1
|
Li J, Deng T, Zhu S, Xie P, Wang W, Zhou H, Xu C. The SDF-1/CXCR4 axis is involved in adipose-derived stem cell migration. Neurourol Urodyn 2024; 43:2279-2289. [PMID: 39149821 DOI: 10.1002/nau.25571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Intravenous injection of adipose-derived stem cells (ADSCs) can improve the urinary function of stress urinary incontinence (SUI) model rats and C-X-C chemokine receptor type 4 (CXCR4)-positive ADSCs are found in urethral tissues. The CXCR4 ligand stromal cell-derived factor-1 (SDF-1) is highly expressed in urinary incontinence model rats. In this study, we investigated the involvement of the SDF-1/CXCR4 axis in the homing of ADSCs. METHODS ADSCs were isolated from rats and purified. The levels of CXCR4 and CXCR7 were determined by western blot analysis and immunofluorescence assays following stimulation with SDF-1. Hypoxia conditioning was performed to treat the cells in vitro, following which the messenger RNA (mRNA) and protein level of SDF-1, CXCR4, and CXCR7 were estimated. RESULTS We found that CXCR4 and CXCR7 were expressed in ADSCs at passage zero (P0), P1, and P3, and the expression of both increased after SDF-1 stimulation. The level of expression of the mRNAs and proteins of SDF-1, CXCR4, and CXCR7 in ADSCs was higher after hypoxic conditioning. We then knocked down CXCR4 or CXCR7 using small interfering RNAs and found that the mRNA levels of CXCR4 and CXCR7 were considerably downregulated in the si-CXCR4/7-transfected cells. We also found that the SDF-1/CXCR4 axis was required for the migration of ADSCs. The phosphorylation levels of Janus kinase (JAK), protein kinase B (AKT), and extracellular regulated protein kinase significantly increased in SDF-1-stimulated ADSCs. However, the migration of ADSCs was suppressed when the corresponding specific inhibitors were used to block JAK and AKT signaling or silence CXCR4, whereas no significant change was observed in the migratory ability of ADSCs when the ERK pathway was blocked or CXCR7 was silenced. CONCLUSIONS The SDF-1/CXCR4 axis is involved in the migration of ADSCs and may play a role in the migrate of ADSCs in SUI.
Collapse
Affiliation(s)
- Jiang Li
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Tibin Deng
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Shaojie Zhu
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Pingbo Xie
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Wei Wang
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Hongqing Zhou
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Chenxiang Xu
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| |
Collapse
|
2
|
González Enguita C, Garranzo García-Ibarrola M, Tufet I Jaumont JJ, Garde García H, González López R, Quintana Franco LM, Torres Zambrano GM, García-Arranz M. Cell Therapy in the Treatment of Female Stress Urinary Incontinence: Current Status and Future Proposals. Life (Basel) 2024; 14:861. [PMID: 39063615 PMCID: PMC11278173 DOI: 10.3390/life14070861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Stress urinary incontinence (SUI) is a common condition with a significant impact on the quality of life of female patients. The limitations of current treatment strategies have prompted the exploration of new effective and minimally invasive alternative approaches, including cell therapy. METHODS A literature search was conducted to update the current clinical status of stem cell therapy in the management of female stress urinary incontinence. RESULTS Over thirty clinical studies have been designed to assess the feasibility, safety and efficacy of cell therapy for female SUI. Despite differences in cell types and protocols, the overall treatment procedures were similar. Standard subjective and objective assessment tools, and follow-up periods ranged from 6 weeks to 6 years have been used. Cell injection has shown to be a safe therapy in the treatment of female SUI. However, the results from more recent randomized trials have shown less promising results than expected in restoring continence. Heterogeneous research methodologies using different cell types and doses make it difficult to draw conclusions about effectiveness. Several key points remain that need to be further explored in future clinical trials. CONCLUSION To advance in the development of cell therapy, it is essential to know the mechanisms involved to be able to direct it properly, its efficacy and the durability of the injected cells. Rigorous and homogenized preclinical and clinical studies that demonstrate its scope and improve its application are necessary for validation in the treatment of female SUI.
