1
|
Geng X, Fu Z, Geng G, Chi K, Liu C, Hong H, Cai G, Chen X, Hong Q. Astilbin improves the therapeutic effects of mesenchymal stem cells in AKI-CKD mice by regulating macrophage polarization through PTGS2-mediated pathway. Stem Cell Res Ther 2024; 15:427. [PMID: 39543734 PMCID: PMC11566621 DOI: 10.1186/s13287-024-04025-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Although mesenchymal stem cells (MSCs) have been proven to be appropriate candidates for the treatment of AKI-CKD, their efficacy is limited and variable. Astilbin (AST) had a protective effect on MSCs from oxidative stress via ROS-scavenging, however, whether it can improve MSCs' renoprotection and the underlying mechanism need to be elucidated. METHODS AST-pretreated MSCs were administered intravenously into the ischemia-reperfusion injury mice models and the renal function, pathological changes and inflammation. Were evaluated. In addition, DARTS, molecular docking, surface plasma resonance(SPR), dual-luciferase reporter gene assay and the ChIP-PCR were utilized to explore the potential signaling pathways through which AST exert renal protective effects on MSCs. RESULTS AST-pretreated MSCs markedly improved kidney function, reduced kidney pathological injury and inflammation in AKI and AKI-CKD mice. RNA-seq results showed that PTGS2 related pathway was significantly up-regulated in MSCs after AST pretreatment. DARTS assay, molecular docking and SPR assay revealed that AST could bind with the transcriptional factor of Kruppel-Like Factor 4(KLF4) protein. The promoter of PTGS2 had the binding and transcriptional activation by KLF4. Furthermore, AST pretreatment promoted the secretion of PGE2 in MSCs. And then the westren blot results showed that the protein levels of CD163 and CD206 were upregulated after coculture in AST-pretreated MSCs, indicating that the polarization of RAW264.7 cells towards M2-like macrophages was induced. Knockdown of PTGS2 reversed the ability of AST-pretreated MSCs in converting macrophages to M2 phenotype and reducing their therapeutic effects on AKI-CKD mice. CONCLUSION AST pretreatment enhances the efficacy of MSCs on AKI and AKI-CKD mice by inducing of M2-like phenotype polarization in macrophages through the PTGS2-mediated pathway. This approach not only provides a novel strategy to strengthen the capability of MSCs but also helps elucidate the beneficial effects of the Chinese herbal medicine AST.
Collapse
Affiliation(s)
- Xiaodong Geng
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
- Healthcare Office of Service Bureau, Agency for Offices Administration, Central Military Commission, People's Republic of China, Beijing, 100034
| | - Zhangning Fu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Guangrui Geng
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Critical Care Medicine, 920th Hospital of Joint Logistics Support Force of Chinese PLA, Kunming, 650032, Yunnan Province, China
| | - Kun Chi
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Chao Liu
- Department of Critical Care Medicine, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Haijuan Hong
- Department of Nephrology, Shanghai Songjiang District Central Hospital, Shanghai, 201600, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China.
- Medical School of Chinese PLA, Beijing, 100853, China.
| |
Collapse
|
2
|
Williams ZJ, Pezzanite LM, Chow L, Rockow M, Dow SW. Evaluation of stem-cell therapies in companion animal disease models: a concise review (2015-2023). Stem Cells 2024; 42:677-705. [PMID: 38795363 DOI: 10.1093/stmcls/sxae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/25/2024] [Indexed: 05/27/2024]
Abstract
Companion animals in veterinary medicine develop multiple naturally occurring diseases analogous to human conditions. We previously reported a comprehensive review on the feasibility, safety, and biologic activity of using novel stem cell therapies to treat a variety of inflammatory conditions in dogs and cats (2008-2015) [Hoffman AM, Dow SW. Concise review: stem cell trials using companion animal disease models. Stem Cells. 2016;34(7):1709-1729. https://doi.org/10.1002/stem.2377]. The purpose of this review is to provide an updated summary of current studies in companion animal disease models that have evaluated stem cell therapeutics that are relevant to human disease. Here we have reviewed the literature from 2015 to 2023 for publications on stem cell therapies that have been evaluated in companion animals, including dogs, cats, and horses. The review excluded case reports or studies performed in experimentally induced models of disease, studies involving cancer, or studies in purpose-bred laboratory species such as rodents. We identified 45 manuscripts meeting these criteria, an increase from 19 that were described in the previous review [Hoffman AM, Dow SW. Concise review: stem cell trials using companion animal disease models. Stem Cells. 2016;34(7):1709-1729. https://doi.org/10.1002/stem.2377]. The majority of studies were performed in dogs (n = 28), with additional studies in horses (n = 9) and cats (n = 8). Disease models included those related to musculoskeletal disease (osteoarthritis and tendon/ligament injury), neurologic disease (canine cognitive dysfunction, intervertebral disc disease, spinal cord injury) gingival/dental disease (gingivostomatitis), dermatologic disease (atopic dermatitis), chronic multi-drug resistant infections, ophthalmic disease (keratoconjunctivitis sicca, eosinophilic keratitis, immune-mediated keratitis), cardiopulmonary disease (asthma, degenerative valve disease, dilated cardiomyopathy), gastrointestinal disease (inflammatory bowel disease, chronic enteropathy), and renal disease (chronic kidney disease). The majority of studies reported beneficial responses to stem cell treatment, with the exception of those related to more chronic processes such as spinal cord injury and chronic kidney disease. However, it should also be noted that 22 studies were open-label, baseline-controlled trials and only 12 studies were randomized and controlled, making overall study interpretation difficult. As noted in the previous review, improved regulatory oversight and consistency in manufacturing of stem cell therapies are needed. Enhanced understanding of the temporal course of disease processes using advanced-omics approaches may further inform mechanisms of action and help define appropriate timing of interventions. Future directions of stem-cell-based therapies could include use of stem-cell-derived extracellular vesicles, or cell conditioning approaches to direct cells to specific pathways that are tailored to individual disease processes and stages of illness.
Collapse
Affiliation(s)
- Zoë J Williams
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Lynn M Pezzanite
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Lyndah Chow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Meagan Rockow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Steven W Dow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, United States
| |
Collapse
|
3
|
Din MAU, Wan A, Chu Y, Zhou J, Yan Y, Xu Z. Therapeutic role of extracellular vesicles from human umbilical cord mesenchymal stem cells and their wide therapeutic implications in inflammatory bowel disease and other inflammatory disorder. Front Med (Lausanne) 2024; 11:1406547. [PMID: 39139783 PMCID: PMC11319305 DOI: 10.3389/fmed.2024.1406547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024] Open
Abstract
The chronic immune-mediated inflammatory condition known as inflammatory bowel disease (IBD) significantly affects the gastrointestinal system. While the precise etiology of IBD remains elusive, extensive research suggests that a range of pathophysiological pathways and immunopathological mechanisms may significantly contribute as potential factors. Mesenchymal stem cells (MSCs) have shown significant potential in the development of novel therapeutic approaches for various medical conditions. However, some MSCs have been found to exhibit tumorigenic characteristics, which limit their potential for medical treatments. The extracellular vesicles (EVs), paracrine factors play a crucial role in the therapeutic benefits conferred by MSCs. The EVs consist of proteins, microRNAs, and lipids, and are instrumental in facilitating intercellular communication. Due to the ease of maintenance, and decreased immunogenicity, tumorigenicity the EVs have become a new and exciting option for whole cell treatment. This review comprehensively assesses recent preclinical research on human umbilical cord mesenchymal stem cell (hUC-MSC)-derived EVs as a potential IBD therapy. It comprehensively addresses key aspects of various conditions, including diabetes, cancer, dermal injuries, neurological disorders, cardiovascular issues, liver and kidney diseases, and bone-related afflictions.
