zygotes electroporated with gRNA3-alone and in combination-were significantly lower (p < 0.05) than those of zygotes electroporated with gRNA1. The mutation rates assessed by the PERV pol gene target site sequencing in individual blastocysts and pooled embryos at the 2-to-8-cell stage did not differ among the three gRNAs. However, the frequency of indel mutations in mutant embryos at the 2-to-8-cell stage trended higher in the embryos electroporated with gRNA3 alone and in combination. Embryonic development may be affected by gRNAs that induce high-frequency indel mutations.
Collapse
Affiliation(s)
- Maki Hirata
- Faculty of Bioscience and Bioindustry, Tokushima University, Myozai-gun, Tokushima 7793233, Japan
| | - Manita Wittayarat
- Faculty of Veterinary Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Takayuki Hirano
- Faculty of Bioscience and Bioindustry, Tokushima University, Myozai-gun, Tokushima 7793233, Japan
| | - Nhien Thi Nguyen
- Faculty of Bioscience and Bioindustry, Tokushima University, Myozai-gun, Tokushima 7793233, Japan
| | - Quynh Anh Le
- Faculty of Bioscience and Bioindustry, Tokushima University, Myozai-gun, Tokushima 7793233, Japan
| | - Zhao Namula
- Faculty of Veterinary Science, Guangdong Ocean University, Zhanjiang, Guangdong 524005, China
| | - Mokhamad Fahrudin
- Faculty of Veterinary Science, Bogor Agricultural University, Dramaga, Bogor 16680, Indonesia
| | - Fuminori Tanihara
- Faculty of Bioscience and Bioindustry, Tokushima University, Myozai-gun, Tokushima 7793233, Japan.
| | - Takeshige Otoi
- Faculty of Bioscience and Bioindustry, Tokushima University, Myozai-gun, Tokushima 7793233, Japan
| |
Collapse
|
11
|
Łopata K, Wojdas E, Nowak R, Łopata P, Mazurek U. Porcine Endogenous Retrovirus (PERV) - Molecular Structure and Replication Strategy in the Context of Retroviral Infection Risk of Human Cells. Front Microbiol 2018; 9:730. [PMID: 29755422 PMCID: PMC5932395 DOI: 10.3389/fmicb.2018.00730] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/28/2018] [Indexed: 12/28/2022] Open
Abstract
The xenotransplantation of porcine tissues may help overcome the shortage of human organs for transplantation. However, there are some concerns about recipient safety because the risk of porcine endogenous retrovirus (PERV) transmission to human cells remains unknown. Although, to date, no PERV infections have been noted in vivo, the possibility of such infections has been confirmed in vitro. Better understanding of the structure and replication cycle of PERVs is a prerequisite for determining the risk of infection and planning PERV-detection strategies. This review presents the current state of knowledge about the structure and replication cycle of PERVs in the context of retroviral infection risk.
Collapse
Affiliation(s)
- Krzysztof Łopata
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Emilia Wojdas
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland.,Department of Instrumental Analysis, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Roman Nowak
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Paweł Łopata
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Urszula Mazurek
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
12
|
Human-APOBEC3G-dependent restriction of porcine endogenous retrovirus replication is mediated by cytidine deamination and inhibition of DNA strand transfer during reverse transcription. Arch Virol 2018; 163:1907-1914. [PMID: 29610985 DOI: 10.1007/s00705-018-3822-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 03/18/2018] [Indexed: 10/17/2022]
Abstract
Although human apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G, hA3G)-mediated deamination is the major mechanism used to restrict the infectivity of a broad range of retroviruses, it is unclear whether porcine endogenous retrovirus (PERV) is affected by hA3G or porcine A3F (poA3F). To determine whether DNA deamination is required for hA3G- and poA3F-dependent inhibition of PERV transmission, we developed VSV-pseudotype PERV-B expressing hA3G, mutant hA3G-E67Q (encapsidation and RNA binding activity-deficient), mutant hA3G-E259Q (deaminase-deficient), or poA3F. hA3G-E67Q decreased virus infectivity by ~ 93% compared to the ~ 99% decrease of viral infectivity by wild-type hA3G, while hA3G-E259Q decreased the infectivity of PERV-B by ~ 35%. These data suggest that cytidine deamination activity is crucial for efficient restriction of PERV by hA3G, but cytidine deamination cannot fully explain the inactivation of PERV by hA3G. Furthermore, differential DNA denaturation PCR (3D-PCR) products from 293T cells infected with PERV-B expressing hA3G mutants were sequenced. G-to-A hypermutation was detected at a frequency of 4.1% for hA3G, 3.4% for hA3G-E67Q, and 4.7% for poA3F. These results also suggest that hA3G and poA3F inhibit PERV by a deamination-dependent mechanism. To examine the effect of hA3G on the production of PERV DNA, genomic DNA was extracted from 293T cells 12 h after infection with PERV expressing hA3G, and this DNA was used as template for real-time PCR. A 50% decrease in minus strand strong stop (-sss) DNA synthesis/transfer was observed in the presence of hA3G. Based on these results, we conclude that hA3G may restrict PERV by both deamination-dependent mechanisms and inhibition of DNA strand transfer during PERV reverse transcription.
Collapse
|
13
|
Salamanca E, Hsu CC, Huang HM, Teng NC, Lin CT, Pan YH, Chang WJ. Bone regeneration using a porcine bone substitute collagen composite in vitro and in vivo. Sci Rep 2018; 8:984. [PMID: 29343794 PMCID: PMC5772614 DOI: 10.1038/s41598-018-19629-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/29/2017] [Indexed: 01/08/2023] Open
Abstract
The biocharacteristics of xenogeneic grafts make them a possible substitute for autogenous bone grafts in dental bone graft procedures. This study aimed to develop a novel porcine graft with collagen capable of generating new bone in bone defects via osteoconduction over 8 weeks of healing and to compare it with a porcine graft. The porcine collagen graft was made to undergo a cell viability test (MTT) and alkaline phosphatase assay (ALP). The surgical procedure was performed in 20 male adult New Zealand white rabbits. Four calvarial critical-size defects of 6 mm in diameter were prepared in each rabbit. The upper left defect was filled with a porcine graft of 500–1000 μm, the upper right with a porcine collagen graft, the lower left with hydroxyapatite/beta-tricalcium phosphate and the lower right served as the control without any filling material. The rabbits were divided and sacrificed at 2, 4, 6 and 8 weeks after surgery. Histological and micro-CT scan results showed that the performance of the porcine collagen graft is superior for regenerating new bone. Porcine collagen graft showed cell viability and osteoblast-like cell differentiation in vitro. The results indicate that porcine collagen graft is a potential bone substitute for clinical application.