Collapse
Affiliation(s)
- Carmen González Enguita
- Urology Department, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain; (J.J.T.I.J.); (H.G.G.); (R.G.L.); (L.M.Q.F.)
| | - María Garranzo García-Ibarrola
- Urology Department, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain; (J.J.T.I.J.); (H.G.G.); (R.G.L.); (L.M.Q.F.)
| | - Jaime Jorge Tufet I Jaumont
- Urology Department, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain; (J.J.T.I.J.); (H.G.G.); (R.G.L.); (L.M.Q.F.)
| | - Héctor Garde García
- Urology Department, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain; (J.J.T.I.J.); (H.G.G.); (R.G.L.); (L.M.Q.F.)
| | - Raquel González López
- Urology Department, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain; (J.J.T.I.J.); (H.G.G.); (R.G.L.); (L.M.Q.F.)
| | - Luis Miguel Quintana Franco
- Urology Department, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain; (J.J.T.I.J.); (H.G.G.); (R.G.L.); (L.M.Q.F.)
| | | | - Mariano García-Arranz
- Instituto Investigaión Sanitaria Fundación Jiménez Díaz (IIS-FJD), 28040 Madrid, Spain;
| |
Collapse
|
3
|
Lin L, Sun Y. Injection therapy for urinary incontinence: An innovation under the minimally invasive pinhole. Neurourol Urodyn 2024; 43:1238-1241. [PMID: 38530001 DOI: 10.1002/nau.25454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 03/27/2024]
Affiliation(s)
- Lusha Lin
- West China Tianfu Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yao Sun
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, China
| |
Collapse
|
4
|
Henderson T, Christman KL, Alperin M. Regenerative Medicine in Urogynecology: Where We Are and Where We Want to Be. UROGYNECOLOGY (PHILADELPHIA, PA.) 2024; 30:519-527. [PMID: 38683203 PMCID: PMC11342648 DOI: 10.1097/spv.0000000000001461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
ABSTRACT Pelvic floor disorders (PFDs) constitute a major public health issue given their negative effect on quality of life for millions of women worldwide and the associated economic burden. As the prevalence of PFDs continues to increase, novel therapeutic approaches for the effective treatment of these disorders are urgently needed. Regenerative medicine techniques, including cellular therapies, extracellular vesicles, secretomes, platelet-rich plasma, laser therapy, and bioinductive acellular biomaterial scaffolds, are emerging as viable clinical options to counteract urinary and fecal incontinence, as well as pelvic organ prolapse. This brief expert review explores the current state-of-science regarding application of these therapies for the treatment of PFDs. Although regenerative approaches have not been widely deployed in clinical care to date, these innovative techniques show a promising safety profile and potential to positively affect the quality of life of patients with PFDs. Furthermore, investigations focused on regeneration of the main constituents of the pelvic floor and lower urinary tract improve our understanding of the underlying pathophysiology of PFDs. Regenerative medicine techniques have a high potential not only to revolutionize treatment of PFDs but also to prevent these complex conditions.
Collapse
Affiliation(s)
- Tatyanna Henderson
- Division of Urogynecology and Reconstructive Pelvic Surgery, Department of Obstetrics, Gynecology, and Reproductive Sciences
| | - Karen L. Christman
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego
- Sanford Consortium for Regenerative Medicine, La Jolla, CA
| | - Marianna Alperin
- Division of Urogynecology and Reconstructive Pelvic Surgery, Department of Obstetrics, Gynecology, and Reproductive Sciences
- Sanford Consortium for Regenerative Medicine, La Jolla, CA
| |
Collapse
|
5
|
Knoll J, Amend B, Harland N, Isser S, Bézière N, Kraushaar U, Stenzl A, Aicher WK. Cell Therapy by Mesenchymal Stromal Cells Versus Myoblasts in a Pig Model of Urinary Incontinence. Tissue Eng Part A 2024; 30:14-30. [PMID: 37933911 DOI: 10.1089/ten.tea.2023.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
The leading cause of stress urinary incontinence (SUI) in women is the urethral sphincter muscle deficiency caused by mechanical stress during pregnancy and vaginal delivery. In men, prostate cancer surgery and injury of local nerves and muscles are associated with incontinence. Current treatment often fails to satisfy the patient's needs. Cell therapy may improve the situation. We therefore investigated the regeneration potential of cells in ameliorating sphincter muscle deficiency and UI in a large animal model. Urethral sphincter deficiency was induced surgically in gilts by electrocautery and balloon dilatation. Adipose tissue-derived stromal cells (ADSCs) and myoblasts from Musculus semitendinosus were isolated from male littermates, expanded, characterized in depth for expression of marker genes and in vitro differentiation, and labeled. The cells were injected into the deficient sphincter complex of the incontinent female littermates. Incontinent gilts receiving no cell therapy served as controls. Sphincter deficiency and functional regeneration were recorded by monitoring the urethral wall pressure during follow-up by two independent methods. Cells injected were detected in vivo during follow-up by transurethral fluorimetry, ex vivo by fluorescence imaging, and in cryosections of tissues targeted by immunofluorescence and by polymerase chain reaction of the sex-determining region Y (SRY) gene. Partial spontaneous regeneration of sphincter muscle function was recorded in control gilts, but the sphincter function remained significantly below levels measured before induction of incontinence (67.03% ± 14.00%, n = 6, p < 0.05). Injection of myoblasts yielded an improved sphincter regeneration within 5 weeks of follow-up but did not reach significance compared to control gilts (81.54% ± 25.40%, n = 5). A significant and full recovery of the urethral sphincter function was observed upon injection of ADSCs within 5 weeks of follow-up (100.4% ± 23.13%, n = 6, p < 0.05). Injection of stromal cells provoked slightly stronger infiltration of CD45pos leukocytes compared to myoblasts injections and controls. The data of this exploratory study indicate that ADSCs inherit a significant potential to regenerate the function of the urethral sphincter muscle.
