1
|
Ozkan S, Isildar B, Koyuturk M. Comparative analysis of the effects of different hypoxia mimetic agents on the secretome contents of conditioned medium obtained from mesenchymal stem/stromal cells cultured in 2 or 3-dimensional cell culture systems. Cytotechnology 2025; 77:11. [PMID: 39654545 PMCID: PMC11625095 DOI: 10.1007/s10616-024-00659-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 10/28/2024] [Indexed: 12/12/2024] Open
Abstract
Paracrine factors secreted by mesenchymal stem/stromal cells (MSCs) have been demonstrated to have significant therapeutic potential. The secretome profiles of MSCs variate depending on culture conditions. Generally, the effects of a single preconditioning strategy on secretome profiles of MSCs were investigated. However, until now, there has been no study examining the combinatory effects of different preconditioning strategies in a comparative manner. This study aimed to evaluate the secretome contents of conditioned media obtained from human umbilical cord-derived MSCs cultured in 2- or 3-dimensional (D) culture systems preconditioned with deferoxamine (DFS) or dimethyloxalylglycine (DMOG). Immunocytochemical analysis showed that MSCs preconditioned with DFS or DMOG have increased nuclear hypoxia-inducible factor-1α expression. Transmission electron microscopic analysis showed that cells preconditioned with DFS or DMOG have increased autophagic vesicles, which could be attributed to altered energy metabolism under hypoxic conditions. It was revealed that hypoxia-mimetic agents added to the 2D-, or 3D-culture environment raised total protein concentrations per cell along with vascular endothelial growth factor. The concentrations of glial cell-derived neurotrophic factor (GDNF) and nerve growth factor (NGF) were differentially regulated in 2D-, and 3D-culture system, that the secretions of GDNF and NGF per cell were more prominent in 3D- and 2D-culture systems, respectively. These findings indicate that hypoxic conditions alone significantly elevate total protein concentrations, while the contribution of the 3D environment is more modest than initially anticipated. However, concentrations of secreted growth factors may be affected differently depending on the topography of the culture condition and the types of hypoxia mimetic agents.
Collapse
Affiliation(s)
- Serbay Ozkan
- Faculty of Medicine, Histology and Embryology Department, Izmir Katip Çelebi University, Izmir, Turkey
| | - Basak Isildar
- Faculty of Medicine, Histology and Embryology Department, Balıkesir University, Balikesir, Turkey
| | - Meral Koyuturk
- Cerrahpaşa Faculty of Medicine, Histology and Embryology Department, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| |
Collapse
|
2
|
Ren H, Wang Y, Chen Y, Ma F, Shi Q, Wang Z, Gui Y, Liu J, Tang H. The therapeutic effects of induced pluripotent stem cell-derived mesenchymal stem cells on Parkinson's disease. IUBMB Life 2025; 77:e2936. [PMID: 39740935 DOI: 10.1002/iub.2936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/12/2024] [Indexed: 01/02/2025]
Abstract
Parkinson's disease (PD), characterized by progressive degeneration of dopaminergic neurons in substantia nigra, has no disease-modifying therapy. Mesenchymal stem cell (MSC) therapy has shown great promise as a disease-modifying solution for PD. Induced pluripotent stem cell-derived MSC (iMSC) not only has stronger neural repair function, but also helps solve the problem of MSC heterogeneity. So we evaluated the therapeutic effects of iMSCs on PD. iMSCs were administered by tail vein in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced PD models of C57BL/6 mice. The results showed iMSCs increased body weights, inhibited the prolongation of latencies to descend in pole tests, the decrease of grip strength in grip strength tests and increase of open arm entries in elevated plus maze test, and showed a trend to alleviate striatal dopamine loss. They indicate iMSCs might improve functions partially by preserving striatal dopamine in PD. We for the first time (1) found that iMSC has therapeutic effects on PD; (2) tested specifically muscle strength in cell therapy for PD and found it increases muscle strength; (3) found cell therapy alleviated the increase of entries into the open arms in PD. It suggests iMSC is a promising candidate for clinical investigations and drug development for PD.
Collapse
Affiliation(s)
- Hao Ren
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
- Cheerland Watson Precision Medicine Ltd, Shenzhen, China
| | - Yuwei Wang
- Cheerland Watson Precision Medicine Ltd, Shenzhen, China
| | - Yingying Chen
- Cheerland Watson Precision Medicine Ltd, Shenzhen, China
| | - Feilong Ma
- Cheerland Watson Precision Medicine Ltd, Shenzhen, China
| | - Qing Shi
- Cheerland Watson Precision Medicine Ltd, Shenzhen, China
| | - Zichen Wang
- Cheerland Watson Precision Medicine Ltd, Shenzhen, China
| | - Yaoting Gui
- Cheerland Watson Precision Medicine Ltd, Shenzhen, China
| | - Jianbo Liu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Huiru Tang
- Cheerland Watson Precision Medicine Ltd, Shenzhen, China
| |
Collapse
|
3
|
Montemurro T, Lavazza C, Montelatici E, Budelli S, La Rosa S, Barilani M, Mei C, Manzini P, Ratti I, Cimoni S, Brasca M, Prati D, Saporiti G, Astori G, Elice F, Giordano R, Lazzari L. Off-the-Shelf Cord-Blood Mesenchymal Stromal Cells: Production, Quality Control, and Clinical Use. Cells 2024; 13:1066. [PMID: 38920694 PMCID: PMC11202005 DOI: 10.3390/cells13121066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Background Recently, mesenchymal stromal cells (MSCs) have gained recognition for their clinical utility in transplantation to induce tolerance and to improve/replace pharmacological immunosuppression. Cord blood (CB)-derived MSCs are particularly attractive for their immunological naivety and peculiar anti-inflammatory and anti-apoptotic properties. OBJECTIVES The objective of this study was to obtain an inventory of CB MSCs able to support large-scale advanced therapy medicinal product (ATMP)-based clinical trials. STUDY DESIGN We isolated MSCs by plastic adherence in a GMP-compliant culture system. We established a well-characterized master cell bank and expanded a working cell bank to generate batches of finished MSC(CB) products certified for clinical use. The MSC(CB) produced by our facility was used in approved clinical trials or for therapeutic use, following single-patient authorization as an immune-suppressant agent. RESULTS We show the feasibility of a well-defined MSC manufacturing process and describe the main indications for which the MSCs were employed. We delve into a regulatory framework governing advanced therapy medicinal products (ATMPs), emphasizing the need of stringent quality control and safety assessments. From March 2012 to June 2023, 263 of our Good Manufacturing Practice (GMP)-certified MSC(CB) preparations were administered as ATMPs in 40 subjects affected by Graft-vs.-Host Disease, nephrotic syndrome, or bronco-pulmonary dysplasia of the newborn. There was no infusion-related adverse event. No patient experienced any grade toxicity. Encouraging preliminary outcome results were reported. Clinical response was registered in the majority of patients treated under therapeutic use authorization. CONCLUSIONS Our 10 years of experience with MSC(CB) described here provides valuable insights into the use of this innovative cell product in immune-mediated diseases.