Collapse
Affiliation(s)
- Eisner Salamanca
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Chen Hsu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Dental Department, Taipei Medical University, Shuang-Ho hospital, Taipei, Taiwan
| | - Haw-Ming Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Nai-Chia Teng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Dental Department, Taipei Medical University Hospital, Taipei, Taiwan
| | - Che-Tong Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Dental Department, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yu-Hwa Pan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan. .,Department of General Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan. .,Graduate Institute of Dental & Craniofacial Science, Chang Gung University, Taoyuan, Taiwan. .,School of Dentistry, College of Medicine, China Medical University, Taichung, Taiwan.
| | - Wei-Jen Chang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan. .,Dental Department, Taipei Medical University, Shuang-Ho hospital, Taipei, Taiwan.
| |
Collapse
|
14
|
Tan QW, Zhang Y, Luo JC, Zhang D, Xiong BJ, Yang JQ, Xie HQ, Lv Q. Hydrogel derived from decellularized porcine adipose tissue as a promising biomaterial for soft tissue augmentation. J Biomed Mater Res A 2017; 105:1756-1764. [PMID: 28165664 DOI: 10.1002/jbm.a.36025] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 01/25/2017] [Accepted: 01/31/2017] [Indexed: 02/05/2023]
Abstract
Decellularized extracellular matrix (ECM) scaffolds from human adipose tissue, characterized by impressive adipogenic induction ability, are promising for soft tissue augmentation. However, scaffolds from autologous human adipose tissue are limited by the availability of tissue resources and the time necessary for scaffold fabrication. The objective of the current study was to investigate the adipogenic properties of hydrogels of decellularized porcine adipose tissue (HDPA). HDPA induced the adipogenic differentiation of human adipose-derived stem cells (ADSCs) in vitro, with significantly increased expression of adipogenic genes. Subcutaneous injection of HDPA in immunocompetent mice induced host-derived adipogenesis without cell seeding, and adipogenesis was significantly enhanced with ADSCs seeding. The newly formed adipocytes were frequently located on the basal side in the non-seeding group, but this trend was not observed in the ADSCs seeding group. Our results indicated that, similar to human adipose tissue, the ECM scaffold derived from porcine adipose tissue could provide an adipogenic microenvironment for adipose tissue regeneration and is a promising biomaterial for soft tissue augmentation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1756-1764, 2017.
Collapse
Affiliation(s)
- Qiu-Wen Tan
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi Zhang
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jing-Cong Luo
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Di Zhang
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Bin-Jun Xiong
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ji-Qiao Yang
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qing Lv
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
15
|
Differential sensitivity of porcine endogenous retrovirus to APOBEC3-mediated inhibition. Arch Virol 2015; 160:1901-8. [DOI: 10.1007/s00705-015-2450-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 05/07/2015] [Indexed: 01/30/2023]
|
16
|
Salamanca E, Lee WF, Lin CY, Huang HM, Lin CT, Feng SW, Chang WJ. A Novel Porcine Graft for Regeneration of Bone Defects. MATERIALS 2015. [PMCID: PMC5455581 DOI: 10.3390/ma8052523] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bone regeneration procedures require alternative graft biomaterials to those for autogenous bone. Therefore, we developed a novel porcine graft using particle sizes of 250–500 μm and 500–1000 μm in rabbit calvarial bone defects and compared the graft properties with those of commercial hydroxyapatite (HA)/beta-tricalcium phosphate (β-TCP) over eight weeks. Surgery was performed in 20 adult male New Zealand white rabbits. During a standardized surgical procedure, four calvarial critical-size defects of 5 mm diameter and 3 mm depth were prepared. The defects were filled with HA/β-TCP, 250–500 μm or 500–1000 μm porcine graft, and control defects were not filled. The animals were grouped for sacrifice at 1, 2, 4, and 8 weeks post-surgery. Subsequently, sample blocks were prepared for micro-computed tomography (micro-CT) scanning and histological sectioning. Similar bone formations were observed in all three treatment groups, although the 250–500 μm porcine graft performed slightly better. Rabbit calvarial bone tissue positively responded to porcine grafts and commercial HA/β-TCP, structural analyses showed similar crystallinity and porosity of the porcine and HA/β-TCP grafts, which facilitated bone formation through osteoconduction. These porcine grafts can be considered as graft substitutes, although further development is required for clinical applications.
Collapse
Affiliation(s)
- Eisner Salamanca
- School of Dentistry, College of Oral Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan; E-Mails: (E.S.); (C.-Y.L.); (C.-T.L.); (S.-W.F.)
| | - Wei-Fang Lee
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan; E-Mail:
| | - Chin-Yi Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan; E-Mails: (E.S.); (C.-Y.L.); (C.-T.L.); (S.-W.F.)
| | - Haw-Ming Huang
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Oral Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan; E-Mail:
| | - Che-Tong Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan; E-Mails: (E.S.); (C.-Y.L.); (C.-T.L.); (S.-W.F.)
| | - Sheng-Wei Feng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan; E-Mails: (E.S.); (C.-Y.L.); (C.-T.L.); (S.-W.F.)
| | - Wei-Jen Chang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan; E-Mails: (E.S.); (C.-Y.L.); (C.-T.L.); (S.-W.F.)
- Dental Department of Taipei Medical University, Shuang-Ho Hospital, Taipei 110, Taiwan
- Author to whom correspondence should be addressed; E-Mail: cweijen1@ tmu.edu.tw; Tel.: +886-2-2736-1661 (ext. 5148); Fax: +886-2-2736-2295
| |
Collapse
|
17
|
Xiang S, Ma Y, Yan Q, Lv M, Zhao X, Yin H, Zhang N, Jia J, Yu R, Zhang J. Construction and characterization of an infectious replication competent clone of porcine endogenous retrovirus from Chinese miniature pigs. Virol J 2013; 10:228. [PMID: 23837947 PMCID: PMC3718662 DOI: 10.1186/1743-422x-10-228] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 05/30/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Xenotransplantation from animals has been considered to be a preferable approach to alleviate the shortage of human allografts. Pigs are the most suitable candidate because of the anatomical and physiological similarities shared with humans as well as ethical concerns. However, it may be associated with the risk of transmission of infectious porcine pathogens. Porcine endogenous retroviruses (PERVs) are of particular concern because they have been shown to infect human cells in vitro. To date, researches on the molecular characteristics and potential pathogenicity of PERV are still tenuous. In this report, an infectious replication competent clone of PERV from Wuzhishan pigs (WZSPs) in China was generated and characterized. This infectious clone will contribute to studies on PERV virology and control of PERV in xenotransplantation using Chinese miniature pigs. METHODS The proviral DNA of PERV from WZSPs was amplified in two overlapping halves. Then the two fragments were isolated, subcloned and fused to generate pBluescriptαSK+-WZS-PERV recombinant clones. Screened with RT-PCR, a molecular clone of PERV designated as WZS-PERV(2) was selected. Its infectivity and replication competency were characterized in HEK293 cells by PCR, real-time fluorescent quantitative RT-PCR, western blot, indirect immunofluorescence assay as well as sequence analysis. RESULTS The ability of WZS-PERV(2) to infect human cells and produce infectious virions were shown after transfection of the clone into HEK293 cells and infection of PERV derived from this recombinant clone. The expression of Gag proteins were detected in HEK293 cells infected with the virus derived from the clone by the indirect immunofluorescence assay and western blot. The results of sequences analysis and comparison combined with the PCR based genotyping result demonstrated that the WZS-PERV(2) belonged to PERV-A subgroup. Compared with a previous proviral DNA clone of PERV (PERV-WZSP), G to A hypermutation occurred in the env gene of WZS-PERV(2) was found, whereas APOBEC proteins have the potential to inhibit the replication of a variety of retroviruses through a cDNA cytosine deamination mechanism, so we presumed these G to A hypermutation might be the contribution of porcine APOBEC3F. CONCLUSIONS Altogether, an infectious replication competent clone of PERV from Chinese miniature pigs (WZSPs) termed WZS-PERV(2) was generated, characterized and sequenced.