Collapse
Affiliation(s)
- Jasmin Knoll
- Department of Urology at UKT, Center for Medical Research, Eberhard-Karls-University, Tuebingen, Germany
| | - Bastian Amend
- Department of Urology, University of Tuebingen Hospital, Tuebingen, Germany
| | - Niklas Harland
- Department of Urology, University of Tuebingen Hospital, Tuebingen, Germany
| | - Simon Isser
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University of Tübingen, Germany
| | - Nicolas Bézière
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University of Tübingen, Germany
- Cluster of Excellence CMFI (EXC 2124) "Controlling Microbes to Fight Infections," Eberhard Karls University Tübingen, Germany
| | - Udo Kraushaar
- Naturwissenschaftlich-Medizinisches Institut, Reutlingen, Germany
| | - Arnulf Stenzl
- Department of Urology, University of Tuebingen Hospital, Tuebingen, Germany
| | - Wilhelm K Aicher
- Department of Urology at UKT, Center for Medical Research, Eberhard-Karls-University, Tuebingen, Germany
| |
Collapse
|
6
|
Abuharb AI, Alzarroug AF, Algahtani SN, Alghamdi HK, Alosaimi FA, Alsuwayna N, Almughira AI. The Impact and Implications of Regenerative Medicine in Urology. Cureus 2024; 16:e52264. [PMID: 38352111 PMCID: PMC10863929 DOI: 10.7759/cureus.52264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2024] [Indexed: 02/16/2024] Open
Abstract
Urology focuses on the treatment of genitourinary disorders through therapies ranging from lifestyle changes to advanced surgeries; the field has recently incorporated robotic and minimally invasive technologies that have improved patient outcomes and reduced hospital stays and complications. However, these methods still have certain limitations. Regenerative medicine, focusing on natural repair abilities, can be an effective and safer alternative. This review aims to examine the impact of regenerative medicine in urology. We adopted a systematic review design by following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. An exhaustive online literature search involving the databases PubMed, the Cochrane Central Register of Controlled Trials (CENTRAL), and Google Scholar was conducted spanning the period between January 2010 and October 2023. Data were extracted from studies on regenerative medicine in urology with a special focus on efficacy and safety. Data from 16 studies were analyzed, which showed that cell therapy, biological materials, and tissue engineering are generally used in the field of urinary diseases. The main applications include the regeneration of urinary tissue, the correction of urinary incontinence, the treatment of erectile dysfunction, the reconstruction of ureteric defects, and the formation of bladder tissue. The study findings generally lack definitive conclusions on effectiveness and safety. While our results indicate that regenerative medicine is successful on a subjective level, more clinical trials are needed to establish its effectiveness and safety.
Collapse
Affiliation(s)
- Abdullah I Abuharb
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | | | - Saad N Algahtani
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | - Hatan K Alghamdi
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | - Fahad A Alosaimi
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | - Nasser Alsuwayna
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | | |
Collapse
|
7
|
Huang RL, Li Q, Ma JX, Atala A, Zhang Y. Body fluid-derived stem cells - an untapped stem cell source in genitourinary regeneration. Nat Rev Urol 2023; 20:739-761. [PMID: 37414959 PMCID: PMC11639537 DOI: 10.1038/s41585-023-00787-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 07/08/2023]
Abstract
Somatic stem cells have been obtained from solid organs and tissues, including the bone marrow, placenta, corneal stroma, periosteum, adipose tissue, dental pulp and skeletal muscle. These solid tissue-derived stem cells are often used for tissue repair, disease modelling and new drug development. In the past two decades, stem cells have also been identified in various body fluids, including urine, peripheral blood, umbilical cord blood, amniotic fluid, synovial fluid, breastmilk and menstrual blood. These body fluid-derived stem cells (BFSCs) have stemness properties comparable to those of other adult stem cells and, similarly to tissue-derived stem cells, show cell surface markers, multi-differentiation potential and immunomodulatory effects. However, BFSCs are more easily accessible through non-invasive or minimally invasive approaches than solid tissue-derived stem cells and can be isolated without enzymatic tissue digestion. Additionally, BFSCs have shown good versatility in repairing genitourinary abnormalities in preclinical models through direct differentiation or paracrine mechanisms such as pro-angiogenic, anti-apoptotic, antifibrotic, anti-oxidant and anti-inflammatory effects. However, optimization of protocols is needed to improve the efficacy and safety of BFSC therapy before therapeutic translation.