Collapse
Affiliation(s)
- Tiziana Montemurro
- Unit of Cellular and Gene Therapy, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (T.M.); (C.L.); (E.M.); (S.B.); (S.L.R.); (M.B.); (C.M.); (P.M.); (L.L.)
| | - Cristiana Lavazza
- Unit of Cellular and Gene Therapy, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (T.M.); (C.L.); (E.M.); (S.B.); (S.L.R.); (M.B.); (C.M.); (P.M.); (L.L.)
| | - Elisa Montelatici
- Unit of Cellular and Gene Therapy, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (T.M.); (C.L.); (E.M.); (S.B.); (S.L.R.); (M.B.); (C.M.); (P.M.); (L.L.)
| | - Silvia Budelli
- Unit of Cellular and Gene Therapy, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (T.M.); (C.L.); (E.M.); (S.B.); (S.L.R.); (M.B.); (C.M.); (P.M.); (L.L.)
| | - Salvatore La Rosa
- Unit of Cellular and Gene Therapy, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (T.M.); (C.L.); (E.M.); (S.B.); (S.L.R.); (M.B.); (C.M.); (P.M.); (L.L.)
| | - Mario Barilani
- Unit of Cellular and Gene Therapy, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (T.M.); (C.L.); (E.M.); (S.B.); (S.L.R.); (M.B.); (C.M.); (P.M.); (L.L.)
| | - Cecilia Mei
- Unit of Cellular and Gene Therapy, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (T.M.); (C.L.); (E.M.); (S.B.); (S.L.R.); (M.B.); (C.M.); (P.M.); (L.L.)
| | - Paolo Manzini
- Unit of Cellular and Gene Therapy, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (T.M.); (C.L.); (E.M.); (S.B.); (S.L.R.); (M.B.); (C.M.); (P.M.); (L.L.)
| | - Ilaria Ratti
- Milano Cord Blood Bank and Center of Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (I.R.); (S.C.); (M.B.); (D.P.)
| | - Silvia Cimoni
- Milano Cord Blood Bank and Center of Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (I.R.); (S.C.); (M.B.); (D.P.)
| | - Manuela Brasca
- Milano Cord Blood Bank and Center of Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (I.R.); (S.C.); (M.B.); (D.P.)
| | - Daniele Prati
- Milano Cord Blood Bank and Center of Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (I.R.); (S.C.); (M.B.); (D.P.)
| | - Giorgia Saporiti
- Bone Marrow Transplantation and Cellular Therapy Center, Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy;
| | - Giuseppe Astori
- Laboratory of Advanced Cellular Therapies and Haematology Unit, San Bortolo Hospital, AULSS8 “Berica”, 36100 Vicenza, Italy; (G.A.); (F.E.)
| | - Francesca Elice
- Laboratory of Advanced Cellular Therapies and Haematology Unit, San Bortolo Hospital, AULSS8 “Berica”, 36100 Vicenza, Italy; (G.A.); (F.E.)
| | - Rosaria Giordano
- Unit of Cellular and Gene Therapy, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (T.M.); (C.L.); (E.M.); (S.B.); (S.L.R.); (M.B.); (C.M.); (P.M.); (L.L.)
| | - Lorenza Lazzari
- Unit of Cellular and Gene Therapy, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (T.M.); (C.L.); (E.M.); (S.B.); (S.L.R.); (M.B.); (C.M.); (P.M.); (L.L.)
