1
|
Ruman T, Krupa Z, Nizioł J. Direct Three-Dimensional Mass Spectrometry Imaging with Laser Ablation Remote Atmospheric Pressure Photoionization/Chemical Ionization. Anal Chem 2024; 96:13326-13334. [PMID: 39077860 PMCID: PMC11325297 DOI: 10.1021/acs.analchem.4c03402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The laser ablation remote atmospheric pressure photoionization/chemical ionization (LARAPPI/CI) platform coupled to an ultrahigh resolution quadrupole-time-of-flight (QToF) mass spectrometer was developed and employed for the first direct three-dimensional (3D) mass spectrometry imaging (MSI) of metabolites in human and plant tissues. Our solution for 3D MSI does not require sample modification or cutting into thin slices. Ablation characteristics of an optical system based on a diffraction optical element are studied and used for voxel stacking to directly remove layers of tissues. Agar gel, red radish, kiwi, human kidney cancer, and normal tissue samples were used for the tests of this new system. The 2D and 3D ion images vividly illustrate differences in the abundances of selected metabolites between cancerous and noncancerous regions of the kidney tissue and also between different parts of plant tissues. The LARAPPI/CI MSI setup is also the first example of the successful use of combined dopant-assisted atmospheric pressure photoionization (DA-APPI) and atmospheric pressure chemical ionization (APCI) ion source for mass spectrometry imaging.
Collapse
Affiliation(s)
- Tomasz Ruman
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, Rzeszów University of Technology, 6 Powstan ́ców Warszawy Ave., Rzeszów 35-959. Poland
| | - Zuzanna Krupa
- Doctoral School of Engineering and Technical Sciences at the Rzeszów University of Technology, 8 Powstan ́ców Warszawy Ave., Rzeszów 35-959, Poland
| | - Joanna Nizioł
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, Rzeszów University of Technology, 6 Powstan ́ców Warszawy Ave., Rzeszów 35-959. Poland
| |
Collapse
|
2
|
Bomhardt K, Schneider P, Rohnke M, Gebhardt CR, Dürr M. Cluster-induced desorption/ionization mass spectrometry of highlighter ink: unambiguous identification of dyes and degradation processes based on fragmentation-free desorption. Analyst 2021; 147:333-340. [PMID: 34932048 DOI: 10.1039/d1an01588e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highlighter inks were analyzed by means of soft Desorption/Ionization induced by Neutral SO2 clusters (DINeC) in combination with mass spectrometry (MS). The dye molecules of the different inks were directly desorbed from dots of ink drawn on arbitrary substrates. Fragmentation free spectra were observed and the dyes used in the dye mixtures of the different highlighter inks were unambiguously identified. The soft nature of cluster-induced desorption was used to investigate the decomposition of the dye molecules induced by either heat or UV-light. The two processes lead to different decomposition products which are clearly distinguished in the DINeC spectra. The two different degradation processes can thus be discriminated using DINeC-MS.
Collapse
Affiliation(s)
- Karolin Bomhardt
- Institut für Angewandte Physik and Zentrum für Materialforschung, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany.
| | - Pascal Schneider
- Institut für Angewandte Physik and Zentrum für Materialforschung, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany.
| | - Marcus Rohnke
- Physikalisch-Chemisches Institut and Zentrum für Materialforschung, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | | | - Michael Dürr
- Institut für Angewandte Physik and Zentrum für Materialforschung, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany.
| |
Collapse
|
3
|
Van Nuffel S, Ang KC, Lin AY, Cheng KC. Chemical Imaging of Retinal Pigment Epithelium in Frozen Sections of Zebrafish Larvae Using ToF-SIMS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:255-261. [PMID: 33112610 DOI: 10.1021/jasms.0c00300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Variants of the SLC24A5 gene, which encodes a putative potassium-dependent sodium-calcium exchanger (NCKX5) that most likely resides in the melanosome or its precursor, affect pigmentation in both humans and zebrafish (Danio rerio). This finding suggests that genetic variations influencing human skin pigmentation alter melanosome biogenesis via ionic changes. Gaining an understanding of how changes in the ionic environment of organelles impact melanosome morphogenesis and pigmentation will require a spatially resolved way to characterize the chemical environment of melanosomes in pigmented tissue such as retinal pigment epithelium (RPE). The imaging mass spectrometry technique most suited for this type of cell and tissue analysis is time-of-flight secondary ion mass spectrometry (ToF-SIMS) because it is able to detect many biochemical species with high sensitivity and with submicron spatial resolution. Here, we describe chemical imaging of the RPE in frozen-hydrated sections of larval zebrafish using cryo-ToF-SIMS. To facilitate the data interpretation, positive and negative polarity ToF-SIMS image data were transformed into a single hyperspectral data set and analyzed using principal component analysis. The combination of a novel protocol and the use of multivariate data analysis allowed us to discover new marker ions that are attributable to leucodopachrome, a metabolite specific to the biosynthesis of eumelanin. The described methodology may be adapted for the investigation of other classes of molecules in frozen tissues from zebrafish and other organisms.