Collapse
Affiliation(s)
- Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Anthony Atala
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yuanyuan Zhang
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
8
|
Sun J, Zhang W, Wei ZZ, Song X, Jian L, Jiang F, Wang S, Li H, Zhang Y, Tuo H. Mesenchymal stromal cell biotherapy for Parkinson's disease premotor symptoms. Chin Neurosurg J 2023; 9:28. [PMID: 37833807 PMCID: PMC10571301 DOI: 10.1186/s41016-023-00338-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 07/30/2023] [Indexed: 10/15/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder with motor deficits due to nigrostriatal dopamine depletion and with the non-motor/premotor symptoms (NMS) such as anxiety, cognitive dysfunction, depression, hyposmia, and sleep disorders. NMS is presented in at least one-fifth of the patients with PD. With the histological information being investigated, stem cells are shown to provide neurotrophic supports and cellular replacement in the damaging brain areas under PD conditions. Pathological change of progressive PD includes degeneration and loss of dopaminergic neurons in the substantia nigra of the midbrain. The current stem cell beneficial effect addresses dopamine boost for the striatal neurons and gliovascular mechanisms as competing for validated PD drug targets. In addition, there are clinical interventions for improving the patient's NMS and targeting their autonomic dysfunction, dementia, mood disorders, or sleep problems. In our and many others' research using brain injury models, multipotent mesenchymal stromal cells demonstrate an additional and unique ability to alleviate depressive-like behaviors, independent of an accelerated motor recovery. Intranasal delivery of the stem cells is discussed for it is extensively tested in rodent animal models of neurological and psychiatric disorders. In this review, we attempt to discuss the repairing potentials of transplanted cells into parkinsonism pathological regions of motor deficits and focus on preventive and treatment effects. From new approaches in the PD biological therapy, it is believed that it can as well benefit patients against PD-NMS.
Collapse
Affiliation(s)
- Jinmei Sun
- Clinical Diagnosis and Treatment Center for Parkinson's Disease, Beijing Friendship Hospital, Beijing, China
- Laboratories of Biological Therapeutic Medical Technology, Department of Neurology, Beijing Friendship Hospital Center for Neurological Disorders, Capital Medical University, Beijing, China
- National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Neuroscience Institute, Beijing, China
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
- Beijing Tropical Medicine Research Institute, Beijing, China
| | - Wei Zhang
- Laboratories of Biological Therapeutic Medical Technology, Department of Neurology, Beijing Friendship Hospital Center for Neurological Disorders, Capital Medical University, Beijing, China.
| | - Zheng Zachory Wei
- Clinical Diagnosis and Treatment Center for Parkinson's Disease, Beijing Friendship Hospital, Beijing, China
- Laboratories of Biological Therapeutic Medical Technology, Department of Neurology, Beijing Friendship Hospital Center for Neurological Disorders, Capital Medical University, Beijing, China
- National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Neuroscience Institute, Beijing, China
| | - Xiaopeng Song
- McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Liu Jian
- Laboratories of Biological Therapeutic Medical Technology, Department of Neurology, Beijing Friendship Hospital Center for Neurological Disorders, Capital Medical University, Beijing, China
- Beijing Tropical Medicine Research Institute, Beijing, China
| | - Feng Jiang
- Neuroscience Research Institute, Peking University, Beijing, China
- Casstar, Zhongguancun No.1 Global Key & Core Technology (AI) Innovation Center, Beijing, China
| | - Shuanglin Wang
- Department of Critical Care Medicine, Airport Hospital of Tianjin Medical University General Hospital, Tianjin, China
- Department of Cardiovascular Thoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Haibo Li
- Department of Critical Care Medicine, Airport Hospital of Tianjin Medical University General Hospital, Tianjin, China
- Department of Cardiovascular Thoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Yongbo Zhang
- Laboratories of Biological Therapeutic Medical Technology, Department of Neurology, Beijing Friendship Hospital Center for Neurological Disorders, Capital Medical University, Beijing, China
- National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Neuroscience Institute, Beijing, China
| | - Houzhen Tuo
- Clinical Diagnosis and Treatment Center for Parkinson's Disease, Beijing Friendship Hospital, Beijing, China.
- Laboratories of Biological Therapeutic Medical Technology, Department of Neurology, Beijing Friendship Hospital Center for Neurological Disorders, Capital Medical University, Beijing, China.