Collapse
Affiliation(s)
- Silong Xiang
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Jung YD, Ha HS, Park SJ, Oh KB, Im GS, Kim TH, Seong HH, Kim HS. Identification and promoter analysis of PERV LTR subtypes in NIH-miniature pig. Mol Cells 2013; 35:99-105. [PMID: 23456331 PMCID: PMC3887905 DOI: 10.1007/s10059-013-2289-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 11/20/2012] [Accepted: 12/11/2012] [Indexed: 11/28/2022] Open
Abstract
Porcine endogenous retroviruses (PERVs) are integrated into the genomes of all pigs. Since some PERVs can also infect human cells, they represent a potential risk for xenotransplantation involving pig cells or organs. The long terminal repeat (LTR) elements of PERVs show promoter activity that can affect human functional genes; therefore, we examined these elements in this study. We detected several expressed LTRs in the NIH-miniature pig liver, among which we identified 9 different subtypes. When these LTRs were compared, distinct structures that contained several insertion and deletion (INDEL) events and tandem repeats were identified in the U3 region. The transcriptional activity of the 9 LTR subtypes was analyzed in the PK15 porcine cell line and in the HepG2 and Hep3B human liver cell lines, and transcriptional regulation was found to be different in the 3 cell lines. The D LTR subtype was found to have stronger promoter activity than all other types in 4 different human cell lines (HepG2, Hep3B, U251, and 293). Using computational approaches, the D type was shown to contain 4 transcription factor-binding sites distinct from those in the U3 regions of the other subtypes. Therefore, deletion mutants were constructed and examined by a transient transfection luciferase assay. The results of this analysis indicated that the binding site for the Hand1:E47 transcription factor might play a positive role in the transcriptional regulation of PERV LTR subtype D in human liver cell lines.
Collapse
Affiliation(s)
- Yi-Deun Jung
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735,
Korea
| | | | - Sang-Je Park
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735,
Korea
| | | | | | | | | | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735,
Korea
| |
Collapse
|
19
|
|
20
|
Genetic prevalence of porcine endogenous retrovirus in chinese experimental miniature pigs. Transplant Proc 2012; 43:2762-9. [PMID: 21911159 DOI: 10.1016/j.transproceed.2011.06.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 06/13/2011] [Accepted: 06/16/2011] [Indexed: 11/21/2022]
Abstract
Pig-to-human xenotransplantation poses the potential risk of interspecies transmission of porcine endogenous retrovirus (PERV). The Chinese experimental miniature pig may be used as a pig-to-human xenograft donor. However, data for the distribution of PERV provirus in genomic DNA and PERV expression at the RNA level for the Chinese experimental miniature pig population are lacking. In this study, PERV was investigated in this regard using polymerase chain reaction (PCR), real-time quantitative PCR, and real-time quantitative reverse transcription PCR. The results showed that the genotype distribution was PERV-A subtype 100%, PERV-B subtype 100%, and PERV-C subtype 30% among 20 pig genomic DNA samples. Both PERV copy number in genomic DNA and PERV expression at the RNA level varied significantly among individuals, ranging from 3.95 ± 0.14 to 95.52 ± 2.20 and 3.66 ± 0.13 to 43.03 ± 2.50, respectively. For some individuals, the PERV copy number (eg, 3.95 ± 0.14) in genomic DNA and PERV expression (eg, 3.66 ± 0.13) at the RNA level were low. These results suggested that the Chinese experimental miniature pig is a possible donor for xenotransplantation. Our results provide reference information for selective breeding, which will benefit the application of these animals for the study of xenotransplantation.
Collapse
|
21
|
Lee J, Cho YD, Heo YK, Kwon Y, Kim DG, Choi BS, Kim SS, Kim YB. Reduction of N-tropic mutant porcine endogenous retrovirus infectivity by human tripartite motif-containing 5-isoform alpha. Transplant Proc 2012; 43:2774-8. [PMID: 21911161 DOI: 10.1016/j.transproceed.2011.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 04/19/2011] [Indexed: 10/17/2022]
Abstract
In cases of retroviral infection, the host cell deploys antiviral proteins as a type of innate immunity. Tripartite motif-containing 5-isoform alpha (TRIM5α) is a potent antiviral protein. TRIM5α has been reported to restrict human immunodeficiency virus (HIV) 1 infection in rhesus monkey cells by targeting the incoming viral capsid at the postentry or preintegration stage of the viral life cycle. As a consequence, virus replication and reverse transcription are interrupted. TRIM5α of human origin has also been shown to inhibit N-tropic murine leukemia virus infection. To investigate the inhibitory effect of TRIM5α on porcine endogenous retrovirus (PERV) infection in humans, we constructed a 293T cell line stably expressing human TRIM5α (293T-huTRIM5α) and tested the infectivity of vesicular stomatitis virus glycoprotein envelope pseudotyped viruses (wild-type PERV [wt-PERV], N-tropic mutant PERV, N-tropic murine leukemia virus, and MoMLV). Infectivity of N-tropic mutant PERV was reduced by 43.3% in 293T-huTRIM5α cells, a decrease in efficiency that was more than 3-fold greater than that of wt-PERV in 293T-huTRIM5α cells. Human TRIM5α exhibited inhibitory activity against N-tropic MLV and N-tropic mutant PERV, but showed no antiviral activity against Moloney murine leukemia virus or wt-PERV.
Collapse
Affiliation(s)
- J Lee
- Department of Animal Biotechnology, College of Animal Bioscience & Technology, Konkuk University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Potential zoonotic infection of porcine endogenous retrovirus in xenotransplantation. Methods Mol Biol 2012; 885:263-79. [PMID: 22566002 DOI: 10.1007/978-1-61779-845-0_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Porcine endogenous retrovirus (PERV) is considered the major biosafety issue in xenotransplantation. Several techniques have been employed for the analysis of the PERV status in the animal donor and for the assessment of PERV transmission/infection in the xenograft recipient. In this chapter, methods to assess the expression of PERV and the potential for PERV transmission from a donor animal are described in addition to the identification of relevant loci within the porcine genome.PERV detection can be carried out using several techniques of which quantitative polymerase chain reaction (PCR) and RT-PCR are the most sensitive. However, other procedures can be employed such as detection of reverse transcriptase activity (i.e. viral replication) in the sample or immunostaining of the infected cells using an anti-PERV antibody. The PERV transmission assay has been described to identify the transmission phenotype of the pig donor, and subsequent risk from a donor. This assay can, therefore, direct the selection of the most suitable animal. Finally, it is important to determine the presence of critical PERV loci involved in transmission in the pig genome and compare between different animals. One of the methods for the analysis of these PERV integration sites is described.
Collapse
|
23
|
Lee J, Choi JY, Lee HJ, Kim KC, Choi BS, Oh YK, Kim YB. Repression of porcine endogenous retrovirus infection by human APOBEC3 proteins. Biochem Biophys Res Commun 2011; 407:266-70. [PMID: 21396348 DOI: 10.1016/j.bbrc.2011.03.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 03/04/2011] [Indexed: 01/07/2023]
Abstract
It has been shown that porcine endogenous retrovirus (PERV) can infect human cells, indicating that PERV transmission poses a serious concern in pig-to-human xenotransplantation. A number of recent studies have reported on retrovirus interference by antiviral proteins. The most potent antiviral proteins are members of the APOBEC family of cytidine deaminases, which are involved in defense against retroviral attack. These proteins are present in the cytoplasm of mammalian cells and inhibit retroviral replication. To evaluate the inhibition of PERV transmission by human APOBEC3 proteins, we co-transfected 293T cells with a PERV molecular clone and human APOBEC3F or APOBEC3G expression vectors, and monitored PERV replication competency using a quantitative analysis of PERV pol genes. The replication of PERVs in cells co-expressing human APOBEC3s was reduced by 60-90% compared with PERV-only control. These results suggest that human APOBEC3G and APOBEC3F might serve a potential barrier function against PERV transmission in xenotransplantation.