| |
Collapse
|
4
|
Pateraki P, Latsoudis H, Papadopoulou A, Gontika I, Fragiadaki I, Mavroudi I, Bizymi N, Batsali A, Klontzas ME, Xagorari A, Michalopoulos E, Sotiropoulos D, Yannaki E, Stavropoulos-Giokas C, Papadaki HA. Perspectives for the Use of Umbilical Cord Blood in Transplantation and Beyond: Initiatives for an Advanced and Sustainable Public Banking Program in Greece. J Clin Med 2024; 13:1152. [PMID: 38398465 PMCID: PMC10889829 DOI: 10.3390/jcm13041152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
The umbilical cord blood (UCB) donated in public UCB banks is a source of hematopoietic stem cells (HSC) alternative to bone marrow for allogeneic HSC transplantation (HSCT). However, the high rejection rate of the donated units due to the strict acceptance criteria and the wide application of the haploidentical HSCT have resulted in significant limitation of the use of UCB and difficulties in the economic sustainability of the public UCB banks. There is an ongoing effort within the UCB community to optimize the use of UCB in the field of HSCT and a parallel interest in exploring the use of UCB for applications beyond HSCT i.e., in the fields of cell therapy, regenerative medicine and specialized transfusion medicine. In this report, we describe the mode of operation of the three public UCB banks in Greece as an example of an orchestrated effort to develop a viable UCB banking system by (a) prioritizing the enrichment of the national inventory by high-quality UCB units from populations with rare human leukocyte antigens (HLA), and (b) deploying novel sustainable applications of UCB beyond HSCT, through national and international collaborations. The Greek paradigm of the public UCB network may become an example for countries, particularly with high HLA heterogeneity, with public UCB banks facing sustainability difficulties and adds value to the international efforts aiming to sustainably expand the public UCB banking system.
Collapse
Affiliation(s)
- Patra Pateraki
- Law Directorate of the Health Region of Crete, Ministry of Health, Heraklion, 71500 Heraklion, Greece;
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
| | - Helen Latsoudis
- Institute of Computer Sciences, Foundation for Research and Technology–Hellas (FORTH), 70013 Heraklion, Greece;
| | - Anastasia Papadopoulou
- Gene and Cell Therapy Center, Department of Hematology-HCT Unit, George Papanikolaou Hospital, 57010 Thessaloniki, Greece;
| | - Ioanna Gontika
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Irene Fragiadaki
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Irene Mavroudi
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Nikoleta Bizymi
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Aristea Batsali
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Michail E. Klontzas
- Department of Radiology, School of Medicine, University of Crete, 71500 Heraklion, Greece;
- Department of Medical Imaging, University Hospital of Heraklion, 71500 Heraklion, Greece
| | - Angeliki Xagorari
- Public Cord Blood Bank, Department of Hematology, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (A.X.); (D.S.)
| | - Efstathios Michalopoulos
- Hellenic Cord Blood Bank (HCBB), Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece; (E.M.); (C.S.-G.)
| | - Damianos Sotiropoulos
- Public Cord Blood Bank, Department of Hematology, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (A.X.); (D.S.)
| | - Evangelia Yannaki
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Catherine Stavropoulos-Giokas
- Hellenic Cord Blood Bank (HCBB), Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece; (E.M.); (C.S.-G.)
| | - Helen A. Papadaki
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| |
Collapse
|
5
|
Wu X, Ma Z, Yang Y, Mu Y, Wu D. Umbilical cord mesenchymal stromal cells in serum-free defined medium display an improved safety profile. Stem Cell Res Ther 2023; 14:360. [PMID: 38087382 PMCID: PMC10717764 DOI: 10.1186/s13287-023-03604-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Safety evaluations in preclinical studies are needed to confirm before translating a cell-based product into clinical application. We previously developed a serum-free, xeno-free, and chemically defined media (S&XFM-CD) for the derivation of clinical-grade umbilical cord-derived MSCs (UCMSCs), and demonstrated that intraperitoneal administration of UCMSCs in S&XFM-CD (UCMSCS&XFM-CD) exhibited better therapeutic effects than UCMSCs in serum-containing media (SCM, UCMSCSCM). However, a comprehensive investigation of the safety of intraperitoneal UCMSCS&XFM-CD treatment should be performed before clinical applications. METHODS In this study, the toxicity, immunogenicity and biodistribution of intraperitoneally transplanted UCMSCS&XFM-CD were compared with UCMSCSCM in rats via general vital signs, blood routine, blood biochemistry, subsets of T cells, serum cytokines, pathology of vital organs, antibody production and the expression of human-specific gene. The tumorigenicity and tumor-promoting effect of UCMSCS&XFM-CD were compared with UCMSCSCM in nude mice. RESULTS We confirmed that intraperitoneally transplanted UCMSCS&XFM-CD or UCMSCSCM did not cause significant changes in body weight, temperature, systolic blood pressure, diastolic blood pressure, heart rate, blood routine, T lymphocyte subsets, and serum cytokines, and had no obvious histopathology change on experimental rats. UCMSCS&XFM-CD did not produce antibodies, while UCMSCSCM had very high chance of antibody production to bovine serum albumin (80%) and apolipoprotein B-100 (60%). Furthermore, intraperitoneally injected UCMSCS&XFM-CD were less likely to be blocked by the lungs and migrated more easily to the kidneys and colon tissue than UCMSCSCM. In addition, UCMSCS&XFM-CD or UCMSCSCM showed no obvious tumorigenic activity. Finally, UCMSCS&XFM-CD extended the time of tumor formation of KM12SM cells, and decreased tumor incidence than that of UCMSCSCM. CONCLUSIONS Taken together, our data indicate that UCMSCS&XFM-CD display an improved safety performance and are encouraged to use in future clinical trials.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Interventional Department, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, People's Republic of China
- Department of Technology, Beijing Stem Cell (ProterCell) Biotechnology Co., Ltd., Beijing, People's Republic of China