Collapse
Affiliation(s)
- Muhammad Azhar Ud Din
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine Jiangsu University, Zhenjiang, China
| | | | - Ying Chu
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| | - Jing Zhou
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| | - Yongmin Yan
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| | - Zhiliang Xu
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| |
Collapse
|
4
|
Manskikh VN. Organ Frame Elements or Free Intercellular Gel-Like Matrix as Necessary Conditions for Building Organ Structures during Regeneration. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:269-278. [PMID: 38622095 DOI: 10.1134/s000629792402007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/02/2023] [Accepted: 11/15/2023] [Indexed: 04/17/2024]
Abstract
Over the past decades, an unimaginably large number of attempts have been made to restore the structure of mammalian organs after injury by introducing stem cells into them. However, this procedure does not lead to full recovery. At the same time, it is known that complete regeneration (restitution without fibrosis) is possible in organs with proliferating parenchymal cells. An analysis of such models allows to conclude that the most important condition for the repair of histological structures of an organ (in the presence of stem cells) is preservation of the collagen frame structures in it, which serve as "guide rails" for proliferating and differentiating cells. An alternative condition for complete reconstruction of organ structures is the presence of a free "morphogenetic space" containing a gel-like matrix of the embryonic-type connective tissue, which exists during embryonal development of organs in mammals or during complete regeneration in amphibians. Approaches aimed at preserving frame structures or creating a "morphogenetic space" could radically improve the results of organ regeneration using both local and exogenous stem cells.
Collapse
Affiliation(s)
- Vasily N Manskikh
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
5
|
Rajput S, Malviya R, Uniyal P. Advances in the Treatment of Kidney Disorders using Mesenchymal Stem Cells. Curr Pharm Des 2024; 30:825-840. [PMID: 38482624 DOI: 10.2174/0113816128296105240305110312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/20/2024] [Indexed: 06/04/2024]
Abstract
Renal disease is a medical condition that poses a potential threat to the life of an individual and is related to substantial morbidity and mortality rates in clinical environments. The aetiology of this condition is influenced by multiple factors, and its incidence tends to increase with progressive aging. Although supportive therapy and kidney transplantation have potential advantages, they also have limitations in terms of mitigating the progression of KD. Despite significant advancements in the domain of supportive therapy, mortality rates in patients continue to increase. Due to their ability to self-renew and multidirectionally differentiate, stem cell therapy has been shown to have tremendous potential in the repair of the diseased kidney. MSCs (Mesenchymal stem cells) are a cell population that is extensively distributed and can be located in various niches throughout an individual's lifespan. The cells in question are characterised by their potential for indefinite replication and their aptitude for undergoing differentiation into fully developed cells of mesodermal origin under laboratory conditions. It is essential to emphasize that MSCs have demonstrated a favorable safety profile and efficacy as a therapeutic intervention for renal diseases in both preclinical as well as clinical investigations. MSCs have been found to slow the advancement of kidney disease, and this impact is thought to be due to their control over a number of physiological processes, including immunological response, tubular epithelial- mesenchymal transition, oxidative stress, renal tubular cell death, and angiogenesis. In addition, MSCs demonstrate recognised effectiveness in managing both acute and chronic kidney diseases via paracrine pathways. The proposal to utilise a therapy that is based on stem-cells as an effective treatment has been put forward in search of discovering novel therapies to promote renal regeneration. Preclinical researchers have demonstrated that various types of stem cells can provide advantages in acute and chronic kidney disease. Moreover, preliminary results from clinical trials have suggested that these interventions are both safe and well-tolerated. This manuscript provides a brief overview of the potential renoprotective effects of stem cell-based treatments in acute as well as chronic renal dysfunction. Furthermore, the mechanisms that govern the process of kidney regeneration induced by stem cells are investigated. This article will examine the therapeutic approaches that make use of stem cells for the treatment of kidney disorders. The analysis will cover various cellular sources that have been utilised, potential mechanisms involved, and the outcomes that have been achieved so far.
Collapse
Affiliation(s)
- Shivam Rajput
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Prerna Uniyal
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| |
Collapse
|
6
|
Singh J, Singh S. Review on kidney diseases: types, treatment and potential of stem cell therapy. RENAL REPLACEMENT THERAPY 2023; 9:21. [PMID: 37131920 PMCID: PMC10134709 DOI: 10.1186/s41100-023-00475-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/11/2023] [Indexed: 05/04/2023] Open
Abstract
Renal disorders are an emerging global public health issue with a higher growth rate despite progress in supportive therapies. In order to find more promising treatments to stimulate renal repair, stem cell-based technology has been proposed as a potentially therapeutic option. The self-renewal and proliferative nature of stem cells raised the hope to fight against various diseases. Similarly, it opens a new path for the treatment and repair of damaged renal cells. This review focuses on the types of renal diseases; acute and chronic kidney disease-their statistical data, and the conventional drugs used for treatment. It includes the possible stem cell therapy mechanisms involved and outcomes recorded so far, the limitations of using these regenerative medicines, and the progressive improvement in stem cell therapy by adopting approaches like PiggyBac, Sleeping Beauty, and the Sendai virus. Specifically, about the paracrine activities of amniotic fluid stem cells, renal stem cells, embryonic stem cells, mesenchymal stem cell, induced pluripotent stem cells as well as other stem cells.
Collapse
Affiliation(s)
- Jaspreet Singh
- School of Bioengineering & Biosciences, Lovely Professional University, 15935, Block 56, Room No 202, Phagwara, Punjab 144411 India
| | - Sanjeev Singh
- School of Bioengineering & Biosciences, Lovely Professional University, 15935, Block 56, Room No 202, Phagwara, Punjab 144411 India
| |
Collapse
|
7
|
Soleimani M, Masoumi A, Momenaei B, Cheraqpour K, Koganti R, Chang AY, Ghassemi M, Djalilian AR. Applications of mesenchymal stem cells in ocular surface diseases: sources and routes of delivery. Expert Opin Biol Ther 2023; 23:509-525. [PMID: 36719365 PMCID: PMC10313829 DOI: 10.1080/14712598.2023.2175605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) are novel, promising agents for treating ocular surface disorders. MSCs can be isolated from several tissues and delivered by local or systemic routes. They produce several trophic factors and cytokines, which affect immunomodulatory, transdifferentiating, angiogenic, and pro-survival pathways in their local microenvironment via paracrine secretion. Moreover, they exert their therapeutic effect through a contact-dependent manner. AREAS COVERED In this review, we discuss the characteristics, sources, delivery methods, and applications of MSCs in ocular surface disorders. We also explore the potential application of MSCs to inhibit senescence at the ocular surface. EXPERT OPINION Therapeutic application of MSCs in ocular surface disorders are currently under investigation. One major research area is corneal epitheliopathies, including chemical or thermal burns, limbal stem cell deficiency, neurotrophic keratopathy, and infectious keratitis. MSCs can promote corneal epithelial repair and prevent visually devastating sequelae of non-healing wounds. However, the optimal dosages and delivery routes have yet to be determined and further clinical trials are needed to address these fundamental questions.
Collapse
Affiliation(s)
- Mohammad Soleimani
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Masoumi
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bita Momenaei
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Kasra Cheraqpour
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Arthur Y Chang
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Mahmoud Ghassemi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
8
|
Wang SY, Xu Y, Hong Q, Chen XM, Cai GY. Mesenchymal stem cells ameliorate cisplatin-induced acute kidney injury via let-7b-5p. Cell Tissue Res 2022; 392:517-533. [PMID: 36543894 DOI: 10.1007/s00441-022-03729-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022]
Abstract
Acute kidney injury (AKI) is a clinically common kidney disease. Age is an important factor that contributes to the susceptibility to AKI. Mesenchymal stem cells (MSCs) are a promising therapy for AKI, and miRNAs in exosomes (Exos) derived from MSCs are an important aspect of MSC treatment. However, the therapeutic effect of miRNA from MSC-derived Exos on AKI and the related mechanism have not been fully clarified. Whether there is a relationship between the mechanisms of senescence for AKI susceptibility and the therapeutic effect of MSCs has not been studied. We compared the degree of cisplatin-induced AKI injury in young and elderly mice and investigated changes in the expression of p53 and markers of DNA damage and apoptosis, which are important in both senescence and AKI. Ageing mice exhibited increased expression of p53 and pro-apoptosis markers. Upregulation of the senescence-associated DNA damage/p53 pathway may be an important susceptibility factor for cisplatin-induced AKI. Treatment with MSCs can reduce the degree of DNA damage and suppress p53 expression and apoptosis. Upon screening for differentially expressed miRNAs, let-7b-5p levels were found to be lower in aged mice than in young mice, and MSC treatment increased let-7b-5p levels. The presence of let-7b-5p in MSC-derived Exos alleviates tubular epithelial cell apoptosis by inhibiting p53, which reduces DNA damage and apoptosis pathway activity. Let-7b-5p downregulation may lead to increased renal AKI susceptibility, thus indicating that this miRNA is a potential driver of the MSC treatment response in AKI.