Collapse
Affiliation(s)
- Jungeun Lee
- Department of Animal Biotechnology, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, South Korea.
| | | | | | | | | | | | | |
Collapse
|
24
|
Di Nicuolo G, D'Alessandro A, Andria B, Scuderi V, Scognamiglio M, Tammaro A, Mancini A, Cozzolino S, Di Florio E, Bracco A, Calise F, Chamuleau RAFM. Long-term absence of porcine endogenous retrovirus infection in chronically immunosuppressed patients after treatment with the porcine cell-based Academic Medical Center bioartificial liver. Xenotransplantation 2011; 17:431-9. [PMID: 21158944 DOI: 10.1111/j.1399-3089.2010.00617.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Clinical use of porcine cell-based bioartificial liver (BAL) support in acute liver failure as bridging therapy for liver transplantation exposes the patient to the risk of transmission of porcine endogenous retroviruses (PERVs) to human. This risk may be enhanced when patients receive liver transplant and are subsequently immunosuppressed. As further follow-up of previously reported patients (Di Nicuolo et al. 2005), an assessment of PERV infection was made in the same patient population pharmacologically immunosuppressed for several years after BAL treatment and in healthcare workers (HCWs) involved in the clinical trial at that time. METHODS Plasma and peripheral blood mononuclear cells (PBMCs) from eight patients treated with the Academic Medical Center-BAL (AMC-BAL), who survived to transplant, and 13 HCWs, who were involved in the trial, were assessed to detect PERV infection. A novel quantitative real-time polymerase chain reaction assay has been used. RESULTS Eight patients who received a liver transplant after AMC-BAL treatment are still alive under long-term pharmacological immunosuppression. The current clinical follow-up ranges from 5.6 to 8.7 yr after BAL treatment. A new q-real-time PCR assay has been developed and validated to detect PERV infection. The limit of quantification of PERV DNA was ≥ 5 copies per 1 × 10(5) PBMCs. The linear dynamic range was from 5 × 10(0) to 5 × 10(6) copies. In both patients and HCWs, neither PERV DNA in PBMCs nor PERV RNA in plasma and PBMC samples have been found. CONCLUSION Up to 8.7 yr after exposure to treatment with porcine liver cell-based BAL, no PERV infection has been found in long-term immunosuppressed patients and in HCWs by a new highly sensitive and specific q-real-time PCR assay.
Collapse
|
25
|
Real-time quantitative polymerase chain reaction with SYBR green i detection for estimating copy numbers of porcine endogenous retrovirus from Chinese miniature pigs. Transplant Proc 2010; 42:1949-52. [PMID: 20620553 DOI: 10.1016/j.transproceed.2010.01.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 12/30/2009] [Accepted: 01/15/2010] [Indexed: 11/21/2022]
Abstract
Porcine endogenous retrovirus (PERV) in the pig genome represents a potential infectious risk in xenotransplantation. Chinese miniature pigs have been considered to be potential organ donors in China. However, an adequate level of information on PERV from Chinese miniature pigs has not been available. We established an SYBR Green I-based real-time quantitative polymerase chain reaction (PCR) assay for estimating copy numbers of PERV integrated in the host genome. The assay was 100-fold more sensitive compared with conventional PCR. We also evaluated the specificity and reproducibility of the assay. We statistically analyzed the difference in PERV copy numbers integrated into the genomes of Wuzhishan pigs versus Bama minipigs. This approach will be useful to screen donor pigs as well as to examine clinical samples from human subjects treated with porcine xenotransplantation products for evidence of PERV transmission.
Collapse
|
26
|
Park SJ, Huh JW, Kim DS, Ha HS, Jung YD, Ahn K, Oh KB, Park EW, Chang KT, Kim HS. Analysis of the molecular and regulatory properties of active porcine endogenous retrovirus gamma-1 long terminal repeats in kidney tissues of the NIH-Miniature pig. Mol Cells 2010; 30:319-25. [PMID: 20811814 DOI: 10.1007/s10059-010-0121-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 06/10/2010] [Accepted: 06/28/2010] [Indexed: 11/26/2022] Open
Abstract
The pig genome contains the gamma 1 family of porcine endogenous retroviruses (PERVs), which are a major obstacle to the development of successful xenotransplantation from pig to human. Long terminal repeats (LTRs) found in PERVs are known to be essential elements for the control of the transcriptional activity of single virus by different transcription factors (TFs). To identify transcribed PERV LTR elements, RT-PCR and DNA sequencing analyses were performed. Twenty-nine actively transcribed LTR elements were identified in the kidney tissues of the NIH-Miniature pig. These elements were divided into two major groups (I and II), and four minor groups (I-1, I-2, I-3, and II-1), by the presence of insertion and deletion (INDEL) sequences. Group I elements showed strong transcriptional activity compared to group II elements. Four different LTR elements (PL1, PL2, PL3, and PL4) as representative of the groups were analyzed by using a transient transfection assay. The regulation of their promoter activity was investigated by treatment with M.SssI (CpG DNA methyltransferase) and garcinol (histone acetyltransferase inhibitor). The transcriptional activity of PERV LTR elements was significantly reduced by treatment with M.SssI. These data indicate that transcribed PERV LTR elements harbor sufficient promoter activity to regulate the transcription of a single virus, and the transcriptional activity of PERV LTRs may be controlled by DNA methylation events.
Collapse
Affiliation(s)
- Sang-Je Park
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 609-735, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kim NY, Lee D, Lee J, Park EW, Jung WW, Yang JM, Kim YB. Characterization of the replication-competent porcine endogenous retrovirus class B molecular clone originated from Korean domestic pig. Virus Genes 2009; 39:210-6. [DOI: 10.1007/s11262-009-0377-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 06/06/2009] [Indexed: 10/20/2022]
|
28
|
Abstract
Xenotransplantation from pigs provides a possible way around the shortage of human organs for transplantation. The highly inbred Westran line of pigs is genetically well characterised and known to lack endogenous retroviruses able to infect human cells. Like most inbreds, it has poor reproductive performance for which reproductive interventions would be desirable.
Collapse
Affiliation(s)
- C Moran
- Centre for Advanced Technologies in Animal Genetics and Reproduction, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
29
|
Louz D, Bergmans HE, Loos BP, Hoeben RC. Reappraisal of biosafety risks posed by PERVs in xenotransplantation. Rev Med Virol 2008; 18:53-65. [PMID: 17987669 DOI: 10.1002/rmv.559] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Donor materials of porcine origin could potentially provide an alternative source of cells, tissues or whole organs for transplantation to humans, but is hampered by the health risk posed by infection with porcine viruses. Although pigs can be bred in such a way that all known exogenous microorganisms are eliminated, this is not feasible for all endogenous pathogens, such as the porcine endogenous retroviruses (PERVs) which are present in the germline of pigs as proviruses. Upon transplantation, PERV proviruses would be transferred to the human recipient along with the xenograft. If xenotransplantation stimulates or facilitates replication of PERVs in the new hosts, a risk exists for adaptation of the virus to humans and subsequent spread of these viruses. In a worst-case scenario, this might result in the emergence of a new viral disease. Although the concerns for disease potential of PERVs are easing, only limited pre-clinical and clinical data are available. Small-scale, well-designed and carefully controlled clinical trials would provide more evidence on the safety of this approach and allow a better appreciation of the risks involved. It is therefore important to have a framework of protective measures and monitoring protocols in place to facilitate such initially small scale clinical trials. This framework will raise ethical and social considerations regarding acceptability.