- Department of Technology, Inner Mongolia Stem Cell (ProterCell) Biotechnology Co., Ltd., Hohhot, People's Republic of China
| | - Zhijie Ma
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yuxiao Yang
- Department of Technology, Beijing Stem Cell (ProterCell) Biotechnology Co., Ltd., Beijing, People's Republic of China
- Department of Technology, Research Center for Hua-Da Precision Medicine of Inner Mongolia Autonomous Region, Hohhot, People's Republic of China
| | - Yongxu Mu
- Interventional Department, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, People's Republic of China
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
6
|
Isildar B, Ozkan S, Ercin M, Gezginci-Oktayoglu S, Oncul M, Koyuturk M. 2D and 3D cultured human umbilical cord-derived mesenchymal stem cell-conditioned medium has a dual effect in type 1 diabetes model in rats: immunomodulation and beta-cell regeneration. Inflamm Regen 2022; 42:55. [PMID: 36451229 PMCID: PMC9710085 DOI: 10.1186/s41232-022-00241-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is a T-cell-mediated autoimmune disease characterized by the irreversible destruction of insulin-producing β-cells in pancreatic islets. Helper and cytotoxic T-cells and cytokine production, which is impaired by this process, take a synergetic role in β-cell destruction, and hyperglycemia develops due to insulin deficiency in the body. Mesenchymal stem cells (MSCs) appear like an excellent therapeutic tool for autoimmune diseases with pluripotent, regenerative, and immunosuppressive properties. Paracrine factors released from MSCs play a role in immunomodulation by increasing angiogenesis and proliferation and suppressing apoptosis. In this context, the study aims to investigate the therapeutic effects of MSC's secretomes by conditioned medium (CM) obtained from human umbilical cord-derived MSCs cultured in 2-dimensional (2D) and 3-dimensional (3D) environments in the T1D model. METHODS First, MSCs were isolated from the human umbilical cord, and the cells were characterized. Then, two different CMs were prepared by culturing MSCs in 2D and 3D environments. The CM contents were analyzed in terms of total protein, IL-4, IL-10, IL-17, and IFN-λ. In vivo studies were performed in Sprague-Dawley-type rats with an autoimmune T1D model, and twelve doses of CM were administered intraperitoneally for 4 weeks within the framework of a particular treatment model. In order to evaluate immunomodulation, the Treg population was determined in lymphocytes isolated from the spleen after sacrification, and IL-4, IL-10, IL-17, and IFN-λ cytokines were analyzed in serum. Finally, β-cell regeneration was evaluated immunohistochemically by labeling Pdx1, Nkx6.1, and insulin markers, which are critical for the formation of β-cells. RESULTS Total protein and IL-4 levels were higher in 3D-CM compared to 2D-CM. In vivo results showed that CMs induce the Treg population and regulate cytokine release. When the immunohistochemical results were evaluated together, it was determined that CM application significantly increased the rate of β-cells in the islets. This increase was at the highest level in the 3D-CM applied group. CONCLUSION The dual therapeutic effect of MSC-CM on immunomodulation and homeostasis/regeneration of β-cells in the T1D model has been demonstrated. Furthermore, this effect could be improved by using 3D scaffolds for culturing MSCs while preparing CM.
Collapse
Affiliation(s)
- Basak Isildar
- grid.506076.20000 0004 1797 5496Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Serbay Ozkan
- grid.506076.20000 0004 1797 5496Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Merve Ercin
- grid.9601.e0000 0001 2166 6619Department of Biology, Molecular Biology Section, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Selda Gezginci-Oktayoglu
- grid.9601.e0000 0001 2166 6619Department of Biology, Molecular Biology Section, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Mahmut Oncul
- grid.506076.20000 0004 1797 5496Department of Gynecology and Obstetrics, Cerrahpasa Faculty of Medicine, Istanbul University- Cerrahpasa, Istanbul, Turkey
| | - Meral Koyuturk
- grid.506076.20000 0004 1797 5496Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
7
|
Divband S, Tasharrofi N, Abroun S, Zomorrod MS. Human Umbilical Cord Mesenchymal Stem Cells-Derived Small Extracellular Vesicles Can Be Considered as Cell-Free Therapeutics for Angiogenesis Promotion. CELL JOURNAL 2022; 24:689-696. [PMID: 36377219 PMCID: PMC9663965 DOI: 10.22074/cellj.2022.8275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Angiogenesis has critical roles in several physiological processes. Restoring angiogenesis in some pathological conditions such as a few vascular diseases can be a therapeutic approach to controlling this issue. Mesenchymal stem cells (MSCs) secrete specific intracellular products known as extracellular vesicles (EVs) with high therapeutic potential which compared to their source cells, do not have the limitations of cell therapy. The angiogenic effect of the human umbilical cord MSCs (hUCMSCs)-derived small EVs are evaluated in the present work. Aim of this research is to show that hUCMSCs-derived small EVs cause differentiation of genes involved in angiogenesis like FGFR-1, FGF, VEGF, and VEGFR-2. MATERIALS AND METHODS In this experimental study, MSCs were isolated from the human umbilical cord, and after confirming their identities, their secreted EVs (including exosomes) were extracted by ultracentrifugation. The isolated small EVs were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), bicinchoninic acid assay (BCA), and Western Blotting. Then, the human umbilical vein endothelial cells (HUVECs) were treated with derived small EVs for 72 hours, and the expression of the angiogenic factors including FGFR-1, FGF, VEGF, and VEGFR-2 was evaluated by quantitative real-time-polymerase chain reaction (qPCR). Angiogenesis was also evaluated via a tube formation assay. RESULTS The results demonstrated that FGFR-1, FGF, VEGF, and VEGFR-2 could be elevated 2, 2, 3.5, and 2 times, respectively, in EVs treated HUVECs, and derivative EVs can encourage tube formation in HUVECs. CONCLUSION These findings imply that hUCMSCs-derived small EVs are valuable resources in promoting angiogenesis and are very promising in cell-free therapy.