Collapse
|
9
|
Paul Owens E, Grania Healy H, Andrew Vesey D, Elizabeth Hoy W, Carolyn Gobe G. Targeted biomarkers of progression in chronic kidney disease. Clin Chim Acta 2022; 536:18-28. [PMID: 36041551 DOI: 10.1016/j.cca.2022.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Chronic kidney disease (CKD) is an increasingly significant health issue worldwide. Early stages of CKD can be asymptomatic and disease trajectory difficult to predict. Not everyone with CKD progresses to kidney failure, where kidney replacement therapy is the only life-sustaining therapy. Predicting which patients will progress to kidney failure would allow better use of targeted treatments and more effective allocation of health resources. Current diagnostic tests to identify patients with progressive disease perform poorly but there is a suite of new and emerging predictive biomarkers with great clinical promise. METHODS This narrative review describes new and emerging biomarkers of pathophysiologic processes of CKD development and progression, accessible in blood or urine liquid biopsies. Biomarkers were selected based on their reported pathobiological functions in kidney injury, inflammation, oxidative stress, repair and fibrosis. Biomarker function and evidence of involvement in CKD development and progression are reported. CONCLUSION Many biomarkers reviewed here have received little attention to date, perhaps because of conflicting conclusions of their utility in CKD. The functional roles of the selected biomarkers in the underlying pathobiology of progression of CKD are a powerful rationale for advancing and validating these molecules as prognosticators and predictors of CKD trajectory.
Collapse
Affiliation(s)
- Evan Paul Owens
- NHMRC CKD CRE (CKD.QLD), The University of Queensland, Brisbane 4072, Australia; Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia; Kidney Disease Research Collaborative, Translational Research Institute, Brisbane 4102, Australia
| | - Helen Grania Healy
- NHMRC CKD CRE (CKD.QLD), The University of Queensland, Brisbane 4072, Australia; Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia; Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane 4029, Australia
| | - David Andrew Vesey
- NHMRC CKD CRE (CKD.QLD), The University of Queensland, Brisbane 4072, Australia; Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia
| | - Wendy Elizabeth Hoy
- NHMRC CKD CRE (CKD.QLD), The University of Queensland, Brisbane 4072, Australia; Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia; Centre for Chronic Disease, The University of Queensland, Brisbane 4072, Australia
| | - Glenda Carolyn Gobe
- NHMRC CKD CRE (CKD.QLD), The University of Queensland, Brisbane 4072, Australia; Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia; Kidney Disease Research Collaborative, Translational Research Institute, Brisbane 4102, Australia.
| |
Collapse
|
10
|
Comparison of Stromal Vascular Fraction and Adipose-Derived Stem Cells for Protection of Renal Function in a Rodent Model of Ischemic Acute Kidney Injury. Stem Cells Int 2022; 2022:1379680. [PMID: 35578662 PMCID: PMC9107055 DOI: 10.1155/2022/1379680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
Aims Few studies have compared the use of different cell types derived from adipose tissue or the optimal route for efficient and safe cell delivery in ischemic acute kidney injury (AKI). We compared the abilities of stromal vascular fraction (SVF) and adipose-derived stem cells (ADSC), injected via three different routes, to protect renal function in a rodent model of ischemic AKI. Methods Ninety male Sprague-Dawley rats were randomly divided into 9 groups: sham, nephrectomy control, AKI control, transaortic renal arterial SVF injection, renal parenchymal SVF injection, tail venous SVF injection, transaortic renal arterial ADSC injection, renal parenchymal ADSC injection, and tail venous ADSC injection groups. Their renal function was assessed 4 days before and 1, 2, 3, 4, 7, and 14 days after surgical procedures to induce ischemic AKI. The histomorphometric studies were performed 14 days after surgical procedures. Results Renal parenchymal injection of SVF notably reduced the level of serum blood urea nitrogen and creatinine elevation compared to the AKI control group. Renal parenchymal injection of SVF notably reduced the level of creatinine clearance decrease. In addition, collagen content was lower in the renal parenchymal SVF injection group, and fibrosis was reduced. Apoptosis was reduced in the renal parenchymal SVF injection group, and proliferation was increased. The expression levels of antioxidative markers such as glutathione reductase and peroxidase were higher in the renal parenchymal SVF injection group. Conclusions Our findings suggest that renal function is protected from ischemic AKI through renal parenchymal injection of SVF, which has enhanced antifibrotic, antiapoptotic, and antioxidative effects.
Collapse
|
11
|
Veys K, Berlingerio SP, David D, Bondue T, Held K, Reda A, van den Broek M, Theunis K, Janssen M, Cornelissen E, Vriens J, Diomedi-Camassei F, Gijsbers R, van den Heuvel L, Arcolino FO, Levtchenko E. Urine-Derived Kidney Progenitor Cells in Cystinosis. Cells 2022; 11:cells11071245. [PMID: 35406807 PMCID: PMC8997687 DOI: 10.3390/cells11071245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/14/2022] [Accepted: 03/31/2022] [Indexed: 12/10/2022] Open
Abstract
Nephropathic cystinosis is an inherited lysosomal storage disorder caused by pathogenic variants in the cystinosin (CTNS) gene and is characterized by the excessive shedding of proximal tubular epithelial cells (PTECs) and podocytes into urine, development of the renal Fanconi syndrome and end-stage kidney disease (ESKD). We hypothesized that in compensation for epithelial cell losses, cystinosis kidneys undertake a regenerative effort, and searched for the presence of kidney progenitor cells (KPCs) in the urine of cystinosis patients. Urine was cultured in a specific progenitor medium to isolate undifferentiated cells. Of these, clones were characterized by qPCR, subjected to a differentiation protocol to PTECs and podocytes and assessed by qPCR, Western blot, immunostainings and functional assays. Cystinosis patients voided high numbers of undifferentiated cells in urine, of which various clonal cell lines showed a high capacity for self-renewal and expressed kidney progenitor markers, which therefore were assigned as cystinosis urine-derived KPCs (Cys-uKPCs). Cys-uKPC clones showed the capacity to differentiate between functional PTECs and/or podocytes. Gene addition with wild-type CTNS using lentiviral vector technology resulted in significant reductions in cystine levels. We conclude that KPCs present in the urine of cystinosis patients can be isolated, differentiated and complemented with CTNS in vitro, serving as a novel tool for disease modeling.
Collapse
Affiliation(s)
- Koenraad Veys
- Department of Pediatrics, University Hospitals Leuven Campus Gasthuisberg, B-3000 Leuven, Belgium;
- Laboratory of Pediatric Nephrology, Department of Development & Regeneration, KU Leuven Campus Gasthuisberg, B-3000 Leuven, Belgium; (S.P.B.); (T.B.); (A.R.); (L.v.d.H.); (F.O.A.)
| | - Sante Princiero Berlingerio
- Laboratory of Pediatric Nephrology, Department of Development & Regeneration, KU Leuven Campus Gasthuisberg, B-3000 Leuven, Belgium; (S.P.B.); (T.B.); (A.R.); (L.v.d.H.); (F.O.A.)
| | - Dries David
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven Campus Gasthuisberg, B-3000 Leuven, Belgium; (D.D.); (R.G.)
| | - Tjessa Bondue
- Laboratory of Pediatric Nephrology, Department of Development & Regeneration, KU Leuven Campus Gasthuisberg, B-3000 Leuven, Belgium; (S.P.B.); (T.B.); (A.R.); (L.v.d.H.); (F.O.A.)
| | - Katharina Held
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine (LEERM), Department of Development & Regeneration, KU Leuven Campus Gasthuisberg, B-3000 Leuven, Belgium; (K.H.); (J.V.)