Collapse
Affiliation(s)
- Derrick Louz
- GMO office, Substances Expertise Centre of the National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| | | | | | | |
Collapse
|
30
|
Voisset C, Weiss RA, Griffiths DJ. Human RNA "rumor" viruses: the search for novel human retroviruses in chronic disease. Microbiol Mol Biol Rev 2008; 72:157-96, table of contents. [PMID: 18322038 PMCID: PMC2268285 DOI: 10.1128/mmbr.00033-07] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Retroviruses are an important group of pathogens that cause a variety of diseases in humans and animals. Four human retroviruses are currently known, including human immunodeficiency virus type 1, which causes AIDS, and human T-lymphotropic virus type 1, which causes cancer and inflammatory disease. For many years, there have been sporadic reports of additional human retroviral infections, particularly in cancer and other chronic diseases. Unfortunately, many of these putative viruses remain unproven and controversial, and some retrovirologists have dismissed them as merely "human rumor viruses." Work in this field was last reviewed in depth in 1984, and since then, the molecular techniques available for identifying and characterizing retroviruses have improved enormously in sensitivity. The advent of PCR in particular has dramatically enhanced our ability to detect novel viral sequences in human tissues. However, DNA amplification techniques have also increased the potential for false-positive detection due to contamination. In addition, the presence of many families of human endogenous retroviruses (HERVs) within our DNA can obstruct attempts to identify and validate novel human retroviruses. Here, we aim to bring together the data on "novel" retroviral infections in humans by critically examining the evidence for those putative viruses that have been linked with disease and the likelihood that they represent genuine human infections. We provide a background to the field and a discussion of potential confounding factors along with some technical guidelines. In addition, some of the difficulties associated with obtaining formal proof of causation for common or ubiquitous agents such as HERVs are discussed.
Collapse
Affiliation(s)
- Cécile Voisset
- CNRS-UMR8161, Institut de Biologie de Lille et Institut Pasteur de Lille, Lille, France
| | | | | |
Collapse
|
31
|
Complete microbe free processed porcine xenograft for clinical use. Indian J Thorac Cardiovasc Surg 2008. [DOI: 10.1007/s12055-007-0049-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
32
|
Zhang F, Da R, Song W, Chen X, Zhang X, Li X, Gu H. Pathogenic risk of endogenous retrovirus infection in immunodeficient hosts. Virus Res 2008; 132:237-41. [PMID: 18178281 DOI: 10.1016/j.virusres.2007.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 11/11/2007] [Accepted: 11/21/2007] [Indexed: 11/27/2022]
Abstract
To investigate the pathogenic risk of endogenous retroviruses (ERVs) infection in immunodeficient hosts, the ERV of N-type ecotropic murine leukemia virus (MuLV) isolated from SL mice, a kind of mice containing considerable infectious ERV particles determined with SC-XC test and developing leukemia spontaneously with average of high frequency of 30% and incubation period of 315days, was inoculated intraperitoneally into newborn CBA nude mice. The distinct marker of splenomegaly for leukemia was observed in 33% of homozygous (nu/nu) and 17% of heterozygous (nu/+) of CBA nude mice with average incubation period of 310days and 432days post-inoculation, respectively. Furthermore, the ERV induced leukemia in both the SL mice and CBA nude mice was identified to be B lymphatic, transplantable and with rearrangement of the Evi-1 locus. The higher induction of leukemia and rearrangement of the Evi-1 locus in CBA nude mice are considered to be dependent on the lower immune status of the hosts. These findings indicate that the ERV could present the host immune dependent leukemogenesis in immunodeficient hosts through the Evi-1 gene rearrangement and suggest that screening of ERVs may be necessary in clinical transplantation or transfusion.
Collapse
Affiliation(s)
- Fengmin Zhang
- Department of Microbiology and Parasitology, Harbin Medical University, Heilongjiang Province, Harbin 150086, China.
| | | | | | | | | | | | | |
Collapse
|
33
|
Klymiuk N, Wolf E, Aigner B. Concise classification of the genomic porcine endogenous retroviral gamma1 load to defined lineages. Virology 2007; 371:175-84. [PMID: 17964627 DOI: 10.1016/j.virol.2007.09.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 08/20/2007] [Accepted: 09/10/2007] [Indexed: 11/28/2022]
Abstract
We investigated the infection history of porcine endogenous retroviruses (PERV) gamma1 by analyzing published env and LTR sequences. PERV sequences from various breeds, porcine cell lines and infected human primary cells were included in the study. We identified a considerable number of retroviral lineages indicating multiple independent colonization events of the porcine genome. A recent boost of the proviral load in an isolated pig herd and exclusive occurrence of distinct lineages in single studies indicated the ongoing colonization of the porcine genome with endogenous retroviruses. Retroviral recombination between co-packaged genomes was a general factor for PERV gamma1 diversity which indicated the simultaneous expression of different proviral loci over a period of time. In total, our detailed description of endogenous retroviral lineages is the prerequisite for breeding approaches to minimize the infectious potential of porcine tissues for the subsequent use in xenotransplantation.
Collapse
Affiliation(s)
- Nikolai Klymiuk
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-University, Munich, Hackerstrasse 27, D-85764 Oberschleissheim, Germany.
| | | | | |
Collapse
|
34
|
Lee SH, Kang SC, Kim DY, Bae JH, Kim JH. Detection of swine hepatitis E virus in the porcine hepatic lesion in Jeju Island. J Vet Sci 2007; 8:51-5. [PMID: 17322774 PMCID: PMC2872697 DOI: 10.4142/jvs.2007.8.1.51] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Swine hepatitis E virus (HEV) is an emerging zoonotic pathogen due to its close genomic similarity to human HEV. The prevalence of swine HEV in the hepatic lesion of pigs from the Jeju Island was investigated by reverse transcriptase polymerase chain reaction (RT-PCR). In total, 40 pigs with hepatitis lesions were selected from 19 different farms, based on examination by microscopy. RT-PCR findings revealed swine HEV in 22 cases (55%), including 18 suckling pigs and 4 growing pigs. Several histopathological lesions, including multifocal lymphoplasmacytic hepatitis, portal inflammation, and focal hepatocellular necrosis, were observed in liver sections of swine HEV PCR-positive pigs. The present study suggests that the prevalence of swine HEV is very high in the pig population in Jeju Island, and that pigs are infected at early stages of growth (under 2 months of age). The high prevalence of swine HEV in pigs in Jeju Island and the ability of this virus to infect across species puts people with swine-associated occupations at possible risk of zoonotic infection.
Collapse
Affiliation(s)
- Song Hak Lee
- Department of Veterinary Medicine, Cheju National University, Jeju 690-756, Korea
| | | | | | | | | |
Collapse
|
35
|
Levy MF, Argaw T, Wilson CA, Brooks J, Sandstrom P, Merks H, Logan J, Klintmalm G. No evidence of PERV infection in healthcare workers exposed to transgenic porcine liver extracorporeal support. Xenotransplantation 2007; 14:309-15. [PMID: 17669172 DOI: 10.1111/j.1399-3089.2007.00408.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Clinical xenotransplantation holds great promise by providing one solution to the shortage of human organs for transplantation, while also posing a potential public health threat by facilitating transmission of infectious disease from source animals to humans. One potential vector for infectious disease transmission is healthcare workers (HCW) who are involved in administering xenotransplantation procedures. METHODS In this study, we studied 49 healthcare workers involved in the care of two subjects who participated in a study of porcine liver perfusion as treatment of fulminant hepatic failure. We looked for serologic and virologic evidence of transmission of porcine endogenous retrovirus, and found that HCW had no evidence of infection. CONCLUSIONS Results of our survey demonstrate that application of standard precautions may be sufficient to prevent transmission of porcine endogenous retrovirus, an agent of concern in ex vivo xenotransplantation products.