Collapse
Affiliation(s)
- Somayeh Divband
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nooshin Tasharrofi
- Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Saeid Abroun
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mina Soufi Zomorrod
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran,P.O.Box: 14115-111Department of Hematology and Cell TherapyFaculty of Medical SciencesTarbiat Modares
UniversityTehranIran
| |
Collapse
|
8
|
Zhang J, Peng Y, Guo M, Li C. Large-Scale Expansion of Human Umbilical Cord-Derived Mesenchymal Stem Cells in a Stirred Suspension Bioreactor Enabled by Computational Fluid Dynamics Modeling. Bioengineering (Basel) 2022; 9:bioengineering9070274. [PMID: 35877325 PMCID: PMC9312327 DOI: 10.3390/bioengineering9070274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/20/2022] Open
Abstract
Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) hold great potential to generate novel and curative cell therapy products. However, the current large-scale cultivation of hUCMSCs is based on empirical geometry-dependent methods, limiting the generation of high-quantity and high-quality hUCMSCs for clinical therapy. Herein, we develop a novel scale-up strategy based on computational fluid dynamics (CFD) to effectively expand the hUCMSCs in a 3D tank bioreactor. Using a standardized hUCMSCs line on microcarriers, we successfully translated and expanded the hUCMSCs from a 200 mL spinner flask to a 1.5 L computer-controlled bioreactor by matching the shear environment and suspending the microcarrier. Experimental results revealed that the batch-cultured hUCMSCs in bioreactors with an agitation speed of 40 rpm shared a more favorable growth and physiological state, similar to that run at 45 rpm in a 200 mL spinner flask, showing comparability in both culture systems. Notably, the maximum cell density reached up to 27.3 × 105 cells/mL in fed-batch culture, 2.9 folds of that of batch culture and 20.2 times of seeding cells. As such, efficient process optimization and scale-up expansion of hUCMSCs were achieved in the microcarrier-based bioreactor system by the developed CFD simulation strategy, which provided an alternative toolbox to generate massive and standardized curative cell therapy products.
Collapse
Affiliation(s)
| | | | | | - Chao Li
- Correspondence: (M.G.); (C.L.)
| |
Collapse
|
9
|
Coccini T, Spinillo A, Roccio M, Lenta E, Valsecchi C, De Simone U. Human Umbilical Cord Mesenchymal Stem Cell-Based in vitro Model for Neurotoxicity Testing. Curr Protoc 2022; 2:e423. [PMID: 35471597 DOI: 10.1002/cpz1.423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neurotoxicity (NT) testing for regulatory purposes is based on in vivo animal testing. There is general consensus, however, about the need for the development of alternative methodologies to allow researchers to more rapidly and cost effectively screen large numbers of chemicals for their potential to cause NT, or to investigate their mode of action. In vitro assays are considered an important source of information for making regulatory decisions, and human cell-based systems are recommended as one of the most relevant models in toxicity testing, to reduce uncertainty in the extrapolation of results from animal-based models. Human neuronal models range from various neuroblastoma cell lines to stem cell-derived systems, including those derived from mesenchymal stem/stromal cells (hMSC). hMSCs exhibit numerous advantages, including the fact that they can be obtained in high yield from healthy human adult tissues, can be cultured with a minimal laboratory setup and without genetic manipulations, are able of continuous and repeated self-renewal, are nontumorigenic, and can form large populations of stably differentiated cells representative of different tissues, including neuronal cells. hMSCs derived from human umbilical cord (hUC) in particular possess several prominent advantages, including a painless, non-invasive, and ethically acceptable collection procedure, simple and convenient preparation, and high proliferation capacity. In addition, hMSCs can be efficiently differentiated into neuron-like cells (hNLCs), which can then be used for the assessment of neuronal toxicity of potential neurotoxic compounds in humans. Here, we describe a step-by-step procedure to use hMSCs from the umbilical cord for in vitro neurotoxicity testing. First, we describe how to isolate, amplify, and store hMSCs derived from the umbilical cord. We then outline the steps to transdifferentiate these cells into hNLCs, and then use the hNLCs for neurotoxicity testing by employing multiple common cytotoxicity assays after treatment with test compounds. The approach follows the most updated guidance on using human cell-based systems. These protocols will allow investigators to implement an alternative system for obtaining primary NLCs of human origin, and support advancement in neurotoxicity research. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Isolation and maintenance of human mesenchymal stem/stromal cells (hMSCs) obtained from the umbilical cord lining membrane Basic Protocol 2: Transdifferentiation of hMSCs into neuron-like cells (hNLCs) and basic neurotoxicity assessment.