- National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Neuroscience Institute, Beijing, China.
| |
Collapse
|
9
|
Harland N, Walz S, Eberli D, Schmid FA, Aicher WK, Stenzl A, Amend B. Stress Urinary Incontinence: An Unsolved Clinical Challenge. Biomedicines 2023; 11:2486. [PMID: 37760927 PMCID: PMC10525672 DOI: 10.3390/biomedicines11092486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Stress urinary incontinence is still a frequent problem for women and men, which leads to pronounced impairment of the quality of life and withdrawal from the social environment. Modern diagnostics and therapy improved the situation for individuals affected. But there are still limits, including the correct diagnosis of incontinence and its pathophysiology, as well as the therapeutic algorithms. In most cases, patients are treated with a first-line regimen of drugs, possibly in combination with specific exercises and electrophysiological stimulation. When conservative options are exhausted, minimally invasive surgical therapies are indicated. However, standard surgeries, especially the application of implants, do not pursue any causal therapy. Non-absorbable meshes and ligaments have fallen into disrepute due to complications. In numerous countries, classic techniques such as colposuspension have been revived to avoid implants. Except for tapes in the treatment of stress urinary incontinence in women, the literature on randomized controlled studies is insufficient. This review provides an update on pharmacological and surgical treatment options for stress urinary incontinence; it highlights limitations and formulates wishes for the future from a clinical perspective.
Collapse
Affiliation(s)
- Niklas Harland
- Department of Urology, University of Tuebingen Hospital, 72076 Tuebingen, Germany; (N.H.); (S.W.); (A.S.)
| | - Simon Walz
- Department of Urology, University of Tuebingen Hospital, 72076 Tuebingen, Germany; (N.H.); (S.W.); (A.S.)
| | - Daniel Eberli
- Department of Urology, University Hospital Zurich, 8091 Zurich, Switzerland; (D.E.); (F.A.S.)
| | - Florian A. Schmid
- Department of Urology, University Hospital Zurich, 8091 Zurich, Switzerland; (D.E.); (F.A.S.)
| | - Wilhelm K. Aicher
- Centre for Medical Research, University of Tuebingen Hospital, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany;
| | - Arnulf Stenzl
- Department of Urology, University of Tuebingen Hospital, 72076 Tuebingen, Germany; (N.H.); (S.W.); (A.S.)
| | - Bastian Amend
- Department of Urology, University of Tuebingen Hospital, 72076 Tuebingen, Germany; (N.H.); (S.W.); (A.S.)
| |
Collapse
|
10
|
Shan S, Li Q, Criswell T, Atala A, Zhang Y. Stem cell therapy combined with controlled release of growth factors for the treatment of sphincter dysfunction. Cell Biosci 2023; 13:56. [PMID: 36927578 PMCID: PMC10018873 DOI: 10.1186/s13578-023-01009-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Sphincter dysfunction often occurs at the end of tubule organs such as the urethra, anus, or gastroesophageal sphincters. It is the primary consequence of neuromuscular impairment caused by trauma, inflammation, and aging. Despite intensive efforts to recover sphincter function, pharmacological treatments have not achieved significant improvement. Cell- or growth factor-based therapy is a promising approach for neuromuscular regeneration and the recovery of sphincter function. However, a decrease in cell retention and viability, or the short half-life and rapid degradation of growth factors after implantation, remain obstacles to the translation of these therapies to the clinic. Natural biomaterials provide unique tools for controlled growth factor delivery, which leads to better outcomes for sphincter function recovery in vivo when stem cells and growth factors are co-administrated, in comparison to the delivery of single therapies. In this review, we discuss the role of stem cells combined with the controlled release of growth factors, the methods used for delivery, their potential therapeutic role in neuromuscular repair, and the outcomes of preclinical studies using combination therapy, with the hope of providing new therapeutic strategies to treat incontinence or sphincter dysfunction of the urethra, anus, or gastroesophageal tissues, respectively.
Collapse
Affiliation(s)
- Shengzhou Shan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Tracy Criswell
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
11
|
Liu X, Li T, Zhang J, Lin X, Wang W, Fan X, Wang L. Mesenchymal stem cell-based therapy for female stress urinary incontinence. Front Cell Dev Biol 2023; 11:1007703. [PMID: 36711031 PMCID: PMC9880261 DOI: 10.3389/fcell.2023.1007703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Stress urinary incontinence (SUI) adversely affects the quality of life of patients, while the currently available surgical and non-surgical therapies are not effective in all patients. Application of mesenchymal stem cells (MSCs) for regaining the ability to control urination has attracted interest. Herein, we reviewed the literature and analyzed recent studies on MSC-based therapies for SUI, summarized recent treatment strategies and their underlying mechanisms of action, while assessing their safety, effectiveness, and prospects. In addition, we traced and sorted the root literature and, from an experimental design perspective, divided the obtained results into four categories namely single MSC type therapy for SUI, MSC-based combination therapy for SUI, treatment of SUI with the MSC secretome, and other factors influencing MSC therapy. Although evidence demonstrates that the treatment strategies are safe and effective, the underlying mechanisms of action remain nebulous, hence more clinical trials are warranted. Therefore, future studies should focus on designing clinical trials of MSC-based therapies to determine the indications for treatment, cell dosage, appropriate surgical strategies, and optimal cell sources, and develop clinically relevant animal models to elucidate the molecular mechanisms underlying stem cell therapies improvement of SUI.