| | - Ahmed Reda
- Laboratory of Pediatric Nephrology, Department of Development & Regeneration, KU Leuven Campus Gasthuisberg, B-3000 Leuven, Belgium; (S.P.B.); (T.B.); (A.R.); (L.v.d.H.); (F.O.A.)
| | - Martijn van den Broek
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6524 Nijmegen, The Netherlands;
- Department of Pediatrics, Division of Pediatric Nephrology, Amalia Children’s Hospital, Radboud University Medical Center, 6524 Nijmegen, The Netherlands;
| | - Koen Theunis
- Department of Human Genetics, KU Leuven Campus Gasthuisberg, B-3000 Leuven, Belgium;
| | - Mirian Janssen
- Department of Internal Medicine, Radboud University Medical Center, 6524 Nijmegen, The Netherlands;
| | - Elisabeth Cornelissen
- Department of Pediatrics, Division of Pediatric Nephrology, Amalia Children’s Hospital, Radboud University Medical Center, 6524 Nijmegen, The Netherlands;
| | - Joris Vriens
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine (LEERM), Department of Development & Regeneration, KU Leuven Campus Gasthuisberg, B-3000 Leuven, Belgium; (K.H.); (J.V.)
| | - Francesca Diomedi-Camassei
- Unit of Pathology, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Rik Gijsbers
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven Campus Gasthuisberg, B-3000 Leuven, Belgium; (D.D.); (R.G.)
- Leuven Viral Vector Core, KU Leuven, B-3000 Leuven, Belgium
| | - Lambertus van den Heuvel
- Laboratory of Pediatric Nephrology, Department of Development & Regeneration, KU Leuven Campus Gasthuisberg, B-3000 Leuven, Belgium; (S.P.B.); (T.B.); (A.R.); (L.v.d.H.); (F.O.A.)
- Department of Pediatrics, Division of Pediatric Nephrology, Amalia Children’s Hospital, Radboud University Medical Center, 6524 Nijmegen, The Netherlands;
| | - Fanny O. Arcolino
- Laboratory of Pediatric Nephrology, Department of Development & Regeneration, KU Leuven Campus Gasthuisberg, B-3000 Leuven, Belgium; (S.P.B.); (T.B.); (A.R.); (L.v.d.H.); (F.O.A.)
| | - Elena Levtchenko
- Department of Pediatrics, University Hospitals Leuven Campus Gasthuisberg, B-3000 Leuven, Belgium;
- Laboratory of Pediatric Nephrology, Department of Development & Regeneration, KU Leuven Campus Gasthuisberg, B-3000 Leuven, Belgium; (S.P.B.); (T.B.); (A.R.); (L.v.d.H.); (F.O.A.)
- Correspondence: ; Tel.: +32-16-34-13-62
| |
Collapse
|
12
|
Weng X, Li J, Guan Q, Zhao H, Wang Z, Gleave ME, Nguan CY, Du C. The functions of clusterin in renal mesenchymal stromal cells: Promotion of cell growth and regulation of macrophage activation. Exp Cell Res 2022; 413:113081. [PMID: 35218723 DOI: 10.1016/j.yexcr.2022.113081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/31/2022] [Accepted: 02/15/2022] [Indexed: 12/24/2022]
Abstract
Clusterin (CLU) increases resistance to renal ischemia-reperfusion injury and promotes renal tissue repair. However, the mechanisms underlying of the renal protection of CLU remain unknown. Mesenchymal stromal cells (MSCs) may contribute to kidney cell turnover and injury repair. This study investigated the in vitro functions of CLU in kidney mesenchymal stromal cells (KMSCs). KMSCs were grown in plastic culture plates. Cell surface markers, apoptosis and phagocytosis were determined by flow cytometry, and CLU protein by Western blot. There were no differences in the expression of MSC markers (positive: CD133, Sca-1, CD44, CD117 and NG2, and negative: CD34, CD45, CD163, CD41, CD276, CD138, CD79a, CD146 and CD140b) and in the trilineage differentiation to chondrocytes, adipocytes and osteocytes between wild type (WT) and CLU knockout (KO) KMSCs. CLU was expressed intracellularly and secreted by WT KMSCs, and it was up-regulated by hypoxia. CLU did not prevent hypoxia-induced cell apoptosis but promoted cell growth in KMSC cultures. Furthermore, incubation with CLU-containing culture medium from WT KMSCs increased CD206 expression and phagocytic capacity of macrophages. In conclusion, our data for the first time demonstrate the function of CLU in the promotion of KMSCs proliferation, and it may be required for KMSCs-regulated macrophage M2 polarization and phagocytic activity.
Collapse
Affiliation(s)
- Xiaodong Weng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China; Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jing Li
- Department of Ophthamology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430060, China
| | - Qiunong Guan
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Haimei Zhao
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Zihuan Wang
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; First Clinical Medical School, Southern Medical University, Guangzhou, 510000, China
| | - Martin E Gleave
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Christopher Yc Nguan
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Caigan Du
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
13
|
Zhang W, Gao C, Tsilosani A, Samarakoon R, Plews R, Higgins P. Potential renal stem/progenitor cells identified by in vivo lineage tracing. Am J Physiol Renal Physiol 2022; 322:F379-F391. [PMID: 35100814 PMCID: PMC8934668 DOI: 10.1152/ajprenal.00326.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mammalian kidneys consist of more than 30 different types of cells. A challenging task is to identify and characterize the stem/progenitor subpopulations that establish the lineage relationships among these cellular elements during nephrogenesis in the embryonic and neonate kidneys and during tissue homeostasis and/or injury repair in the mature kidney. Moreover, the potential clinical utility of stem/progenitor cells holds promise for development of new regenerative medicine approaches for the treatment of renal diseases. Stem cells are defined by unlimited self-renewal capacity and pluripotentiality. Progenitor cells have pluripotentiality, but no or limited self-renewal potential. Cre-LoxP-based in vivo genetic lineage tracing is a powerful tool to identify the stem/progenitor cells in their native environment. Hypothetically, this technique enables investigators to accurately track the progeny of a single cell, or a group of cells. The Cre/loxP system has been widely employed to uncover the function of genes in various mammalian tissues and to identify stem/progenitor cells through in vivo lineage tracing analyses. In this review, we summarize the recent advances in the development and characterization of various Cre drivers, and their use in identifying potential renal stem/progenitor cells in both developing and mature mouse kidneys.
Collapse
Affiliation(s)
- Wenzheng Zhang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Chao Gao
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Akaki Tsilosani
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Rohan Samarakoon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Robert Plews
- Department of General Surgery, Albany Medical College, Albany, NY, United States
| | - Paul Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| |
Collapse
|
14
|
Ma M, Luo Q, Fan L, Li W, Li Q, Meng Y, Yun C, Wu H, Lu Y, Cui S, Liu F, Hu B, Guan B, Liu H, Huang S, Liang W, Morgera S, Krämer B, Luan S, Yin L, Hocher B. The urinary exosomes derived from premature infants attenuate cisplatin-induced acute kidney injury in mice via microRNA-30a-5p/ mitogen-activated protein kinase 8 (MAPK8). Bioengineered 2022; 13:1650-1665. [PMID: 35001794 PMCID: PMC8805886 DOI: 10.1080/21655979.2021.2021686] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/03/2021] [Indexed: 11/24/2022] Open
Abstract
Acute kidney injury (AKI) is a susceptible factor for chronic kidney disease (CKD). There is still a lack of effective prevention methods in clinical practice. This study investigated the protective effect of the urinary exosomes from premature infants on cisplatin-induced acute kidney injury. Here we isolated exosomes from the fresh urine of premature infants. A C57BL/6 mice model of cisplatin-induced acute kidney injury was given 100 ug urinary exosomes 24 hours after model establishment. The kidneys were collected for pathological examination and the evaluation of renal tubular damage and apoptosis. In the in vitro experiment, human renal cortex/proximal tubular cells (HK-2) were induced by cisplatin to assess the effect of the urine exosomes from premature infants. Exosome microRNA (miRNA) sequencing technology was applied to investigate the miRNAs enriched in exosomes and the dual-luciferase gene reporter system to examine the targeting relationship of the miRNA with target genes. The results indicated that the urinary exosomes could decrease the serum creatinine level and the apoptosis of renal tubular cells, and reduce mice mortality. In addition, miR-30a-5p was the most abundant miRNA in the exosomes. It protected HK-2 cells from cisplatin-induced apoptosis by targeting and down-regulating the mitogen-activated protein kinase 8 (MAPK8). Together, our findings identified that the urinary exosomes derived from premature infants alleviated cisplatin-induced acute kidney injury and inhibited the apoptosis of HK-2 via miR-30a-5p, which could target MAPK8. These findings implied that urinary exosomes from premature infants riched in miR-30a-5p might become a potential treatment for AKI.