Collapse
Affiliation(s)
- Teresa Coccini
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre-National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Arsenio Spinillo
- Department of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Marianna Roccio
- Department of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Elisa Lenta
- Immunology and Transplantation Laboratory, Pediatric Hematology Oncology Unit, Cell Factory, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Chiara Valsecchi
- Immunology and Transplantation Laboratory, Pediatric Hematology Oncology Unit, Cell Factory, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Uliana De Simone
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre-National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| |
Collapse
|
10
|
Yen BL, Liu K, Sytwu H, Yen M. Clinical implications of differential functional capacity between tissue‐specific human mesenchymal stromal/stem cells. FEBS J 2022. [DOI: 10.1111/febs.16438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/30/2022] [Accepted: 03/16/2022] [Indexed: 11/28/2022]
Affiliation(s)
- B. Linju Yen
- Regenerative Medicine Research Group Institute of Cellular & System Medicine National Health Research Institutes (NHRI) Zhunan Taiwan
- Department of Obstetrics & Gynecology Cathay General Hospital Shiji New Taipei City Taiwan
| | - Ko‐Jiunn Liu
- National Institute of Cancer Research NHRI Zhunan Taiwan
- Institute of Clinical Pharmacy & Pharmaceutical Sciences National Cheng Kung University Tainan Taiwan
- School of Medical Laboratory Science and Biotechnology Taipei Medical University Taiwan
| | - Huey‐Kang Sytwu
- National Institute of Infectious Diseases & Vaccinology NHRI Zhunan Taiwan
- Graduate Institute of Microbiology & Immunology National Defense Medical Center Taipei Taiwan
| | - Men‐Luh Yen
- Department of Obstetrics & Gynecology National Taiwan University (NTU) Hospital & College of Medicine NTU Taipei Taiwan
| |
Collapse
|
11
|
De Simone U, Croce AC, Pignatti P, Buscaglia E, Caloni F, Coccini T. Three dimensional spheroid cell culture of human MSC‐derived neuron‐like cells: new in vitro model to assess magnetite nanoparticle‐induced neurotoxicity effects. J Appl Toxicol 2022; 42:1230-1252. [DOI: 10.1002/jat.4292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Uliana De Simone
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre ‐ National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS Pavia Italy
| | - Anna Cleta Croce
- Institute of Molecular Genetics, Italian National Research Council (CNR) Pavia Italy
- Department of Biology & Biotechnology University of Pavia Pavia Italy
| | - Patrizia Pignatti
- Allergy and Immunology Unit, Istituti Clinici Scientifici Maugeri IRCCS Pavia Italy
| | - Eleonora Buscaglia
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre ‐ National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS Pavia Italy
| | - Francesca Caloni
- Department of Health, Animal Science and Food Safety Universitá degli Studi di Milano Milan Italy
| | - Teresa Coccini
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre ‐ National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS Pavia Italy
| |
Collapse
|
12
|
Benny M, Courchia B, Shrager S, Sharma M, Chen P, Duara J, Valasaki K, Bellio MA, Damianos A, Huang J, Zambrano R, Schmidt A, Wu S, Velazquez OC, Hare JM, Khan A, Young KC. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:189-199. [PMID: 35298658 PMCID: PMC8929420 DOI: 10.1093/stcltm/szab011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/17/2021] [Indexed: 11/13/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a life-threatening condition in preterm infants with few effective therapies. Mesenchymal stem or stromal cells (MSCs) are a promising therapeutic strategy for BPD. The ideal MSC source for BPD prevention is however unknown. The objective of this study was to compare the regenerative effects of MSC obtained from bone marrow (BM) and umbilical cord tissue (UCT) in an experimental BPD model. In vitro, UCT-MSC demonstrated greater proliferation and expression of anti-inflammatory cytokines as compared to BM-MSC. Lung epithelial cells incubated with UCT-MSC conditioned media (CM) had better-wound healing following scratch injury. UCT-MSC CM and BM-MSC CM had similar pro-angiogenic effects on hyperoxia-exposed pulmonary microvascular endothelial cells. In vivo, newborn rats exposed to normoxia or hyperoxia (85% O2) from postnatal day (P) 1 to 21 were given intra-tracheal (IT) BM or UCT-MSC (1 × 106 cells/50 μL), or placebo (PL) on P3. Hyperoxia PL-treated rats had marked alveolar simplification, reduced lung vascular density, pulmonary vascular remodeling, and lung inflammation. In contrast, administration of both BM-MSC and UCT-MSC significantly improved alveolar structure, lung angiogenesis, pulmonary vascular remodeling, and lung inflammation. UCT-MSC hyperoxia-exposed rats however had greater improvement in some morphometric measures of alveolarization and less lung macrophage infiltration as compared to the BM-MSC-treated group. Together, these findings suggest that BM-MSC and UCT-MSC have significant lung regenerative effects in experimental BPD but UCT-MSC suppresses lung macrophage infiltration and promotes lung epithelial cell healing to a greater degree.
Collapse
Affiliation(s)
- Merline Benny
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Benjamin Courchia
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sebastian Shrager
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mayank Sharma
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Pingping Chen
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joanne Duara
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Krystalenia Valasaki
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michael A Bellio
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andreas Damianos
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jian Huang
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ronald Zambrano
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Augusto Schmidt
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shu Wu
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Omaida C Velazquez
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joshua M Hare
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Aisha Khan
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Karen C Young
- Corresponding author: Karen C. Young, MD, Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, 1580 NW 10th Avenue, RM-345, Miami, FL 33136, USA. Tel: 305-243-4531;
| |
Collapse
|
13
|
Kulus M, Sibiak R, Stefańska K, Zdun M, Wieczorkiewicz M, Piotrowska-Kempisty H, Jaśkowski JM, Bukowska D, Ratajczak K, Zabel M, Mozdziak P, Kempisty B. Mesenchymal Stem/Stromal Cells Derived from Human and Animal Perinatal Tissues-Origins, Characteristics, Signaling Pathways, and Clinical Trials. Cells 2021; 10:cells10123278. [PMID: 34943786 PMCID: PMC8699543 DOI: 10.3390/cells10123278] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/13/2021] [Accepted: 11/19/2021] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are currently one of the most extensively researched fields due to their promising opportunity for use in regenerative medicine. There are many sources of MSCs, of which cells of perinatal origin appear to be an invaluable pool. Compared to embryonic stem cells, they are devoid of ethical conflicts because they are derived from tissues surrounding the fetus and can be safely recovered from medical waste after delivery. Additionally, perinatal MSCs exhibit better self-renewal and differentiation properties than those derived from adult tissues. It is important to consider the anatomy of perinatal tissues and the general description of MSCs, including their isolation, differentiation, and characterization of different types of perinatal MSCs from both animals and humans (placenta, umbilical cord, amniotic fluid). Ultimately, signaling pathways are essential to consider regarding the clinical applications of MSCs. It is important to consider the origin of these cells, referring to the anatomical structure of the organs of origin, when describing the general and specific characteristics of the different types of MSCs as well as the pathways involved in differentiation.
