1
|
Zhu W, Wang R, Yang Z, Luo X, Yu B, Zhang J, Fu M. GC-MS based comparative metabolomic analysis of human cancellous bone reveals the critical role of linoleic acid metabolism in femur head necrosis. Metabolomics 2023; 19:86. [PMID: 37776501 DOI: 10.1007/s11306-023-02053-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023]
Abstract
INTRODUCTION Femur head necrosis (FHN) is a challenging clinical disease with unclear underlying mechanism, which pathologically is associated with disordered metabolism. However, the disordered metabolism in cancellous bone of FHN was never analyzed by gas chromatography-mass spectrometry (GC-MS). OBJECTIVES To elucidate altered metabolism pathways in FHN and identify putative biomarkers for the detection of FHN. METHODS We recruited 26 patients with femur head necrosis and 22 patients with femur neck fracture in this study. Cancellous bone tissues from the femoral heads were collected after the surgery and were analyzed by GC-MS based untargeted metabolomics approach. The resulting data were analyzed via uni- and multivariate statistical approaches. The changed metabolites were used for the pathway analysis and potential biomarker identification. RESULTS Thirty-seven metabolites distinctly changed in FHN group were identified. Among them, 32 metabolites were upregulated and 5 were downregulated in FHN. The pathway analysis showed that linoleic acid metabolism were the most relevant to FHN pathology. On the basis of metabolites network, L-lysine, L-glutamine and L-serine were deemed as the junctions of the whole metabolites. Finally, 9,12-octadecadienoic acid, inosine, L-proline and octadecanoic acid were considered as the potential biomarkers of FHN. CONCLUSION This study provides a new insight into the pathogenesis of FHN and confirms linoleic acid metabolism as the core.
Collapse
Affiliation(s)
- Weiwen Zhu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Rui Wang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Zhijian Yang
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Xuming Luo
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Baoxi Yu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Jian Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Ming Fu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
2
|
Kim BR, Yoon JW, Choi H, Kim D, Kang S, Kim JH. Application of periostin peptide-decorated self-assembled protein cage nanoparticles for therapeutic angiogenesis. BMB Rep 2022. [PMID: 34814976 PMCID: PMC9058470 DOI: 10.5483/bmbrep.2022.55.4.137] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peptides are gaining substantial attention as therapeutics for human diseases. However, they have limitations such as low bioavailability and poor pharmacokinetics. Periostin, a matricellular protein, can stimulate the repair of ischemic tissues by promoting angiogenesis. We have previously reported that a novel angiogenic peptide (amino acids 142-151) is responsible for the pro-angiogenic activity of periostin. To improve the in vivo delivery efficiency of periostin peptide (PP), we used proteins self-assembled into a hollow cage-like structure as a drug delivery nanoplatform in the present study. The periostin peptide was genetically inserted into lumazine synthase (isolated from Aquifex aeolicus) consisting of 60 identical subunits with an icosahedral capsid architecture. The periostin peptide-bearing lumazine synthase protein cage nanoparticle with 60 periostin peptides multivalently displayed was expressed in Escherichia coli and purified to homogeneity. Next, we examined angiogenic activities of this periostin peptide-bearing lumazine synthase protein cage nanoparticle. AaLS-periostin peptide (AaLS-PP), but not AaLS, promoted migration, proliferation, and tube formation of human endothelial colony-forming cells in vitro. Intramuscular injection of PP and AaLS-PP increased blood perfusion and attenuated severe limb loss in the ischemic hindlimb. However, AaLS did not increase blood perfusion or alleviate tissue necrosis. Moreover, in vivo administration of AaLS-PP, but not AaLS, stimulated angiogenesis in the ischemic hindlimb. These results suggest that AaLS is a highly useful nanoplatform for delivering pro-angiogenic peptides such as PP.
Collapse
Affiliation(s)
- Ba Reun Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas 75390-9071, TX, USA
| | - Jung Won Yoon
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Hyukjun Choi
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Dasol Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Sebyung Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Jae Ho Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
- Research Institute of Convergence Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea
| |
Collapse
|
3
|
Kim BR, Yoon JW, Choi H, Kim D, Kang S, Kim JH. Application of periostin peptide-decorated self-assembled protein cage nanoparticles for therapeutic angiogenesis. BMB Rep 2022; 55:175-180. [PMID: 34814976 PMCID: PMC9058470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/14/2021] [Accepted: 11/10/2021] [Indexed: 09/17/2023] Open
Abstract
Peptides are gaining substantial attention as therapeutics for human diseases. However, they have limitations such as low bioavailability and poor pharmacokinetics. Periostin, a matricellular protein, can stimulate the repair of ischemic tissues by promoting angiogenesis. We have previously reported that a novel angiogenic peptide (amino acids 142-151) is responsible for the pro-angiogenic activity of periostin. To improve the in vivo delivery efficiency of periostin peptide (PP), we used proteins self-assembled into a hollow cage-like structure as a drug delivery nanoplatform in the present study. The periostin peptide was genetically inserted into lumazine synthase (isolated from Aquifex aeolicus) consisting of 60 identical subunits with an icosahedral capsid architecture. The periostin peptide-bearing lumazine synthase protein cage nanoparticle with 60 periostin peptides multivalently displayed was expressed in Escherichia coli and purified to homogeneity. Next, we examined angiogenic activities of this periostin peptide-bearing lumazine synthase protein cage nanoparticle. AaLS-periostin peptide (AaLS-PP), but not AaLS, promoted migration, proliferation, and tube formation of human endothelial colony-forming cells in vitro. Intramuscular injection of PP and AaLS-PP increased blood perfusion and attenuated severe limb loss in the ischemic hindlimb. However, AaLS did not increase blood perfusion or alleviate tissue necrosis. Moreover, in vivo administration of AaLS-PP, but not AaLS, stimulated angiogenesis in the ischemic hindlimb. These results suggest that AaLS is a highly useful nanoplatform for delivering pro-angiogenic peptides such as PP. [BMB Reports 2022; 55(4): 175-180].