Collapse
Affiliation(s)
- Mingming Ma
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Qiao Luo
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Lijing Fan
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Weilong Li
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Guangdong, China
| | - Qiang Li
- Department of Nephrology, Dongguan Hospital of Traditional Chinese Medicine, Dongguan, China
| | - Yu Meng
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Chen Yun
- Charité -Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Hongwei Wu
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Charité -Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Yongping Lu
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Charité -Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Shuang Cui
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Fanna Liu
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Bo Hu
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Baozhang Guan
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Huanhuan Liu
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Shengling Huang
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Wenxue Liang
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | | | - Bernhard Krämer
- Fifth Department of Medicine (Nephrology/endocrinology/rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Shaodong Luan
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Guangdong, China
| | - Lianghong Yin
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Berthold Hocher
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Charité -Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
- Fifth Department of Medicine (Nephrology/endocrinology/rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
15
|
Li Y, Shen M, Ferens D, Broughton BRS, Murthi P, Saini S, Widdop RE, Ricardo SD, Pinar AA, Samuel CS. Combining mesenchymal stem cells with serelaxin provides enhanced renoprotection against 1K/DOCA/salt-induced hypertension. Br J Pharmacol 2021; 178:1164-1181. [PMID: 33450051 DOI: 10.1111/bph.15361] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Fibrosis is a hallmark of chronic kidney disease (CKD) that significantly contributes to renal dysfunction, and impairs the efficacy of stem cell-based therapies. This study determined whether combining bone marrow-derived mesenchymal stem cells (BM-MSCs) with the renoprotective effects of recombinant human relaxin (serelaxin) could therapeutically reduce renal fibrosis in mice with one kidney/deoxycorticosterone acetate/salt (1K/DOCA/salt)-induced hypertension, compared with the effects of the ACE inhibitor, perindopril. EXPERIMENTAL APPROACH Adult male C57BL/6 mice were uni-nephrectomised and received deoxycorticosterone acetate and saline to drink (1K/DOCA/salt) for 21 days. Control mice were uni-nephrectomised but received water over the same time period. Sub-groups of 1K/DOCA/salt-injured mice (n = 5-8 per group) were treated with either serelaxin (0.5 mg·kg-1 ·day-1 ) or BM-MSCs (1 × 106 per mouse) alone; both treatments combined (with 0.5 × 106 or 1 × 106 BM-MSCs per mouse); or perindopril (2 mg·kg-1 ·day-1 ) from days 14-21. KEY RESULTS 1K/DOCA/salt-injured mice developed elevated BP and hypertension-induced renal damage, inflammation and fibrosis. BM-MSCs alone reduced the injury-induced fibrosis and attenuated BP to a similar extent as perindopril. Serelaxin alone modestly reduced renal fibrosis and effectively reduced tubular injury. Strikingly, the combined effects of BM-MSCs (at both doses) with serelaxin significantly inhibited renal fibrosis and proximal tubular epithelial injury while restoring renal architecture, to a greater extent than either therapy alone, and over the effects of perindopril. CONCLUSION AND IMPLICATIONS Combining BM-MSCs and serelaxin provided broader renoprotection over either therapy alone or perindopril and might represent a novel treatment for hypertensive CKD.
Collapse
Affiliation(s)
- Yifang Li
- Cardiovascular Disease Program, Monash University, Clayton, Victoria, Australia.,Development and Stem Cells Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Matthew Shen
- Cardiovascular Disease Program, Monash University, Clayton, Victoria, Australia.,Development and Stem Cells Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Dorota Ferens
- Cardiovascular Disease Program, Monash University, Clayton, Victoria, Australia.,Development and Stem Cells Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Brad R S Broughton
- Cardiovascular Disease Program, Monash University, Clayton, Victoria, Australia.,Development and Stem Cells Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Padma Murthi
- Cardiovascular Disease Program, Monash University, Clayton, Victoria, Australia.,Development and Stem Cells Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Sheetal Saini
- Cardiovascular Disease Program, Monash University, Clayton, Victoria, Australia.,Development and Stem Cells Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Robert E Widdop
- Cardiovascular Disease Program, Monash University, Clayton, Victoria, Australia.,Development and Stem Cells Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Sharon D Ricardo
- Cardiovascular Disease Program, Monash University, Clayton, Victoria, Australia.,Development and Stem Cells Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Anita A Pinar
- Cardiovascular Disease Program, Monash University, Clayton, Victoria, Australia.,Development and Stem Cells Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Monash University, Clayton, Victoria, Australia.,Development and Stem Cells Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
16
|
Trivedi N, Kumar D. Fibroblast growth factor and kidney disease: Updates for emerging novel therapeutics. J Cell Physiol 2021; 236:7909-7925. [PMID: 34196395 DOI: 10.1002/jcp.30497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/04/2021] [Accepted: 05/28/2021] [Indexed: 01/01/2023]
Abstract
The discovery of fibroblast growth factors (FGFs) and fibroblast growth factor receptors (FGFRs) provided a profound new insight into physiological and metabolic functions. FGF has a large family by having divergent structural elements and enable functional divergence and specification. FGF and FGFRs are highly expressed during kidney development. Signals from the ureteric bud regulate morphogenesis, nephrogenesis, and nephron progenitor survival. Thus, FGF signaling plays an important role in kidney progenitor cell aggregation at the sites of new nephron formation. This review will summarize the current knowledge about functions of FGF signaling in kidney development and their ability to promote regeneration in injured kidneys and its use as a biomarker and therapeutic target in kidney diseases. Further studies are essential to determine the predictive significance of the various FGF/FGFR deviations and to integrate them into clinical algorithms.
Collapse
Affiliation(s)
- Neerja Trivedi
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Devendra Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
17
|
Duy Nguyen BT, Nguyen Thi HY, Nguyen Thi BP, Kang DK, Kim JF. The Roles of Membrane Technology in Artificial Organs: Current Challenges and Perspectives. MEMBRANES 2021; 11:239. [PMID: 33800659 PMCID: PMC8065507 DOI: 10.3390/membranes11040239] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/20/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023]
Abstract
The recent outbreak of the COVID-19 pandemic in 2020 reasserted the necessity of artificial lung membrane technology to treat patients with acute lung failure. In addition, the aging world population inevitably leads to higher demand for better artificial organ (AO) devices. Membrane technology is the central component in many of the AO devices including lung, kidney, liver and pancreas. Although AO technology has improved significantly in the past few decades, the quality of life of organ failure patients is still poor and the technology must be improved further. Most of the current AO literature focuses on the treatment and the clinical use of AO, while the research on the membrane development aspect of AO is relatively scarce. One of the speculated reasons is the wide interdisciplinary spectrum of AO technology, ranging from biotechnology to polymer chemistry and process engineering. In this review, in order to facilitate the membrane aspects of the AO research, the roles of membrane technology in the AO devices, along with the current challenges, are summarized. This review shows that there is a clear need for better membranes in terms of biocompatibility, permselectivity, module design, and process configuration.
Collapse
Affiliation(s)
- Bao Tran Duy Nguyen
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Korea; (B.T.D.N.); (H.Y.N.T.); (B.P.N.T.)
| | - Hai Yen Nguyen Thi
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Korea; (B.T.D.N.); (H.Y.N.T.); (B.P.N.T.)
| | - Bich Phuong Nguyen Thi
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Korea; (B.T.D.N.); (H.Y.N.T.); (B.P.N.T.)
| | - Dong-Ku Kang
- Department of Chemistry, Incheon National University, Incheon 22012, Korea
| | - Jeong F. Kim
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Korea; (B.T.D.N.); (H.Y.N.T.); (B.P.N.T.)
