1
|
Deguchi H, Morla S, Griffin JH. Novel blood coagulation molecules: Skeletal muscle myosin and cardiac myosin. J Thromb Haemost 2021; 19:7-19. [PMID: 32920971 PMCID: PMC7819347 DOI: 10.1111/jth.15097] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022]
Abstract
Essentials Striated muscle myosins can promote prothrombin activation by FXa or FVa inactivation by APC. Cardiac myosin and skeletal muscle myosin are pro-hemostatic in murine tail cut bleeding models. Infused cardiac myosin exacerbates myocardial injury caused by myocardial ischemia reperfusion. Skeletal muscle myosin isoforms that circulate in human plasma can be grouped into 3 phenotypes. ABSTRACT: Two striated muscle myosins, namely skeletal muscle myosin (SkM) and cardiac myosin (CM), may potentially contribute to physiologic mechanisms for regulation of thrombosis and hemostasis. Thrombin is generated from activation of prothrombin by the prothrombinase (IIase) complex comprising factor Xa, factor Va, and Ca++ ions located on surfaces where these factors are assembled. We discovered that SkM and CM, which are abundant motor proteins in skeletal and cardiac muscles, can provide a surface for thrombin generation by the prothrombinase complex without any apparent requirement for phosphatidylserine or lipids. These myosins can also provide a surface that supports the inactivation of factor Va by activated protein C/protein S, resulting in negative feedback downregulation of thrombin generation. Although the physiologic significance of these reactions remains to be established for humans, substantive insights may be gleaned from murine studies. In mice, exogenously infused SkM and CM can promote hemostasis as they are capable of reducing tail cut bleeding. In a murine myocardial ischemia-reperfusion injury model, exogenously infused CM exacerbates myocardial infarction damage. Studies of human plasmas show that SkM antigen isoforms of different MWs circulate in human plasma, and they can be used to identify three plasma SkM phenotypes. A pilot clinical study showed that one SkM isoform pattern appeared to be linked to isolated pulmonary embolism. These discoveries enable multiple preclinical and clinical studies of SkM and CM, which should provide novel mechanistic insights with potential translational relevance for the roles of CM and SkM in the pathobiology of hemostasis and thrombosis.
Collapse
Affiliation(s)
- Hiroshi Deguchi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Shravan Morla
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - John H Griffin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Division of Hematology, Department of Medicine, University of California, San Diego, CA, USA
| |
Collapse
|
2
|
Tatsumi K, Schmedes CM, Houston ER, Butler E, Mackman N, Antoniak S. Protease-activated receptor 4 protects mice from Coxsackievirus B3 and H1N1 influenza A virus infection. Cell Immunol 2019; 344:103949. [PMID: 31337508 DOI: 10.1016/j.cellimm.2019.103949] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/20/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
Abstract
PAR4 is expressed by a variety of cells, including platelets, cardiac, lung and immune cells. We investigated the contribution of PAR4 to viral infections of the heart and lung. Toll-like receptor (TLR) 3-dependent immune responses were analyzed after co-stimulation of PAR4 in murine bone-marrow derived macrophages, embryonic fibroblasts and embryonic cardiomyocytes. In addition, we analyzed Coxsackievirus B3 (CVB3) or H1N1 influenza A virus (H1N1 IAV) infection of PAR4-/- (ΔPAR4) and wild-type (WT) mice. Lastly, we investigated the effect of platelet inhibition on H1N1 IAV infection. In vitro experiments revealed that PAR4 stimulation enhances the expression of TLR3-dependent CXCL10 expression and decreases TLR3-dependent NFκB-mediated proinflammatory gene expression. Furthermore, CVB3-infected ΔPAR4 mice exhibited a decreased anti-viral response and increased viral genomes in the heart leading to more pronounced CVB3 myocarditis compared to WT mice. Similarly, H1N1 IAV-infected ΔPAR4 mice had increased immune cell numbers and inflammatory mediators in the lung, and increased mortality compared with infected WT controls. The study showed that PAR4 protects mice from viral infections of the heart and lung.
Collapse
Affiliation(s)
- Kohei Tatsumi
- Department of Medicine, Thrombosis and Hemostasis Program, Division of Hematology and Oncology, UNC McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Clare M Schmedes
- Department of Medicine, Thrombosis and Hemostasis Program, Division of Hematology and Oncology, UNC McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - E Reaves Houston
- Department of Medicine, Thrombosis and Hemostasis Program, Division of Hematology and Oncology, UNC McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Emily Butler
- Department of Medicine, Thrombosis and Hemostasis Program, Division of Hematology and Oncology, UNC McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Nigel Mackman
- Department of Medicine, Thrombosis and Hemostasis Program, Division of Hematology and Oncology, UNC McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Silvio Antoniak
- Department of Pathology and Laboratory Medicine, UNC McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Cushman M. Advancing a new journal: Research and Practice in Thrombosis and Haemostasis. Res Pract Thromb Haemost 2019; 3:307-308. [PMID: 31294315 PMCID: PMC6611367 DOI: 10.1002/rth2.12219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Mary Cushman
- Research and Practice in Thrombosis and Haemostasis Larner College of Medicine at the University of Vermont Burlington Burlington Vermont
| |
Collapse
|
4
|
Ward CM, Andrews RK. Short and sweet science. Res Pract Thromb Haemost 2019; 3:429-430. [PMID: 31294332 PMCID: PMC6611374 DOI: 10.1002/rth2.12224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/03/2022] Open
Affiliation(s)
- Christopher M. Ward
- Department of Haematology and Transfusion MedicineRoyal North Shore HospitalSydneyNew South WalesAustralia
- Northern Blood Research CentreKolling Institute of Medical Research University of SydneySydneyNew South WalesAustralia
| | - Robert K. Andrews
- Australian Centre for Blood DiseasesMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
5
|
Wolberg AS, Cushman M. Illustrated review article: A new format for disseminating scientific progress. Res Pract Thromb Haemost 2018; 2:405-406. [PMID: 30046745 PMCID: PMC6046585 DOI: 10.1002/rth2.12124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
| | - Mary Cushman
- Larner College of Medicine at the University of VermontBurlingtonVTUSA
| |
Collapse
|