Collapse
Affiliation(s)
- Marlon F Levy
- Baylor All Saints Medical Center, Fort Worth, TX 76104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Detection and Classification of Porcine Endogenous Retroviruses by Polymerase Chain Reaction. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2007. [DOI: 10.5187/jast.2007.49.3.405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Vajta G, Zhang Y, Macháty Z. Somatic cell nuclear transfer in pigs: recent achievements and future possibilities. Reprod Fertil Dev 2007; 19:403-23. [PMID: 17257528 DOI: 10.1071/rd06089] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 10/24/2006] [Indexed: 12/11/2022] Open
Abstract
During the past 6 years, considerable advancement has been achieved in experimental embryology of pigs. This process was mainly generated by the rapidly increasing need for transgenic pigs for biomedical research purposes, both for future xenotransplantation to replace damaged human organs or tissues, and for creating authentic animal models for human diseases to study aetiology, pathogenesis and possible therapy. Theoretically, among various possibilities, an established somatic cell nuclear transfer system with genetically engineered donor cells seems to be an efficient and reliable approach to achieve this goal. However, as the result of unfortunate coincidence of known and unknown factors, porcine embryology had been a handicapped branch of reproductive research in domestic animals and a very intensive and focused research was required to eliminate or minimise this handicap. This review summarises recent achievements both in the background technologies (maturation, activation, embryo culture) and the actual performance of the nuclear replacement. Recent simplified methods for in vivo development after embryo transfer are also discussed. Finally, several fields of potential application for human medical purposes are discussed. The authors conclude that although in this early phase of research no direct evidence can be provided about the practical use of transgenic pigs produced by somatic cell nuclear transfer as organ donors or disease models, the future chances even in medium term are good, and at least proportional with the efforts and sums that are invested into this research area worldwide.
Collapse
Affiliation(s)
- Gábor Vajta
- Population Genetics and Embryology, Department of Genetics and Biotechnology, Danish Institute of Agricultural Sciences, DK-8830 Tjele, Denmark.
| | | | | |
Collapse
|
38
|
Bishop JR, Gagneux P. Evolution of carbohydrate antigens--microbial forces shaping host glycomes? Glycobiology 2007; 17:23R-34R. [PMID: 17237137 DOI: 10.1093/glycob/cwm005] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Many glycans show remarkably discontinuous distribution across evolutionary lineages. These differences play major roles when organisms belonging to different lineages interact as host-pathogen or host-symbiont. Certain lineage-specific glycans have become important signals for multicellular host organisms, which use them as molecular signatures of their pathogens and symbionts through recognition by a toolkit of innate defense molecules. In turn, pathogens have evolved to exploit host lineage-specific glycans and are constantly shaping the glycomes of their hosts. These interactions take place in the face of numerous critical endogenous functions played by glycans within host organisms. Whether due to simple evolutionary divergence or adaptive changes under natural selection resulting from endogenous functional requirements, once different lineages elaborate on differential glycomes these mutual differences provide opportunities for host exploitation and/or pathogen defense between lineages. Such phylogenetic molecular recognition mechanisms will augment and likely contribute to the maintenance of lineage-specific differences in glycan repertoires.
Collapse
Affiliation(s)
- Joseph R Bishop
- Glycobiology Research and Training Center, Cellular and Molecular Medicine-East, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0687, USA
| | | |
Collapse
|
39
|
Popp SK, Mann DA, Milburn PJ, Gibbs AJ, McCullagh PJ, Wilson JD, Tönjes RR, Simeonovic CJ. Transient transmission of porcine endogenous retrovirus to fetal lambs after pig islet tissue xenotransplantation. Immunol Cell Biol 2007; 85:238-48. [PMID: 17228325 DOI: 10.1038/sj.icb.7100028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Evidence for the in vivo transmission of porcine endogenous retrovirus (PERV) from porcine xenografts to various recipient animals has been inconsistent. To characterize the contribution of the host immune system to the potential for PERV transmission from pig islet tissue xenografts to host tissues, we examined two immunoincompetent animal models, thymectomizsed fetal lambs and NODscid mice. Pig proislets were grafted into fetal lambs or adult NODscid mice. Conventional, nested and real-time PCR/RT-PCR tests were used to search for PERV and pig cell-specific sequences (porcine mitochondrial cytochrome oxidase II (COII) or mitochondrial ribosomal 12S) in pig proislets, host liver and spleen at 5-84 days (lambs) or 96 days (mice) after transplantation. Xenografts were harvested at the same time points. The copy number of PERV sequences and host cell-specific nuclear (palmitoylcarnitine transferase) sequences was assessed by real-time PCR to estimate the proportion of PERV-infected host cells. Pig proislets were shown to be PERV+ve by PCR and immunohistochemistry (PERV B env protein p15E). PERV transmission (PERV A, B or C DNA in the absence of porcine COII or 12S sequences) was detected by nested PCR and real-time PCR in 4/12 fetal lamb liver samples 5-23 days after transplantation; the maximum copy number of PERV B env sequences was found at day 5 (700 copies/1 x 10(6) lamb cells). A total of 4/12 fetal lambs demonstrated both PERV and 12S porcine sequences in liver samples (days 5-84) by real-time PCR, suggesting that pig cells had migrated to those tissues and established microchimerism; nested PCR showed evidence for microchimerism (porcine COII sequences alone) in 2/12 lambs (day 5). The incidence of PERV transmission and frequency of microchimerism was similar in host spleen analysed by real-time PCR. Histological examination showed complete xenograft rejection by 23 days after transplantation to fetal lambs. In contrast, pig proislet xenografts survived long term (> or =day 96) in NODscid mice but no PERV transmission was found. Both nested and real-time PCR assays revealed that 2/3 mice had become microchimeric. Long-term expression of PERV A, B and C as well as porcine 12S or COII RNAs was found at the graft site (day 96) only, indicating that PERV transcription and possibly replication, continued in the donor pig islet tissue after transplantation. Overall, detection of PERV transmission and microchimerism was limited by the sensitivity of the PCR assay and the primers chosen. The absence of stable PERV transmission and microchimerism in fetal lambs and the rejection of pig proislet xenografts correlated in time with the establishment of host immunocompetence. We therefore suggest that the frequent failure to identify PERV transmission late after transplantation could be due to the immunological destruction of PERV-infected host cells. Recipient NODscid mice demonstrated long-term microchimerism and intragraft PERV expression, which was consistent with their stable immunoincompetence.
Collapse
Affiliation(s)
- Sarah K Popp
- Division of Immunology and Genetics, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
When endogenous retroviruses (ERV) were discovered in the late 1960s, the Mendelian inheritance of retroviral genomes by their hosts was an entirely new concept. Indeed Howard M Temin's DNA provirus hypothesis enunciated in 1964 was not generally accepted, and reverse transcriptase was yet to be discovered. Nonetheless, the evidence that we accrued in the pre-molecular era has stood the test of time, and our hypothesis on ERV, which one reviewer described as 'impossible', proved to be correct. Here I recount some of the key observations in birds and mammals that led to the discovery of ERV, and comment on their evolution, cross-species dispersion, and what remains to be elucidated.
Collapse
Affiliation(s)
- Robin A Weiss
- Division of Infection & Immunity, University College London, 46 Cleveland Street, London W1T 4JF, UK.
| |
Collapse
|
41
|
Klymiuk N, Müller M, Brem G, Aigner B. Phylogeny, recombination and expression of porcine endogenous retrovirus gamma2 nucleotide sequences. J Gen Virol 2006; 87:977-986. [PMID: 16528048 DOI: 10.1099/vir.0.81552-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Endogenous retroviral sequences in the pig genome represent a potential infectious risk in xenotransplantation. Porcine endogenous retrovirus (PERV) gamma sequences described to date have been classified into several families. The known infectious, human-tropic PERVs have been assigned to the PERV gamma1 subfamilies A, B and C. High copy numbers and full-length clones have also been observed for an additional family, designated PERV gamma2. The aim of this study was to examine the PERV gamma2 family by analysis of retroviral pro/pol gene sequences. The proviral load was observed to be similar among various pig breeds. Although clones harbouring an open reading frame in the examined region were found, analysis of published large PERV gamma2 clones revealed multiple deleterious mutations in each of the retroviral genes. Various recombination events between gamma2 genomes were revealed. In contrast to PERV gamma1, phylogenetic analyses did not distinguish defined subfamilies, but indicated the independent evolution of the proviruses after a single event of retroviral amplification. Expression analysis showed large PERV gamma2 transcripts and variable transcription in several tissues. Analysis of the two published gamma2 env gene sequences observed the partial lack of the receptor-binding domain. Overall, this study indicated the low infectious potential for PERV gamma2.