- Innovation Center for Chemical Engineering, Incheon National University, Incheon 22012, Korea
| |
Collapse
|
18
|
Hickson LJ, Herrmann SM, McNicholas BA, Griffin MD. Progress toward the Clinical Application of Mesenchymal Stromal Cells and Other Disease-Modulating Regenerative Therapies: Examples from the Field of Nephrology. KIDNEY360 2021; 2:542-557. [PMID: 34316720 PMCID: PMC8312727 DOI: 10.34067/kid.0005692020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/27/2021] [Indexed: 02/07/2023]
Abstract
Drawing from basic knowledge of stem-cell biology, embryonic development, wound healing, and aging, regenerative medicine seeks to develop therapeutic strategies that complement or replace conventional treatments by actively repairing diseased tissue or generating new organs and tissues. Among the various clinical-translational strategies within the field of regenerative medicine, several can be broadly described as promoting disease resolution indirectly through local or systemic interactions with a patient's cells, without permanently integrating or directly forming new primary tissue. In this review, we focus on such therapies, which we term disease-modulating regenerative therapies (DMRT), and on the extent to which they have been translated into the clinical arena in four distinct areas of nephrology: renovascular disease (RVD), sepsis-associated AKI (SA-AKI), diabetic kidney disease (DKD), and kidney transplantation (KTx). As we describe, the DMRT that has most consistently progressed to human clinical trials for these indications is mesenchymal stem/stromal cells (MSCs), which potently modulate ischemic, inflammatory, profibrotic, and immune-mediated tissue injury through diverse paracrine mechanisms. In KTx, several early-phase clinical trials have also tested the potential for ex vivo-expanded regulatory immune cell therapies to promote donor-specific tolerance and prevent or resolve allograft injury. Other promising DMRT, including adult stem/progenitor cells, stem cell-derived extracellular vesicles, and implantable hydrogels/biomaterials remain at varying preclinical stages of translation for these renal conditions. To date (2021), no DMRT has gained market approval for use in patients with RVD, SA-AKI, DKD, or KTx, and clinical trials demonstrating definitive, cost-effective patient benefits are needed. Nonetheless, exciting progress in understanding the disease-specific mechanisms of action of MSCs and other DMRT, coupled with increasing knowledge of the pathophysiologic basis for renal-tissue injury and the experience gained from pioneering early-phase clinical trials provide optimism that influential, regenerative treatments for diverse kidney diseases will emerge in the years ahead.
Collapse
Affiliation(s)
- LaTonya J. Hickson
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Jacksonville, Florida
| | - Sandra M. Herrmann
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Bairbre A. McNicholas
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Ireland
- Nephrology Services, Galway University Hospitals, Saolta University Healthcare System, Galway, Ireland
- Critical Care Services, Galway University Hospitals, Saolta University Healthcare System, Galway, Ireland
| | - Matthew D. Griffin
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Ireland
- Nephrology Services, Galway University Hospitals, Saolta University Healthcare System, Galway, Ireland
| |
Collapse
|
19
|
Mehta A, Tahhan AS, Liu C, Dhindsa DS, Nayak A, Hooda A, Moazzami K, Islam SJ, Rogers SC, Almuwaqqat Z, Mokhtari A, Hesaroieh I, Ko YA, Waller EK, Quyyumi AA. Circulating Progenitor Cells in Patients With Coronary Artery Disease and Renal Insufficiency. JACC Basic Transl Sci 2020; 5:770-782. [PMID: 32875168 PMCID: PMC7452291 DOI: 10.1016/j.jacbts.2020.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 10/26/2022]
Abstract
Patients with coronary artery disease and renal insufficiency (RI) (estimated glomerular filtration rate <60 ml/min/1.73 m2) are at an increased risk of cardiovascular events. The contribution of regenerative capacity, measured as circulating progenitor cell (CPC) counts, to this increased risk is unclear. CPCs were enumerated as cluster of differentiation (CD) 45med+ mononuclear cells expressing CD34+, CD133+, CXCR4+ (chemokine [C-X-C motif] receptor 4), and VEGF2R+ (vascular endothelial growth factor receptor 2) epitopes in 1,281 subjects with coronary artery disease (35% with RI). Patients with RI and low (<median) hematopoietic CPCs (CD34+, CD34+/CD133+, and CD34+/CXCR4+) were at an increased risk of cardiovascular death or myocardial infarction events (hazard ratios: 1.75 to 1.80) during 3.5-year follow-up, while those with RI and high CPCs (>median) were at a similar risk as those without RI.
Collapse
Key Words
- BNP, B-type natriuretic peptide
- CAD, coronary artery disease
- CD, cluster of differentiation
- CI, confidence interval
- CPC, circulating progenitor cell
- CV, cardiovascular
- CXCR4, chemokine (C-X-C motif) receptor 4
- HR, hazard ratio
- IDI, integrated discrimination index
- MI, myocardial infarction
- VEGF2R, vascular endothelial growth factor receptor 2
- coronary artery disease
- eGFR, estimated glomerular filtration rate
- hsTnI, high-sensitivity troponin I
- outcomes
- progenitor cells
- regenerative capacity
- renal insufficiency
Collapse
Affiliation(s)
- Anurag Mehta
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Ayman S Tahhan
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Chang Liu
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.,Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Devinder S Dhindsa
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Aditi Nayak
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Ananya Hooda
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Kasra Moazzami
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Shabatun J Islam
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Steven C Rogers
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Zakaria Almuwaqqat
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Ali Mokhtari
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Iraj Hesaroieh
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Yi-An Ko
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.,Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Edmund K Waller
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Arshed A Quyyumi
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
20
|
Kidney Regenerative Medicine: Promises and Limitations. CURRENT TRANSPLANTATION REPORTS 2020. [DOI: 10.1007/s40472-020-00273-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Lund-Ricard Y, Cormier P, Morales J, Boutet A. mTOR Signaling at the Crossroad between Metazoan Regeneration and Human Diseases. Int J Mol Sci 2020; 21:E2718. [PMID: 32295297 PMCID: PMC7216262 DOI: 10.3390/ijms21082718] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023] Open
Abstract
A major challenge in medical research resides in controlling the molecular processes of tissue regeneration, as organ and structure damage are central to several human diseases. A survey of the literature reveals that mTOR (mechanistic/mammalian target of rapamycin) is involved in a wide range of regeneration mechanisms in the animal kingdom. More particularly, cellular processes such as growth, proliferation, and differentiation are controlled by mTOR. In addition, autophagy, stem cell maintenance or the newly described intermediate quiescence state, Galert, imply upstream monitoring by the mTOR pathway. In this review, we report the role of mTOR signaling in reparative regenerations in different tissues and body parts (e.g., axon, skeletal muscle, liver, epithelia, appendages, kidney, and whole-body), and highlight how the mTOR kinase can be viewed as a therapeutic target to boost organ repair. Studies in this area have focused on modulating the mTOR pathway in various animal models to elucidate its contribution to regeneration. The diversity of metazoan species used to identify the implication of this pathway might then serve applied medicine (in better understanding what is required for efficient treatments in human diseases) but also evolutionary biology. Indeed, species-specific differences in mTOR modulation can contain the keys to appreciate why certain regeneration processes have been lost or conserved in the animal kingdom.
Collapse
Affiliation(s)
| | | | | | - Agnès Boutet
- Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, Integrative Biology of Marine Models (LBI2M), UMR 8227, Station Biologique de Roscoff (SBR), 29680 Roscoff, France; (Y.L.-R.); (P.C.); (J.M.)
| |
Collapse
|
22
|
Mesenchymal stromal cell-based therapies for acute kidney injury: progress in the last decade. Kidney Int 2020; 97:1130-1140. [PMID: 32305128 DOI: 10.1016/j.kint.2019.12.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 12/17/2022]
Abstract
A little over 10 years ago, the therapeutic potential of mesenchymal stromal cells (MSCs) for the treatment of acute kidney injury (AKI) was becoming widely recognized. Since then, there has been further intensive study of this topic with a clear translational intent. Over the past decade, many more animal model studies have strengthened the evidence that systemically or locally delivered MSCs ameliorate renal injury in sterile and sepsis-associated AKI. Some of these preclinical studies have also provided a range of compelling new insights into the in vivo fate and mechanisms of action of MSCs in the setting of AKI and other inflammatory conditions. Coupled with increased knowledge of the functional roles of resident and infiltrating immune cell mediators in determining the severity and outcome of AKI, the progress made in the past decade would appear to have significantly strengthened the translational pathway for MSC-based therapies. In contrast, however, the extent of the clinical experience with MSC administration in human subjects with AKI or sepsis-associated AKI has been limited to a small number of early-phase clinical trials, which appear to demonstrate safety but have not thus far delivered a strong signal of efficacy. In this review, we summarize the most significant new developments in the field of MSC-based therapies as they relate to AKI and reflect on the key gaps in knowledge and technology that remain to be addressed for the true clinical potential of MSCs and, perhaps, other emerging cellular therapies to be realized.