Collapse
Affiliation(s)
- Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (K.R.)
| | - Rafał Sibiak
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (R.S.); (K.S.)
- Division of Reproduction, Department of Obstetrics, Gynecology, and Gynecologic Oncology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Katarzyna Stefańska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (R.S.); (K.S.)
| | - Maciej Zdun
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.Z.); (M.W.); (H.P.-K.)
| | - Maria Wieczorkiewicz
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.Z.); (M.W.); (H.P.-K.)
| | - Hanna Piotrowska-Kempisty
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.Z.); (M.W.); (H.P.-K.)
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
| | - Jędrzej M. Jaśkowski
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.M.J.); (D.B.)
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.M.J.); (D.B.)
| | - Kornel Ratajczak
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (K.R.)
| | - Maciej Zabel
- Division of Anatomy and Histology, University of Zielona Gora, 65-046 Zielona Gora, Poland;
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (K.R.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (R.S.); (K.S.)
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Correspondence:
| |
Collapse
|
14
|
Lin ADY, Tung MC, Lu CH. The hernia sac-A suitable source for obtaining mesenchymal stem cells. Surg Open Sci 2021; 6:40-44. [PMID: 34632354 PMCID: PMC8487083 DOI: 10.1016/j.sopen.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/29/2021] [Accepted: 08/17/2021] [Indexed: 12/02/2022] Open
Abstract
Background Inguinal hernia sac, extended tissue from peritoneum, gradually enlarged in size with hernia disease time and prolapsed tissue volume. We hypothesize that mesenchymal stem cells are present in the development of hernia sac. The current study aimed to test the hypothesis that hernia sac, which is often resected and discarded as medical waste, contains mesenchymal stem cells and thus might be a suitable source to harvest mesenchymal stem cells. Methods Between July 2019 and June 2020, 4 hernia sacs were resected during hernia surgery and then obtained for mesenchymal extraction using the Miltenyi gentleMACS Dissociator. The presence of mesenchymal stem cells was determined by the markers CD105, CD73, and CD90, with assessment of the expressions ≥ 95%, whereas markers CD45, CD34, CD11b, CD19, and HLA-DR were used to assess lack expression (≤ 2%). Moreover, von Kossa staining, Alcian blue staining, and Oil Red O staining were used to verify the cells' ability for differentiation. Results Cells retrieved from the hernia sacs displayed a spindle-shaped morphology and exhibited adherence to plastics. The cell surface immunophenotypic profile was confirmed using surface markers APC-A (CD73), FITC-A (CD90), and PerCP-Cy5-5-A (CD105), with results showing 100%, 100%, and 99.2%, respectively, strongly indicating the presence of mesenchymal stem cells. Moreover, staining of in vitro cell cultures showed in vitro differentiation of precursor cells into osteoblasts, adipocytes, and chondroblasts, suggesting positive differentiation ability and identification of mesenchymal stem cells. Conclusion Inguinal hernia sac is a novel source of mesenchymal stem cells that can be easily obtained and stored for future usage.
Collapse
Affiliation(s)
- Alpha Dian-Yu Lin
- Joshua Taipei Hernia Center, Central Clinic & Hospital, Taipei, Taiwan.,Division of Urology, Department of Surgery, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan.,Department of Urology, College of Medicine and Shu-Tien Urological Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Min-Che Tung
- Division of Urology, Department of Surgery, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Chin-Heng Lu
- Division of Urology, Department of Surgery, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| |
Collapse
|
15
|
Bryk M, Karnas E, Mlost J, Zuba-Surma E, Starowicz K. Mesenchymal stem cells and extracellular vesicles for the treatment of pain: Current status and perspectives. Br J Pharmacol 2021; 179:4281-4299. [PMID: 34028798 DOI: 10.1111/bph.15569] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/26/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent progenitor cells of mesodermal origin. Due to their capacity for self-renewal and differentiation into several cell types, MSCs have been extensively studied in experimental biology and regenerative medicine in recent years. Moreover, MSCs release extracellular vesicles (EVs), which might be partly responsible for their regenerative properties. MSCs regulate several processes in target cells via paracrine signalling, such as immunomodulation, anti-apoptotic signalling, tissue remodelling, angiogenesis and anti-fibrotic signalling. The aim of this review is to provide a detailed description of the functional properties of MSCs and EVs and their potential clinical applications, with a special focus on pain treatment. The analgesic, anti-inflammatory and regenerative properties of MSCs and EVs will be discussed for several diseases, such as neuropathic pain, osteoarthritis and spinal cord injury.