Collapse
Affiliation(s)
- Nikolai Klymiuk
- ApoGene Biotechnologie, D-86567 Hilgertshausen, Germany
- Institut für Tierzucht und Genetik, Veterinärmedizinische Universität Wien, A-1210 Wien, Austria
| | - Mathias Müller
- Institut für Tierzucht und Genetik, Veterinärmedizinische Universität Wien, A-1210 Wien, Austria
| | | | - Bernhard Aigner
- Lehrstuhl für Molekulare Tierzucht und Biotechnologie, Ludwig-Maximilians-Universität München, D-85764 Oberschleißheim, Germany
| |
Collapse
|
42
|
Martina Y, Marcucci KT, Cherqui S, Szabo A, Drysdale T, Srinivisan U, Wilson CA, Patience C, Salomon DR. Mice transgenic for a human porcine endogenous retrovirus receptor are susceptible to productive viral infection. J Virol 2006; 80:3135-46. [PMID: 16537582 PMCID: PMC1440412 DOI: 10.1128/jvi.80.7.3135-3146.2006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Porcine endogenous retrovirus (PERV) is considered one of the major risks in xenotransplantation. No valid animal model has been established to evaluate the risks associated with PERV transmission to human patients by pig tissue xenotransplantation or to study the potential pathogenesis associated with PERV infection. In previous work we isolated two genes encoding functional human PERV receptors and proved that introduction of these into mouse fibroblasts allowed the normally nonpermissive mouse cells to become productively infected (T. A. Ericsson, Y. Takeuchi, C. Templin, G. Quinn, S. F. Farhadian, J. C. Wood, B. A. Oldmixon, K. M. Suling, J. K. Ishii, Y. Kitagawa, T. Miyazawa, D. R. Salomon, R. A. Weiss, and C. Patience, Proc. Natl. Acad. Sci. USA 100:6759-6764, 2003). In the present study we created mice transgenic for human PERV-A receptor 2 (HuPAR-2). After inoculation of transgenic animals with infectious PERV supernatants, viral DNA and RNA were detected at multiple time points, indicating productive replication. This establishes the role of HuPAR-2 in PERV infection in vivo; in addition, these transgenic mice represent a new model for determining the risk of PERV transmission and potential pathogenesis. These mice also create a unique opportunity to study the immune response to PERV infection and test potential therapeutic or preventative modalities.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Blotting, Western
- Cell Line
- DNA, Viral/analysis
- DNA, Viral/genetics
- DNA, Viral/isolation & purification
- Endogenous Retroviruses/genetics
- Endogenous Retroviruses/isolation & purification
- Endogenous Retroviruses/physiology
- Humans
- Mice
- Mice, Transgenic
- Microscopy, Confocal
- NIH 3T3 Cells
- RNA, Viral/analysis
- RNA, Viral/genetics
- RNA, Viral/isolation & purification
- Receptors, Virus/metabolism
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- Retroviridae Infections/transmission
- Retroviridae Infections/virology
- Reverse Transcriptase Polymerase Chain Reaction
- Swine/virology
- Time Factors
- Transgenes
- Virus Replication
Collapse
Affiliation(s)
- Y Martina
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Bottomley MJ, Baicu S, Boggs JM, Marshall DP, Clancy M, Brockbank KGM, Bravery CA. Preservation of embryonic kidneys for transplantation. Transplant Proc 2005; 37:280-4. [PMID: 15808619 DOI: 10.1016/j.transproceed.2005.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Long-term storage of embryonic kidneys is crucial for the organization of transplantation and organ banking. In this study, we investigated the effects of controlled-rate freezing and ice-free vitrification on metanephroi (MN) viability. METHODS Metanephroi isolated from 15-day (E15) timed pregnant Lewis rats were either: (i) frozen, using a DMSO/FCS/RPMI solution and a controlled freezing rate of -0.3 degrees C/min, from -10 degrees to -40 degrees C; or (ii) cryopreserved in an ice-free state by rapid cooling to -100 degrees C in cryoprotectant (VS55), followed by vitrification to -120 degrees C. After cryopreservation, the metanephroi were stored at -135 degrees C for 48 hours. After storage the MN were rewarmed, resuspended in culture media, and their viability was assessed using the AlamarBlue assay and histology (light microscopy, TEM, and cryosubstitution). RESULTS There was statistically no difference in embryonic kidney metabolic activity of either of the cryopreserved MN groups relative to the control untreated group. However, cryosubstitution demonstrated the presence of significant ice formation during controlled-rate freezing, yet in contrast the amount of ice was significantly reduced by vitrification. This was confirmed by TEM, where vacuolation of the cytoplasm of controlled-rate frozen metanephroi was observed, whereas vitrified metanephroi had little cytoplasmic disruption. However, vitrified metanephroi showed mitochondrial and nuclear injury at the cellular level. CONCLUSIONS There is a need for long-term storage of organs to make MN transplantation a reality. This study demonstrates that standard freezing methods are unsuitable for this purpose. Vitrification yielded more promising results, but further development is required.
Collapse
|
44
|
De Deyne PG, Kladakis SM. Bioscaffolds in tissue engineering: a rationale for use in the reconstruction of musculoskeletal soft tissues. Clin Podiatr Med Surg 2005; 22:521-32, v. [PMID: 16213377 DOI: 10.1016/j.cpm.2005.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bioscaffolds derived from animal tissues can be an appealing substrate to induce the formation of functional tissue (histogenesis) within the context of tissue engineering. Bioscaffolds obtained from the extracellular matrix not only contain collagen, which can provide mechanical support, but also include the required biologically active molecules that provide a stimulus for active tissue remodeling. Manufacturing, processing, and the tissue source of the biological scaffold affect the biologic outcome and are important in predicting the clinical results. This article discusses the merits and limitations of using bioscaffolds in soft tissue engineering.
Collapse
Affiliation(s)
- Patrick G De Deyne
- DePuy Biologics/Soft Tissue Technologies, 325 Paramount Drive, Raynham, MA 02767, USA.
| | | |
Collapse
|
45
|
Abstract
As measles virus causes subacute sclerosing panencephalitis and measles inclusion body encephalitis due to its ability to establish human persistent infection, without symptoms for the time between the acute infection and the onset of clinical symptoms, it has been the paradigm for a long term persistent as opposed to chronic infection by an RNA virus. We have reviewed the mechanisms of persistence of the virus and discuss specific mutations associated with CNS infection affecting the matrix and fusion protein genes. These are placed in the context of our current understanding of the viral replication cycle. We also consider the proposed mechanisms of persistence of the virus in replicating cell cultures and conclude that no general mechanistic model can be derived from our current state of knowledge. Finally, we indicate how reverse genetics approaches and the use of mouse models with specific knock-out and knock-in modifications can further our understanding of measles virus persistence.
Collapse
Affiliation(s)
- Bertus K Rima
- School of Biology and Biochemistry and Centre for Cancer Research and Cell Biology, The Queen's University of Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | | |
Collapse
|
46
|
Liu Q, Liu Z, Dalakas E. Prevalence of porcine endogenous retrovirus in Chinese pig breeds and in patients treated with a porcine liver cell-based bioreactor. World J Gastroenterol 2005; 11:4727-30. [PMID: 16094718 PMCID: PMC4615419 DOI: 10.3748/wjg.v11.i30.4727] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine the prevalence of porcine endogenous retrovirus (PERV) in various pig breeds raised in China including Chinese experimental mini-pigs by PERV-reverse transcriptase (PERV-RT enzyme). Moreover, the potential for infection of PERV was investigated in patients treated with a bioreactor based on porcine liver cells (n = 3).