Collapse
|
23
|
Mousawi F, Peng H, Li J, Ponnambalam S, Roger S, Zhao H, Yang X, Jiang LH. Chemical activation of the Piezo1 channel drives mesenchymal stem cell migration via inducing ATP release and activation of P2 receptor purinergic signaling. Stem Cells 2020; 38:410-421. [PMID: 31746084 PMCID: PMC7064961 DOI: 10.1002/stem.3114] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 08/02/2019] [Accepted: 09/01/2019] [Indexed: 12/12/2022]
Abstract
In this study, we examined the Ca2+‐permeable Piezo1 channel, a newly identified mechanosensing ion channel, in human dental pulp‐derived mesenchymal stem cells (MSCs) and hypothesized that activation of the Piezo1 channel regulates MSC migration via inducing ATP release and activation of the P2 receptor purinergic signaling. The Piezo1 mRNA and protein were readily detected in hDP‐MSCs from multiple donors and, consistently, brief exposure to Yoda1, the Piezo1 channel‐specific activator, elevated intracellular Ca2+ concentration. Yoda1‐induced Ca2+ response was inhibited by ruthenium red or GsMTx4, two Piezo1 channel inhibitors, and also by Piezo1‐specific siRNA. Brief exposure to Yoda1 also induced ATP release. Persistent exposure to Yoda1 stimulated MSC migration, which was suppressed by Piezo1‐specific siRNA, and also prevented by apyrase, an ATP scavenger, or PPADS, a P2 generic antagonist. Furthermore, stimulation of MSC migration induced by Yoda1 as well as ATP was suppressed by PF431396, a PYK2 kinase inhibitor, or U0126, an inhibitor of the mitogen‐activated protein kinase MEK/ERK signaling pathway. Collectively, these results suggest that activation of the Piezo1 channel stimulates MSC migration via inducing ATP release and subsequent activation of the P2 receptor purinergic signaling and downstream PYK2 and MEK/ERK signaling pathways, thus revealing novel insights into the molecular and signaling mechanisms regulating MSC migration. Such findings provide useful information for evolving a full understanding of MSC migration and homing and developing strategies to improve MSC‐based translational applications.
Collapse
Affiliation(s)
- Fatema Mousawi
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.,Department of Oral Biology, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Hongsen Peng
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.,Department of Oral Biology, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Jing Li
- Lingnan Medical Research Centre, School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Sreenivasan Ponnambalam
- School of Molecular and Cell Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sébastien Roger
- EA4245, Transplantation, Immunology and Inflammation, Faculty of Medicine, University of Tours, Tours, France
| | - Hucheng Zhao
- Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing, People's Republic of China
| | - Xuebin Yang
- Department of Oral Biology, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Lin-Hua Jiang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.,EA4245, Transplantation, Immunology and Inflammation, Faculty of Medicine, University of Tours, Tours, France
| |
Collapse
|
24
|
The FGF, TGFβ and WNT axis Modulate Self-renewal of Human SIX2 + Urine Derived Renal Progenitor Cells. Sci Rep 2020; 10:739. [PMID: 31959818 PMCID: PMC6970988 DOI: 10.1038/s41598-020-57723-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 12/31/2019] [Indexed: 12/22/2022] Open
Abstract
Human urine is a non-invasive source of renal stem cells with regeneration potential. Urine-derived renal progenitor cells were isolated from 10 individuals of both genders and distinct ages. These renal progenitors express pluripotency-associated proteins- TRA-1-60, TRA-1-81, SSEA4, C-KIT and CD133, as well as the renal stem cell markers -SIX2, CITED1, WT1, CD24 and CD106. The transcriptomes of all SIX2+ renal progenitors clustered together, and distinct from the human kidney biopsy-derived epithelial proximal cells (hREPCs). Stimulation of the urine-derived renal progenitor cells (UdRPCs) with the GSK3β-inhibitor (CHIR99021) induced differentiation. Transcriptome and KEGG pathway analysis revealed upregulation of WNT-associated genes- AXIN2, JUN and NKD1. Protein interaction network identified JUN- a downstream target of the WNT pathway in association with STAT3, ATF2 and MAPK1 as a putative negative regulator of self-renewal. Furthermore, like pluripotent stem cells, self-renewal is maintained by FGF2-driven TGFβ-SMAD2/3 pathway. The urine-derived renal progenitor cells and the data presented should lay the foundation for studying nephrogenesis in human.
Collapse
|
25
|
Missoum A. Recent Updates on Mesenchymal Stem Cell Based Therapy for Acute Renal Failure. Curr Urol 2020; 13:189-199. [PMID: 31998051 DOI: 10.1159/000499272] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 12/12/2022] Open
Abstract
Acute kidney injury, formerly known as acute renal failure, is a pathological condition in which ischemia or toxic damage contributes to the loss of renal proximal tubule epithelial cells. Pathophysiological events such as oxidative stress, mitochondrial dysfunction, and direct renal tubular epithelial cells toxicity are responsible for the progression of the disease. This devastating decline in renal function affects mostly patients in the intensive care units and requires costly and invasive treatments such as dialysis and organ transplant. Fortunately, recent therapies such as the use of mesenchymal stem cells (MSCs) were proven to be effective in ameliorating renal failure via paracrine and immunomodulatory mechanisms. These fibroblast-like adult stem cells that differentiate multilineagely can be isolated from dental pulps, umbilical cords, amniotic fluids, adipose tissues, and bone marrows. Depending on their sources, the therapeutical application of each MSC type has its own capacities, advantages, and drawbacks. The review discusses and compares the latest research studies on the use of different MSCs sources to treat renal failure. Concerns about the future clinical application of MSCs such as homing, toxicity, and the risk of immune rejection are also highlighted.
Collapse
Affiliation(s)
- Asmaa Missoum
- Department of Biological and Environmental Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
26
|
Rangan S, Schulze HG, Vardaki MZ, Blades MW, Piret JM, Turner RFB. Applications of Raman spectroscopy in the development of cell therapies: state of the art and future perspectives. Analyst 2020; 145:2070-2105. [DOI: 10.1039/c9an01811e] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This comprehensive review article discusses current and future perspectives of Raman spectroscopy-based analyses of cell therapy processes and products.
Collapse
Affiliation(s)
- Shreyas Rangan
- Michael Smith Laboratories
- The University of British Columbia
- Vancouver
- Canada
- School of Biomedical Engineering
| | - H. Georg Schulze
- Michael Smith Laboratories
- The University of British Columbia
- Vancouver
- Canada
| | - Martha Z. Vardaki
- Michael Smith Laboratories
- The University of British Columbia
- Vancouver
- Canada
| | - Michael W. Blades
- Department of Chemistry
- The University of British Columbia
- Vancouver
- Canada
| | - James M. Piret
- Michael Smith Laboratories
- The University of British Columbia
- Vancouver
- Canada
- School of Biomedical Engineering
| | - Robin F. B. Turner
- Michael Smith Laboratories
- The University of British Columbia
- Vancouver
- Canada
- Department of Chemistry
| |
Collapse
|
27
|
Andrianova NV, Buyan MI, Zorova LD, Pevzner IB, Popkov VA, Babenko VA, Silachev DN, Plotnikov EY, Zorov DB. Kidney Cells Regeneration: Dedifferentiation of Tubular Epithelium, Resident Stem Cells and Possible Niches for Renal Progenitors. Int J Mol Sci 2019; 20:ijms20246326. [PMID: 31847447 PMCID: PMC6941132 DOI: 10.3390/ijms20246326] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022] Open
Abstract
A kidney is an organ with relatively low basal cellular regenerative potential. However, renal cells have a pronounced ability to proliferate after injury, which undermines that the kidney cells are able to regenerate under induced conditions. The majority of studies explain yielded regeneration either by the dedifferentiation of the mature tubular epithelium or by the presence of a resident pool of progenitor cells in the kidney tissue. Whether cells responsible for the regeneration of the kidney initially have progenitor properties or if they obtain a “progenitor phenotype” during dedifferentiation after an injury, still stays the open question. The major stumbling block in resolving the issue is the lack of specific methods for distinguishing between dedifferentiated cells and resident progenitor cells. Transgenic animals, single-cell transcriptomics, and other recent approaches could be powerful tools to solve this problem. This review examines the main mechanisms of kidney regeneration: dedifferentiation of epithelial cells and activation of progenitor cells with special attention to potential niches of kidney progenitor cells. We attempted to give a detailed description of the most controversial topics in this field and ways to resolve these issues.