Collapse
Affiliation(s)
- Sebastiaan Van Nuffel
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Khai C Ang
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
- Division of Experimental Pathology, Department of Pathology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
- Penn State Zebrafish Functional Genomics Core, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Alex Y Lin
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
- Division of Experimental Pathology, Department of Pathology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
- Penn State Zebrafish Functional Genomics Core, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Keith C Cheng
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
- Division of Experimental Pathology, Department of Pathology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
- Penn State Zebrafish Functional Genomics Core, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| |
Collapse
|
4
|
Voras ZE, deGhetaldi K, Wiggins MB, Buckley B, Baade B, Mass JL, Beebe TP. ToF-SIMS imaging of molecular-level alteration mechanisms in Le Bonheur de vivre by Henri Matisse. APPLIED PHYSICS. A, MATERIALS SCIENCE & PROCESSING 2015; 121:1015-1030. [PMID: 27482144 PMCID: PMC4959045 DOI: 10.1007/s00339-015-9508-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/18/2015] [Indexed: 05/27/2023]
Abstract
Time-of-flight secondary ion mass spectrometry (ToF-SIMS) has recently been shown to be a valuable tool for cultural heritage studies, especially when used in conjunction with established analytical techniques in the field. The ability of ToF-SIMS to simultaneously image inorganic and organic species within a paint cross section at micrometer-level spatial resolution makes it a uniquely qualified analytical technique to aid in further understanding the processes of pigment and binder alteration, as well as pigment-binder interactions. In this study, ToF-SIMS was used to detect and image both molecular and elemental species related to CdS pigment and binding medium alteration on the painting Le Bonheur de vivre (1905-1906, The Barnes Foundation) by Henri Matisse. Three categories of inorganic and organic components were found throughout Le Bonheur de vivre and co-localized in cross-sectional samples using high spatial resolution ToF-SIMS analysis: (1) species relating to the preparation and photo-induced oxidation of CdS yellow pigments (2) varying amounts of long-chain fatty acids present in both the paint and primary ground layer and (3) specific amino acid fragments, possibly relating to the painting's complex restoration history. ToF-SIMS's ability to discern both organic and inorganic species via cross-sectional imaging was used to compare samples collected from Le Bonheur de vivre to artificially aged reference paints in an effort to gather mechanistic information relating to alteration processes that have been previously explored using μXANES, SR-μXRF, SEM-EDX, and SR-FTIR. The relatively high sensitivity offered by ToF-SIMS imaging coupled to the high spatial resolution allowed for the positive identification of degradation products (such as cadmium oxalate) in specific paint regions that have before been unobserved. The imaging of organic materials has provided an insight into the extent of destruction of the original binding medium, as well as identifying unexpected organic materials in specific paint layers.
Collapse
Affiliation(s)
- Zachary E. Voras
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
- UD Surface Analysis Facility, University of Delaware, Newark, DE 19716, USA
| | - Kristin deGhetaldi
- Department of Art Conservation, University of Delaware, Newark, DE 19716, USA
- Winterthur-University of Delaware Program in Art Conservation, Winterthur, DE, USA
| | - Marcie B. Wiggins
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
- UD Surface Analysis Facility, University of Delaware, Newark, DE 19716, USA
| | - Barbara Buckley
- Department of Conservation, The Barnes Foundation, Philadelphia, PA 19130, USA
| | - Brian Baade
- Department of Art Conservation, University of Delaware, Newark, DE 19716, USA
| | - Jennifer L. Mass
- Scientific Research and Analysis Laboratory, Conservation Department, Winterthur Museum, Winterthur, DE 19735, USA
| | - Thomas P. Beebe
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
- UD Surface Analysis Facility, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
5
|
Sisco E, Demoranville LT, Gillen G. Evaluation of C60 secondary ion mass spectrometry for the chemical analysis and imaging of fingerprints. Forensic Sci Int 2013; 231:263-9. [DOI: 10.1016/j.forsciint.2013.05.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 05/23/2013] [Accepted: 05/28/2013] [Indexed: 10/26/2022]
|
6
|
Morelato M, Beavis A, Kirkbride P, Roux C. Forensic applications of desorption electrospray ionisation mass spectrometry (DESI-MS). Forensic Sci Int 2013; 226:10-21. [DOI: 10.1016/j.forsciint.2013.01.011] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/20/2012] [Accepted: 01/07/2013] [Indexed: 11/29/2022]
|
7
|
Pauloehrl T, Welle A, Oehlenschlaeger KK, Barner-Kowollik C. Spatially controlled surface immobilization of nucleophiles via trapping of photo-generated thioaldehydes. Chem Sci 2013. [DOI: 10.1039/c3sc50815c] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
8
|
Guenther S, Schäfer KC, Balog J, Dénes J, Majoros T, Albrecht K, Tóth M, Spengler B, Takáts Z. Electrospray post-ionization mass spectrometry of electrosurgical aerosols. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:2082-2089. [PMID: 21952773 DOI: 10.1007/s13361-011-0230-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 08/09/2011] [Accepted: 08/09/2011] [Indexed: 05/31/2023]
Abstract
The feasibility of electrospray (ES) ionization of aerosols generated by electrosurgical disintegration methods was investigated. Although electrosurgery itself was demonstrated to produce gaseous ions, post-ionization methods were implemented to enhance the ion yield, especially in those cases when the ion current produced by the applied electrosurgical method is not sufficient for MS analysis. Post-ionization was implemented by mounting an ES emitter onto a Venturi pump, which is used for ion transfer. The effect of various parameters including geometry, high voltage setting, flow parameters, and solvent composition was investigated in detail. Experimental setups were optimized accordingly. ES post-ionization was found to yield spectra similar to those obtained by the REIMS technique, featuring predominantly lipid-type species. Signal enhancement was 20- to 50-fold compared with electrosurgical disintegration in positive mode, while no improvement was observed in negative mode. ES post-ionization was also demonstrated to allow the detection of non-lipid type species in the electrosurgical aerosol, including drug molecules. Since the tissue specificity of the MS data was preserved in the ES post-ionization setup, feasibility of tissue identification was demonstrated using different electrosurgical methods.
Collapse
Affiliation(s)
- Sabine Guenther
- Institute for Inorganic and Analytical Chemistry, Justus Liebig University, Schubertstrasse 60, Haus 16, 35392 Giessen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|