Collapse
Affiliation(s)
- Ba Reun Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea, Yangsan 50612, Korea
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas 75390-9071, TX, USA, Yangsan 50612, Korea
| | - Jung Won Yoon
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea, Yangsan 50612, Korea
| | - Hyukjun Choi
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Dasol Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea, Yangsan 50612, Korea
| | - Sebyung Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Jae Ho Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea, Yangsan 50612, Korea
- Research Institute of Convergence Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea
| |
Collapse
|
4
|
Combined administration of laminin-221 and prostacyclin agonist enhances endogenous cardiac repair in an acute infarct rat heart. Sci Rep 2021; 11:22243. [PMID: 34782616 PMCID: PMC8593012 DOI: 10.1038/s41598-021-00918-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 09/27/2021] [Indexed: 11/24/2022] Open
Abstract
Although endogenous cardiac repair by recruitment of stem cells may serve as a therapeutic approach to healing a damaged heart, how to effectively enhance the migration of stem cells to the damaged heart is unclear. Here, we examined whether the combined administration of prostacyclin agonist (ONO1301), a multiple-cytokine inducer, and stem cell niche laminin-221 (LM221), enhances regeneration through endogenous cardiac repair. We administered ONO1301- and LM221-immersed sheets, LM221-immersed sheets, ONO1301-immersed sheets, and PBS-immersed sheets (control) to an acute infarction rat model. Four weeks later, cardiac function, histology, and cytokine expression were analysed. The combined administration of LM221 and ONO1301 upregulated angiogenic and chemotactic factors in the myocardium after 4 weeks and enhanced the accumulation of ILB4 positive cells, SMA positive cells, and platelet-derived growth factor receptor alpha (PDGFRα) and CD90 double-positive cells, leading to the generation of mature microvascular networks. Interstitial fibrosis reduced and functional recovery was prominent in LM221- and ONO1301-administrated hearts as compared with those in ONO1301-administrated or control hearts. LM221 and ONO1301 combination enhanced recruitment of PDGFRα and CD90 double-positive cells, maturation of vessels, and functional recovery in rat acute myocardial infarction hearts, highlighting a new promising acellular approach for the failed heart.
Collapse
|
5
|
Quiroz HJ, Valencia SF, Liu ZJ, Velazquez OC. Increasing the Therapeutic Potential of Stem Cell Therapies for Critical Limb Ischemia. HSOA JOURNAL OF STEM CELLS RESEARCH, DEVELOPMENT & THERAPY 2020; 6:024. [PMID: 35155811 PMCID: PMC8829965 DOI: 10.24966/srdt-2060/100024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peripheral Arterial Disease (PAD) is a progressive, atherosclerotic disease that at its end stage, Critical Limb Ischemia (CLI), results in severely diminished limb perfusion and causes leg pain at rest, non-healing ulcers, and tissue gangrene. Many patients with CLI fail current medical and surgical therapies and thus are deemed "no option" and require limb amputation. Novel therapies to attempt limb salvage in these "no option" patients are needed. Stem cell therapy is one therapeutic angiogenic avenue that has been tested over the last 20 years. To date, clinical trials have shown promise but with only modest improvement and none demonstrated a significant decrease in amputation rates in those treated with stem cell therapy. Thus, recent investigations into improving stem cell therapy have been the focus of our laboratory and many others. This review aims to describe recent advances in increasing the therapeutic potential of stem cell therapies for CLI.
Collapse
Affiliation(s)
- Hallie J Quiroz
- Dewitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, USA
| | | | - Zhao-Jun Liu
- Dewitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, USA
| | - Omaida C Velazquez
- Dewitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, USA
| |
Collapse
|
6
|
Beegle JR. A Preview of Selected Articles. Stem Cells 2019. [DOI: 10.1002/stem.2990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Julie R. Beegle
- Institute for Regenerative Cures, University of California, Davis, Sacramento, California, USA
| |
Collapse
|
7
|
Role of stem cell mobilization in the treatment of ischemic diseases. Arch Pharm Res 2019; 42:224-231. [PMID: 30680545 DOI: 10.1007/s12272-019-01123-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/16/2019] [Indexed: 12/13/2022]
Abstract
Stem cell mobilization plays important roles in the treatment of severe ischemic diseases, including myocardial infarction, limb ischemia, ischemic stroke, and acute kidney injury. Stem cell mobilization refers to the egress of heterogeneous stem cells residing in the bone marrow into the peripheral blood. In the clinic, granulocyte colony-stimulating factor (G-CSF) is the drug most commonly used to induce stem cell mobilization. Plerixafor, a direct antagonist of CXCR4, is also frequently used alone or in combination with G-CSF to mobilize stem cells. The molecular mechanisms by which G-CSF induces stem cell mobilization are well characterized. Briefly, G-CSF activates neutrophils in the bone marrow, which then release proteolytic enzymes, such as neutrophil elastase, cathepsin G, and matrix metalloproteinase 9, which cleave a variety of molecules responsible for stem cell retention in the bone marrow, including CXCL12, VCAM-1, and SCF. Subsequently, stem cells are released from the bone marrow into the peripheral blood. The released stem cells can be collected and used in autologous or allogeneic transplantation. To identify better conditions for stem cell mobilization in the treatment of acute and chronic ischemic diseases, several preclinical and clinical studies have been conducted over the past decade on various mobilizing agents. In this paper, we are going to review methods that induce mobilization of stem cells from the bone marrow and introduce the application of stem cell mobilization to therapy of ischemic diseases.
Collapse
|