Collapse
Affiliation(s)
- Nadezda V. Andrianova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Marina I. Buyan
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Ljubava D. Zorova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Irina B. Pevzner
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Vasily A. Popkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Valentina A. Babenko
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Denis N. Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, 119991 Moscow, Russia
- Correspondence: (E.Y.P.); (D.B.Z.); Tel.: +7-495-939-5944 (E.Y.P.)
| | - Dmitry B. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
- Correspondence: (E.Y.P.); (D.B.Z.); Tel.: +7-495-939-5944 (E.Y.P.)
| |
Collapse
|
28
|
Ahmadi A, Moghadasali R, Ezzatizadeh V, Taghizadeh Z, Nassiri SM, Asghari-Vostikolaee MH, Alikhani M, Hadi F, Rahbarghazi R, Yazdi RS, Baharvand H, Aghdami N. Transplantation of Mouse Induced Pluripotent Stem Cell-Derived Podocytes in a Mouse Model of Membranous Nephropathy Attenuates Proteinuria. Sci Rep 2019; 9:15467. [PMID: 31664077 PMCID: PMC6820764 DOI: 10.1038/s41598-019-51770-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 09/26/2019] [Indexed: 12/31/2022] Open
Abstract
Injury to podocytes is a principle cause of initiation and progression of both immune and non-immune mediated glomerular diseases that result in proteinuria and decreased function of the kidney. Current advances in regenerative medicine shed light on the therapeutic potential of cell-based strategies for treatment of such disorders. Thus, there is hope that generation and transplantation of podocytes from induced pluripotent stem cells (iPSCs), could potentially be used as a curative treatment for glomerulonephritis caused by podocytes injury and loss. Despite several reports on the generation of iPSC-derived podocytes, there are rare reports about successful use of these cells in animal models. In this study, we first generated a model of anti-podocyte antibody-induced heavy proteinuria that resembled human membranous nephropathy and was characterized by the presence of sub-epithelial immune deposits and podocytes loss. Thereafter, we showed that transplantation of functional iPSC-derived podocytes following podocytes depletion results in recruitment of iPSC-derived podocytes within the damaged glomerulus, and leads to attenuation of proteinuria and histological alterations. These results provided evidence that application of iPSCs-derived renal cells could be a possible therapeutic strategy to favorably influence glomerular diseases outcomes.
Collapse
Affiliation(s)
- Amin Ahmadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Reza Moghadasali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Vahid Ezzatizadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Medical Genetics Department, Medical Laboratory Center, Royesh Medical Group, Tehran, Iran
| | - Zeinab Taghizadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyed Mahdi Nassiri
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Mehdi Alikhani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fatemeh Hadi
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Salman Yazdi
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran.
| | - Nasser Aghdami
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
29
|
Eirin A, Lerman LO. Stem cell-derived extracellular vesicles for renal repair: do cardiovascular comorbidities matter? Am J Physiol Renal Physiol 2019; 317:F1414-F1419. [PMID: 31630544 DOI: 10.1152/ajprenal.00434.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Extracellular vesicle (EV)-based regenerative therapy has shown promising results in preclinical models of renal disease and might be useful for patients with several forms of chronic kidney disease. However, individuals with chronic kidney disease often present with comorbidities, including obesity, hypertension, diabetes, or even metabolic syndrome, which may alter the endogenous characteristics and impair the reparative capacity of stem cells and their daughter EVs. This brief review summarizes evidence of alterations in the morphology, cargo, and function of mesenchymal stem cells and mesenchymal stem cell-derived EVs in the face of cardiovascular disease. We further discuss the important ramifications for their use in patients with kidney disease.
Collapse
Affiliation(s)
- Alfonso Eirin
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
30
|
Reparative and Regenerative Effects of Mesenchymal Stromal Cells-Promising Potential for Kidney Transplantation? Int J Mol Sci 2019; 20:ijms20184614. [PMID: 31540361 PMCID: PMC6770554 DOI: 10.3390/ijms20184614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) possess reparative, regenerative and immunomodulatory properties. The current literature suggests that MSCs could improve kidney transplant outcome via immunomodulation. In many clinical domains, research has also focussed on the regenerative and reparative effects of therapies with MSCs. However, in the field of transplantation, data on this subject remain scarce. This review provides an overview of what is known about the regenerative and reparative effects of MSCs in various fields ranging from wound care to fracture healing and also examines the potential of these promising MSC properties to improve the outcome of kidney transplantations.
Collapse
|
31
|
Fomicheva M, Tross EM, Macara IG. Polarity proteins in oncogenesis. Curr Opin Cell Biol 2019; 62:26-30. [PMID: 31509786 DOI: 10.1016/j.ceb.2019.07.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/19/2019] [Accepted: 07/24/2019] [Indexed: 02/02/2023]
Abstract
Most human cancers arise from epithelial tissues, which are apical-basally polarized and possess intercellular adhesive junctions. Epithelial cells grow to characteristic densities, often from proliferative progenitors, which arrest as they mature. Homeostatic mechanisms can maintain this characteristic density if it is exceeded (crowding) or is too low (e.g. in response to wounding). During tumor initiation and progression this homeostatic mechanism is lost. Some aspects of cell polarity are also lost, although many carcinomas retain intercellular junctions and even apical domains. In other cases, and particularly in recurrent tumors, however, the cells become predominantly mesenchymal. A major question, still only incompletely answered, is whether the proteins that determine cell polarity function as tumor suppressors or tumor promoters. Here we discuss recent advances in understanding the role of polarity proteins and homeostasis in cancer.
Collapse
Affiliation(s)
- Maria Fomicheva
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37424, USA
| | - Erica M Tross
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37424, USA
| | - Ian G Macara
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37424, USA.
| |
Collapse
|
32
|
Rota C, Morigi M, Imberti B. Stem Cell Therapies in Kidney Diseases: Progress and Challenges. Int J Mol Sci 2019; 20:ijms20112790. [PMID: 31181604 PMCID: PMC6600599 DOI: 10.3390/ijms20112790] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 12/15/2022] Open
Abstract
The prevalence of renal diseases is emerging as a public health problem. Despite major progress in supportive therapy, mortality rates among patients remain high. In an attempt to find innovative treatments to stimulate kidney regeneration, stem cell-based technology has been proposed as a potentially promising strategy. Here, we summarise the renoprotective potential of pluripotent and adult stem cell therapy in experimental models of acute and chronic kidney injury and we explore the different mechanisms at the basis of stem cell-induced kidney regeneration. Specifically, cell engraftment, incorporation into renal structures, or paracrine activities of embryonic or induced pluripotent stem cells as well as mesenchymal stem cells and renal precursors are analysed. We also discuss the relevance of stem cell secretome-derived bioproducts, including soluble factors and extracellular vesicles, and the option of using them as cell-free therapy to induce reparative processes. The translation of the experimental results into clinical trials is also addressed, highlighting the safety and feasibility of stem cell treatments in patients with kidney injury.
Collapse
Affiliation(s)
- Cinzia Rota
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126 Bergamo, Italy.
| | - Marina Morigi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126 Bergamo, Italy.
| | - Barbara Imberti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126 Bergamo, Italy.
| |
Collapse
|