METHODS: Pig serum, liver and muscle cell-free supernatants were collected from various Chinese pig breeds. Porcine hepatocytes were isolated with a two-step perfusion method. Three patients with acute or chronic liver failure were treated with a bioartificial liver support system (BALSS) for 8-12 h and serum samples were collected from the patients before, immediately after and 30 d after treatment.
RESULTS: The activities of PERV-RT enzyme in pig liver and muscle cell-free supernatants were higher than in normal human controls. PERV-TR enzyme activity did not increase in patients before and after 1 mo of treatment. PERV-RT activities were not significantly different when compared with pre-treatment group (1.544 ± 0.155576), the post-treatment groups (1.501 ± 0.053507, 1.461 ± 0.033808 and 1.6006667 ± 0.01963 for 0, 14 and 30 d post-treatment, respectively, P > 0.05), and normal control group (1.440 ± 1.0641, P > 0.05). RT enzyme activity in Chinese experimental mini-pigs was higher than in normal human control group (1.440 ± 1.0641 U/mL, P < 0.05), and not significantly different (P > 0.05) when compared with the pig breeds except in the muscle supernatants. All the samples including muscle and liver cell supernatants from the Chinese mini-experimental pigs and the four domestic Chinese pig breeds contained PERVs.
CONCLUSION: These results suggest that the risk of PERV infection through BALSS containing porcine liver cells without immunosuppressants may be quite low. Although there were PERVs in Chinese experimental mini-pigs and porcine liver cell culture suspensions, we did not find any evidence of persistent PERV infection in patients treated with this porcine hepatocyte-based bioartificial liver.
Collapse
Affiliation(s)
- Qing Liu
- Artificial Liver Treatment and Training Center, Beijing Youan Hospital, Capital University of Medical Sciences, China.
| | | | | |
Collapse
|
47
|
Abstract
Currently, the number of patients awaiting transplantation is continuously increasing, and shortage of available deceased organ donors is the major limitation for organ and cell allotransplantation. Research to develop alternative sources of tissues is ongoing and xenogeneic organs or cells represent an attractive solution. This review focuses on recent progress achieved in this field, including the development of newly genetically modified animal donors and new immunosuppressive approaches. As xenotransplantation is moving closer to clinical application, future perspectives must establish guidelines to ensure that future clinical trials are carried out ethically and safely.
Collapse
Affiliation(s)
- Pascal Bucher
- Surgical Research Unit, Department of Surgery, University Hospital Geneva, Switzerland
| | | | | |
Collapse
|
48
|
Morgan BP, Berg CW, Harris CL. ''Homologous restriction'' in complement lysis: roles of membrane complement regulators. Xenotransplantation 2005; 12:258-65. [PMID: 15943774 DOI: 10.1111/j.1399-3089.2005.00237.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The complement system is a powerful bactericidal immune defence with the potential to damage self cells. Protection of self is provided by expression on cells of a battery of membrane regulators that inhibit activation of complement. Roles of complement in the rejection of transplanted organs have long been recognized, and are particularly relevant in xenotransplantation, where hyperacute rejection is complement-driven. Inhibiting complement was therefore considered early in the history of xenografting, and the use of membrane complement regulators to this end was proposed more than two decades ago. For each of the membrane regulators in humans, early studies implied a species-specificity of action, inhibiting human complement but not that from other species. The dogma of species-specificity dictated strategies for inhibiting complement in xenografts and drove the creation of donor transgenic pigs expressing human regulators. Here we critically evaluate the evidence for species-specificity in membrane complement regulators from humans and other animals. We challenge the dogma and show that there is considerable cross-species activity for each of the membrane regulators of complement. Acceptance of the fact that species selectivity is not a limitation will open new avenues for protection of the xenograft from complement damage.
Collapse
Affiliation(s)
- B Paul Morgan
- Complement Biology Group, Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Cardiff, UK.
| | | | | |
Collapse
|
49
|
Loynachan AT, Pettigrew JE, Wiseman BS, Kunkle RA, Harris DL. Evaluation of a diet free of animal protein in germfree swine. Xenotransplantation 2005; 12:149-55. [PMID: 15693846 DOI: 10.1111/j.1399-3089.2005.00210.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Two experiments were conducted in which germfree pigs or pigs monoassociated with Lactobacillus paracasei subspecies paracasei were fed either a traditional milk-based diet (Esbilac) or an experimental diet free of animal protein (DFAP). METHODS Throughout the 16-day study, animals' clinical condition, total weight gain, feed conversion, and bacterial contamination were monitored. At the conclusion of the study the animals were killed, necropsied and tissues sampled for L. paracasei isolation. RESULTS General pig disposition remained consistent between treatment groups and trials, except for two animals that developed mild diarrhoea during trial 1. All pigs remained viable during the study irrespective the diet fed or probiotic inoculation. Germfree pigs fed the Esbilac diet gained on average a total of 1034 +/- 63.0 g, and had a feed conversion ratio of 0.17 +/- 0.01 g of gain per 1 ml of diet. Germfree pigs fed the experimental diet gained on average a total of 599 +/- 151 g, and had a feed conversion ratio of 0.10 +/- 0.02 g of gain per 1 ml of diet. Monoassociated pigs fed the Esbilac diet gained on average a total of 862 +/- 70.3 g, and had a feed conversion ratio 0.14 +/- 0.01 g of gain per 1 ml of diet. Monoassociated pigs fed the experimental diet gained on average a total of 563 +/- 96.8 g, and had a feed conversion ratio of 0.09 +/- 0.02 g of gain per 1 ml of diet. Lactobacillus paracasei established extensively in pigs fed either the Esbilac or experimental diets. Lactobacillus paracasei had no effect (P >0.05) on piglet growth and did not display any interactions based on the diet fed. Measured growth parameters were statistically different (P <0.05) based on the diet fed and variance seen between trials. CONCLUSION In conclusion, a DFAP has been developed and has been shown to be capable of sustaining life in piglets up to 16 days of age.
Collapse
Affiliation(s)
- A T Loynachan
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, IA 50011, USA.
| | | | | | | | | |
Collapse
|
50
|
Klymiuk N, Aigner B. Reliable Classification and Recombination Analysis of Porcine Endogenous Retroviruses. Virus Genes 2005; 30:357-62. [PMID: 15830154 DOI: 10.1007/s11262-004-6779-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Revised: 10/21/2004] [Accepted: 11/15/2004] [Indexed: 10/25/2022]
Abstract
Prevention of cross-species infection with porcine endogenous retroviruses (PERV) is crucial for xenotransplantation. Previous studies described the potential risk of infection for the PERV gamma1 subfamilies A, B and C. Replication competent PERV gamma1 proviruses designated to a particular subfamily and hybrid viruses originating from retroviral recombination events between the subfamilies were observed. Future pig genome sequencing projects will reveal multiple novel PERV proviruses from additional breeds and animals. Evaluation of these viral genomes has to be carried out to assess the potential risk of retroviral cross-species infection. In this study, we tested common sequence comparison methods for the classification of PERV sequences and the detection of hybrid clones. The examination of the polymorphic nucleotide positions was found to be the most suitable procedure. We describe a fast and simple method using bioinformatic software tools which can also be applied to analogous analyses of other viral genomes.
Collapse
Affiliation(s)
- Nikolai Klymiuk
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-University, Munich, Germany
| | | |
Collapse
|