Collapse
Affiliation(s)
- Xiaochun Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China,*Correspondence: Xiaochun Liu,
| | - Tingting Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Jia Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xiling Lin
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China,Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Wenzhen Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xiaodong Fan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China,School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Lili Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China,School of Biomedical Engineering at Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|
12
|
Liu M, Wang Y, Gao G, Zhao WX, Fu Q. Stem Cell Application for Stress Urinary Incontinence: From Bench to Bedside. Curr Stem Cell Res Ther 2023; 18:17-26. [PMID: 35249506 DOI: 10.2174/1574888x17666220304213057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/29/2021] [Accepted: 12/21/2021] [Indexed: 11/22/2022]
Abstract
Stress urinary incontinence (SUI) is a common urinary system disease worldwide. Nowadays, medical therapy and surgery can control the symptoms and improve the life quality of patients. However, they might also bring about complications as the standard therapy fails to address the underlying problem of urethral sphincter dysfunction. Recent advances in cell technology have aroused interest in the use of autologous stem cell therapy to restore the ability of urinary control. The present study reviewed several types of stem cells for the treatment of SUI in the experimental and clinical stages.
Collapse
Affiliation(s)
- Meng Liu
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Ying Wang
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Guo Gao
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei-Xin Zhao
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Qiang Fu
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China
| |
Collapse
|
13
|
Murata Y, Obinata D, Matsumoto T, Ikado Y, Kano K, Fukuda N, Yamaguchi K, Takahashi S. Urethral injection of dedifferentiated fat cells ameliorates sphincter damage and voiding dysfunction in a rat model of persistence stress urinary incontinence. Int Urol Nephrol 2022; 54:789-797. [PMID: 35175498 PMCID: PMC8924144 DOI: 10.1007/s11255-021-03083-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022]
Abstract
Purpose Dedifferentiated fat (DFAT) cells are mature adipocyte-derived multipotent cells that can be applicable to cell-based therapy for stress urinary incontinence (SUI). This study developed a persistence SUI model that allows long-term evaluation using a combination of vaginal distention (VD) and bilateral ovariectomy (OVX) in rats. Then, the therapeutic effects of DFAT cell transplantation in the persistence SUI model was examined. Methods In total, 48 Sprague–Dawley rats were divided into four groups and underwent VD (VD group), bilateral OVX (OVX group), VD and bilateral OVX (VD + OVX group), or sham operation (Control group). At 2, 4, and 6 weeks after injury, leak point pressure (LPP) and histological changes of the urethral sphincter were evaluated. Next, 14 rats undergoing VD and bilateral OVX were divided into two groups and administered urethral injection of DFAT cells (DFAT group) or fibroblasts (Fibroblast group). At 6 weeks after the injection, LPP and histology of the urethral sphincter were evaluated. Results The VD + OVX group retained a decrease in LPP with sphincter muscle atrophy at least until 6 weeks after injury. The LPP and urethral sphincter muscle atrophy in the DFAT group recovered better than those in the fibroblast group. Conclusions The persistence SUI model was created by a combination of VD and bilateral OVX in rats. Urethral injection of DFAT cells inhibited sphincter muscle atrophy and improved LPP in the persistence SUI model. These findings suggest that the DFAT cells may be an attractive cell source for cell-based therapy to treat SUI.
Collapse
Affiliation(s)
- Yasutaka Murata
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Taro Matsumoto
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan.