Collapse
Affiliation(s)
- Marta Bryk
- Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Elżbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Jakub Mlost
- Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Ewa Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | | |
Collapse
|
16
|
Bolli R, Solankhi M, Tang XL, Kahlon A. Cell Therapy in Patients with Heart Failure: A Comprehensive Review and Emerging Concepts. Cardiovasc Res 2021; 118:951-976. [PMID: 33871588 PMCID: PMC8930075 DOI: 10.1093/cvr/cvab135] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
This review summarizes the results of clinical trials of cell therapy in patients with heart failure (HF). In contrast to acute myocardial infarction (where results have been consistently negative for more than a decade), in the setting of HF the results of Phase I–II trials are encouraging, both in ischaemic and non-ischaemic cardiomyopathy. Several well-designed Phase II studies have met their primary endpoint and demonstrated an efficacy signal, which is remarkable considering that only one dose of cells was used. That an efficacy signal was seen 6–12 months after a single treatment provides a rationale for larger, rigorous trials. Importantly, no safety concerns have emerged. Amongst the various cell types tested, mesenchymal stromal cells derived from bone marrow (BM), umbilical cord, or adipose tissue show the greatest promise. In contrast, embryonic stem cells are not likely to become a clinical therapy. Unfractionated BM cells and cardiosphere-derived cells have been abandoned. The cell products used for HF will most likely be allogeneic. New approaches, such as repeated cell treatment and intravenous delivery, may revolutionize the field. As is the case for most new therapies, the development of cell therapies for HF has been slow, plagued by multifarious problems, and punctuated by many setbacks; at present, the utility of cell therapy in HF remains to be determined. What the field needs is rigorous, well-designed Phase III trials. The most important things to move forward are to keep an open mind, avoid preconceived notions, and let ourselves be guided by the evidence.
Collapse
Affiliation(s)
- Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292
| | - Mitesh Solankhi
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292
| | - Xiang-Liang Tang
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292
| | - Arunpreet Kahlon
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292
| |
Collapse
|
17
|
Xu Y, Li-Ying Chan L, Chen S, Ying B, Zhang T, Liu W, Guo H, Wang J, Xu Z, Zhang X, He X. Optimization of UC-MSCs cold-chain storage by minimizing temperature fluctuations using an automatic cryopreservation system. Cryobiology 2021; 99:131-139. [DOI: 10.1016/j.cryobiol.2020.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022]
|
18
|
Umbilical Cord Tissue as a Source of Young Cells for the Derivation of Induced Pluripotent Stem Cells Using Non-Integrating Episomal Vectors and Feeder-Free Conditions. Cells 2020; 10:cells10010049. [PMID: 33396312 PMCID: PMC7824218 DOI: 10.3390/cells10010049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 12/18/2022] Open
Abstract
The clinical application of induced pluripotent stem cells (iPSC) needs to balance the use of an autologous source that would be a perfect match for the patient against any safety or efficacy issues that might arise with using cells from an older patient or donor. Drs. Takahashi and Yamanaka and the Office of Cellular and Tissue-based Products (PMDA), Japan, have had concerns over the existence of accumulated DNA mutations in the cells of older donors and the possibility of long-term negative effects. To mitigate the risk, they have chosen to partner with the Umbilical Cord (UC) banks in Japan to source allogeneic-matched donor cells. Production of iPSCs from UC blood cells (UCB) has been successful; however, reprogramming blood cells requires cell enrichment with columns or flow cytometry and specialized growth media. These requirements add to the cost of production and increase the manipulation of the cells, which complicates the regulatory approval process. Alternatively, umbilical cord tissue mesenchymal stromal cells (CT-MSCs) have the same advantage as UCB cells of being a source of young donor cells. Crucially, CT-MSCs are easier and less expensive to harvest and grow compared to UCB cells. Here, we demonstrate that CT-MSCs can be easily isolated without expensive enzymatic treatment or columns and reprogramed well using episomal vectors, which allow for the removal of the reprogramming factors after a few passages. Together the data indicates that CT-MSCs are a viable source of donor cells for the production of clinical-grade, patient matched iPSCs.
Collapse
|
19
|
Harrell CR, Markovic BS, Fellabaum C, Arsenijevic N, Djonov V, Volarevic V. The role of Interleukin 1 receptor antagonist in mesenchymal stem cell-based tissue repair and regeneration. Biofactors 2020; 46:263-275. [PMID: 31755595 DOI: 10.1002/biof.1587] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/27/2019] [Accepted: 10/19/2019] [Indexed: 12/13/2022]
Abstract
Interleukin (IL)-1 receptor antagonist (IL-1Ra), a naturally occurring antagonist of IL-1α/IL-1β signaling pathways, has been attributed to the immunosuppressive effects of mesenchymal stem cells (MSCs). MSCs, in IL-1Ra-dependent manner, suppressed production of IL-1β in dermal macrophages, induced their polarization in anti-inflammatory M2 phenotype, attenuated antigen-presenting properties of dendritic cells (DCs), and promoted expansion of immunosuppressive T regulatory cells in the skin, which resulted in enhanced repair of the nonhealing wounds. Reduced activation of inflammasome and suppressed production of IL-1β in macrophages were mainly responsible for beneficial effects of MSC-derived IL-1Ra in alleviation of acute lung injury, dry eye syndrome, and corneal injury. Through the production of IL-1Ra, MSCs reduced migration of DCs to the draining lymph nodes and attenuated generation of inflammatory Th1 and Th17 cells that resulted in alleviation of fulminant hepatitis and rheumatoid arthritis. MSCs, in IL-1Ra-dependent manner, reduced liver fibrosis by suppressing production of Type I collagen in hepatic stellate cells. IL-1Ra was, at least partially, responsible for enhanced proliferation of hepatocytes and chondrocytes in MSC-treated animals with partial hepatectomy and osteoarthritis. Despite of these beneficial effects, IL-1Ra-dependent inhibition of IL-1α/IL-1β-signaling significantly increased risk of infections. Therefore, future experimental and clinical studies should delineate potential side effects of MSC-derived IL-1Ra before IL-1Ra-overexpressing MSCs could be used as a potentially new therapeutic agent for the treatment of acute and chronic inflammatory diseases.
Collapse
Affiliation(s)
| | - Bojana Simovic Markovic
- Faculty of Medical Sciences, Department for Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | | | - Nebojsa Arsenijevic
- Faculty of Medical Sciences, Department for Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | | | - Vladislav Volarevic
- Faculty of Medical Sciences, Department for Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|