| | - Yuichiro Ikado
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, College of Bioresource Science, Nihon University, Fujisawa, Japan
| | - Noboru Fukuda
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Kenya Yamaguchi
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
14
|
Ding DC, Li PC. Stem-cell therapy in stress urinary incontinence: A review. Tzu Chi Med J 2022. [DOI: 10.4103/tcmj.tcmj_145_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
15
|
De La Torre P, Pérez-Lorenzo MJ, Alcázar-Garrido Á, Collado J, Martínez-López M, Forcén L, Masero-Casasola AR, García A, Gutiérrez-Vélez MC, Medina-Polo J, Muñoz E, Flores AI. Perinatal mesenchymal stromal cells of the human decidua restore continence in rats with stress urinary incontinence induced by simulated birth trauma and regulate senescence of fibroblasts from women with stress urinary incontinence. Front Cell Dev Biol 2022; 10:1033080. [PMID: 36742196 PMCID: PMC9893794 DOI: 10.3389/fcell.2022.1033080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023] Open
Abstract
Stress urinary incontinence (SUI) is a condition that causes the involuntary loss of urine when making small efforts, which seriously affects daily life of people who suffer from it. Women are more affected by this form of incontinence than men, since parity is the main risk factor. Weakening of the pelvic floor tissues is the cause of SUI, although a complete understanding of the cellular and molecular mechanisms of the pathology is still lacking. Reconstructive surgery to strengthen tissue in SUI patients is often associated with complications and/or is ineffective. Mesenchymal stromal cells from the maternal side of the placenta, i.e. the decidua, are proposed here as a therapeutic alternative based on the regenerative potential of mesenchymal cells. The animal model of SUI due to vaginal distention simulating labor has been used, and decidual mesenchymal stromal cell (DMSC) transplantation was effective in preventing a drop in pressure at the leak point in treated animals. Histological analysis of the urethras from DMSC-treated animals after VD showed recovery of the muscle fiber integrity, low or no extracellular matrix (ECM) infiltration and larger elastic fibers near the external urethral sphincter, compared to control animals. Cells isolated from the suburethral connective tissue of SUI patients were characterized as myofibroblasts, based on the expression of several specific genes and proteins, and were shown to achieve premature replicative senescence. Co-culture of SUI myofibroblasts with DMSC via transwell revealed a paracrine interaction between the cells through signals that mediated DMSC migration, SUI myofibroblast proliferation, and modulation of the proinflammatory and ECM-degrading milieu that is characteristic of senescence. In conclusion, DMSC could be an alternative therapeutic option for SUI by counteracting the effects of senescence in damaged pelvic tissue.
Collapse
Affiliation(s)
- Paz De La Torre
- Regenerative Medicine Group, Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| | | | - Álvaro Alcázar-Garrido
- Regenerative Medicine Group, Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Jennifer Collado
- Regenerative Medicine Group, Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| | | | - Laura Forcén
- Regenerative Medicine Group, Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
- Obstetrics and Gynecology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Ana R. Masero-Casasola
- Regenerative Medicine Group, Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
- Obstetrics and Gynecology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Alicia García
- Regenerative Medicine Group, Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
- Obstetrics and Gynecology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Mª Carmen Gutiérrez-Vélez
- Regenerative Medicine Group, Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
- Obstetrics and Gynecology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - José Medina-Polo
- Male’s Integral Health Group, Urology Department, Research Institute Hospital 12 de Octubre (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Eloy Muñoz
- Regenerative Medicine Group, Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
- Obstetrics and Gynecology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Ana I. Flores
- Regenerative Medicine Group, Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
- *Correspondence: Ana I. Flores,
| |
Collapse
|
16
|
Adamowicz J, Kluth LA, Pokrywczynska M, Drewa T. Tissue Engineering and Its Potential to Reduce Prostate Cancer Treatment Sequelae-Narrative Review. Front Surg 2021; 8:644057. [PMID: 34722618 PMCID: PMC8551715 DOI: 10.3389/fsurg.2021.644057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 07/19/2021] [Indexed: 01/08/2023] Open
Abstract
Tissue engineering offers the possibility to overcome limitations of current management for postprostatectomy incontinence and ED. Developed in recent years biotechnological feasibility of mesenchymal stem cell isolation, in vitro cultivation and implantation became the basis for new cell-based therapies oriented to induce regeneration of adult tissue. The perspective to offer patients suffering from post-prostatectomy incontinence or erectile dysfunction minimal invasive one-time procedure utilizing autologous stem cell transplantation is desired management.
Collapse
Affiliation(s)
- Jan Adamowicz
- Chair of Urology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Luis Alex Kluth
- Department of Urology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Marta Pokrywczynska
- Chair of Urology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Tomasz Drewa
- Chair of Urology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
17
|
Manodoro S, Frigerio M, Barba M, Bosio S, de Vitis LA, Marconi AM. Stem Cells in Clinical Trials for Pelvic Floor Disorders: a Systematic Literature Review. Reprod Sci 2021; 29:1710-1720. [PMID: 34596887 PMCID: PMC9110489 DOI: 10.1007/s43032-021-00745-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 09/17/2021] [Indexed: 11/24/2022]
Abstract
Pelvic floor disorders (PFDs) include a series of conditions that can be poorly tolerated, negatively affecting the quality of life. Current treatment options show unsatisfactory results and new ones are therefore needed. Stem cell (SC) therapy might be an alternative treatment strategy. This systematic review aims to define the state of art of SC therapy for PFDs in clinical trials, by systematically reviewing the available evidence. A systematic search strategy was conducted up to November 7, 2020, in PubMed, Scopus, Cochrane Library, and ISI Web of Science. Preclinical studies on animal models were not considered. Studies were included when the patients were affected by any PFDs and cells were isolated, cultured, and characterized as SC. The study protocol was registered in PROSPERO (CRD42020216551). A total of 11 prospective clinical studies were included in the final assessment, specifically 7 single-arm studies dealing with SC therapy for stress urinary incontinence and 4 with anal incontinence. Among the latter, there were two prospective, single-arm studies and two randomized controlled trials. No papers concerning the use of SC for prolapse repair were retrieved. Due to the great heterogeneity, data pooling was not possible. Stem cell injection resulted in a safe procedure, with few mild adverse side effects, mostly related to harvesting sites. However, a clear beneficial impact of SC treatment for the treatment of pelvic floor disorders could not be demonstrated. Further larger targeted studies with control arms are needed before any conclusions can be made.
Collapse
Affiliation(s)
- Stefano Manodoro
- Division of Obstetrics and Gynecology, San Paolo Hospital Medical School, ASST Santi Paolo E Carlo, Via Antonio di Rudinì 8, 20142, Milan, Italy.
| | - Matteo Frigerio
- Division of Obstetrics and Gynecology, San Gerardo University Hospital, Monza, Italy
| | - Marta Barba
- Division of Obstetrics and Gynecology, San Gerardo University Hospital, Monza, Italy
- University of Milano-Bicocca, Monza, Italy
| | - Sara Bosio
- Division of Obstetrics and Gynecology, San Paolo Hospital Medical School, ASST Santi Paolo E Carlo, Via Antonio di Rudinì 8, 20142, Milan, Italy
- Department of Health Sciences, University of Milano, Milan, Italy
| | - Luigi Antonio de Vitis
- Division of Obstetrics and Gynecology, San Paolo Hospital Medical School, ASST Santi Paolo E Carlo, Via Antonio di Rudinì 8, 20142, Milan, Italy
- Department of Health Sciences, University of Milano, Milan, Italy
| | - Anna Maria Marconi
- Division of Obstetrics and Gynecology, San Paolo Hospital Medical School, ASST Santi Paolo E Carlo, Via Antonio di Rudinì 8, 20142, Milan, Italy
- Department of Health Sciences, University of Milano, Milan, Italy
| |
Collapse
|
18
|
Atkinson SP. A preview of selected articles. Stem Cells Transl Med 2020. [PMCID: PMC7695635 DOI: 10.1002/sctm.20-0488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
19
|
Garcia-Arranz M, Alonso-Gregorio S, Fontana-Portella P, Bravo E, Diez Sebastian J, Fernandez-Santos ME, Garcia-Olmo D. Two phase I/II clinical trials for the treatment of urinary incontinence with autologous mesenchymal stem cells. Stem Cells Transl Med 2020; 9:1500-1508. [PMID: 32864818 PMCID: PMC7695632 DOI: 10.1002/sctm.19-0431] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 06/06/2020] [Accepted: 07/19/2020] [Indexed: 12/21/2022] Open
Abstract
We evaluated the safety and feasibility of adipose‐derived mesenchymal stem cells to treat endoscopically urinary incontinence after radical prostatectomy in men or female stress urinary. We designed two prospective, nonrandomized phase I‐IIa clinical trials of urinary incontinence involving 9 men (8 treated) and 10 women to test the feasibility and safety of autologous mesenchymal stem cells for this use. Cells were obtained from liposuction containing 150 to 200 g of fat performed on every patient. After 4 to 6 weeks and under sedation, endoscopic intraurethral injection of the cells was performed. On each visit (baseline, 1, 3, 6, and 12 months), clinical parameters were measured, and blood samples, urine culture, and uroflowmetry were performed. Every patient underwent an urethrocystoscopy and urodynamic studies on the first and last visit. Data from pad test, quality‐of‐life and incontinence questionnaires, and pads used per day were collected at every visit. Statistical analysis was done by Wilcoxon signed‐rank test. No adverse effects were observed. Three men (37.5%) and five women (50%) showed an objective improvement of >50% (P < .05) and a subjective improvement of 70% to 80% from baseline. In conclusion, intraurethral application of stem cells derived from adipose tissue is a safe and feasible procedure to treat urinary incontinence after radical prostatectomy or in female stress urinary incontinence. A statistically significant difference was obtained for pad‐test improvement in 3/8 men and 5/10 women. Our results encourage studies to confirm safety and to analyze efficacy.
Collapse
Affiliation(s)
- Mariano Garcia-Arranz
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Madrid, Spain.,Surgery Department, Autonoma University of Madrid, Madrid, Spain
| | | | | | - Elena Bravo
- Department of Plastic Surgery, La Paz University Hospital, Madrid, Spain
| | | | | | - Damian Garcia-Olmo
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Madrid, Spain.,Surgery Department, Autonoma University of Madrid, Madrid, Spain
| |
Collapse
|