1
|
Premadasa UI, Kumar N, Zhu Z, Stamberga D, Li T, Roy S, Carrillo JMY, Einkauf JD, Custelcean R, Ma YZ, Bocharova V, Bryantsev VS, Doughty B. Synergistic Assembly of Charged Oligomers and Amino Acids at the Air-Water Interface: An Avenue toward Surface-Directed CO 2 Capture. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12052-12061. [PMID: 38411063 DOI: 10.1021/acsami.3c18225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Interfaces are considered a major bottleneck in the capture of CO2 from air. Efforts to design surfaces to enhance CO2 capture probabilities are challenging due to the remarkably poor understanding of chemistry and self-assembly taking place at these interfaces. Here, we leverage surface-specific vibrational spectroscopy, Langmuir trough techniques, and simulations to mechanistically elucidate how cationic oligomers can drive surface localization of amino acids (AAs) that serve as CO2 capture agents speeding up the apparent rate of absorption. We demonstrate how tuning these interfaces provides a means to facilitate CO2 capture chemistry to occur at the interface, while lowering surface tension and improving transport/reaction probabilities. We show that in the presence of interfacial AA-rich aggregates, one can improve capture probabilities vs that of a bare interface, which holds promise in addressing climate change through the removal of CO2 via tailored interfaces and associated chemistries.
Collapse
Affiliation(s)
- Uvinduni I Premadasa
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Nitesh Kumar
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Zewen Zhu
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Diana Stamberga
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Tianyu Li
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Santanu Roy
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jan-Michael Y Carrillo
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jeffrey D Einkauf
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Radu Custelcean
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ying-Zhong Ma
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Vera Bocharova
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Vyacheslav S Bryantsev
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Benjamin Doughty
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
2
|
Szymańska M, Hoppe J, Dutkiewicz M, Sobolewski P, Palacz M, Janus E, Zielińska B, Drozd R. Silicone polyether surfactant enhances bacterial cellulose synthesis and water holding capacity. Int J Biol Macromol 2022; 208:642-653. [PMID: 35337915 DOI: 10.1016/j.ijbiomac.2022.03.124] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 01/24/2023]
Abstract
The versatility and unique properties of bacterial cellulose (BC) motivate research into enhancing its synthesis. Here a silicone polyether surfactant (SPS) was synthesized and tested as a non-nutritional additive to the cultivation media of Komagataeibacter xylinus. The addition of SPS to the Hestrin-Schramm (HS) medium resulted in a concentration-dependent decrease in surface tension from 59.57 ± 0.37 mN/m to 30.05 ± 0.41 mN/m (for 0.1% addition) that was correlated with an increased yield of BC, up to 37% wet mass for surfactant concentration close to its critical micelle concentration (0.008%). Physicochemical characterization of bacterial cellulose obtained in presence of SPS, showed that surfactant is not incorporated into BC structure and has a moderate effect on its crystallinity, thermal stability. Moreover, the water holding capacity was enhanced by over 40%. Importantly, obtained BC did not affect L929 murine fibroblast cell viability. We conclude that SPS provides an eco-friendly approach to increasing BC yield in static culture, enabling more widespread industrial and biomedical applications.
Collapse
Affiliation(s)
- Magdalena Szymańska
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, 45 Piastów Avenue, 70-311 Szczecin, Poland
| | - Jakub Hoppe
- Faculty of Chemistry, Adam Mickiewicz University, 89b Umultowska Str., 61-614 Poznań Poland
| | - Michał Dutkiewicz
- Poznań Science and Technology Park, Adam Mickiewicz University Foundation, 46 Rubież Str., 61-612 Poznań, Poland
| | - Peter Sobolewski
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, 45 Piastów Avenue, 71-311 Szczecin, Poland
| | - Magdalena Palacz
- Poznań Science and Technology Park, Adam Mickiewicz University Foundation, 46 Rubież Str., 61-612 Poznań, Poland
| | - Ewa Janus
- Department of Chemical Organic Technology, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, 10 Pulawskiego Str., 70-322 Szczecin, Poland
| | - Beata Zielińska
- Department of Nanomaterials Physicochemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, 42 Piastów Avenue, 71-065 Szczecin, Poland
| | - Radosław Drozd
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, 45 Piastów Avenue, 70-311 Szczecin, Poland.
| |
Collapse
|
3
|
Lopes Silva P, Mateus MV, Ferreira DC, Luz MS, Araújo Naves EA, Martins MM, Goulart LR, Cunha LCS, Gonçalves JC. Humic substances reduce the oxygen mass transfer in the air–water interface. AIChE J 2020. [DOI: 10.1002/aic.16971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pedro Lopes Silva
- Department of Environmental EngineeringFederal University of Triângulo Mineiro Uberaba Brazil
| | - Marcos Vinícius Mateus
- Department of Environmental EngineeringFederal University of Triângulo Mineiro Uberaba Brazil
| | | | - Mário Sérgio Luz
- Department of Environmental EngineeringFederal University of Triângulo Mineiro Uberaba Brazil
| | | | | | | | | | - Julio Cesar Gonçalves
- Department of Environmental EngineeringFederal University of Triângulo Mineiro Uberaba Brazil
| |
Collapse
|
4
|
Bali M, Masalci O. Interactions of cationic surfactants with polyvinylpyrrolidone (PVP): Effects of counter ions and temperature. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
5
|
Liu Y, Wang Y, Wen X, Shimizu K, Lei Z, Kobayashi M, Zhang Z, Sumi I, Yao Y, Mogi Y. Enhanced bioconversion of hydrogen and carbon dioxide to methane using a micro-nano sparger system: mass balance and energy consumption. RSC Adv 2018; 8:26488-26496. [PMID: 35541054 PMCID: PMC9083024 DOI: 10.1039/c8ra02924e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/30/2018] [Indexed: 11/21/2022] Open
Abstract
Simultaneous CO2 removal with renewable biofuel production can be achieved by methanogens through conversion of CO2 and H2 into CH4. However, the low gas–liquid mass transfer (kLa) of H2 limits the commercial application of this bioconversion. This study tested and compared the gas–liquid mass transfer of H2 by using two stirred tank reactors (STRs) equipped with a micro-nano sparger (MNS) and common micro sparger (CMS), respectively. MNS was found to display superiority to CMS in methane production with the maximum methane evolution rate (MER) of 171.40 mmol/LR/d and 136.10 mmol/LR/d, along with a specific biomass growth rate of 0.15 d−1 and 0.09 d−1, respectively. Energy analysis indicated that the energy-productivity ratio for MNS was higher than that for CMS. This work suggests that MNS can be used as an applicable resolution to the limited kLa of H2 and thus enhance the bioconversion of H2 and CO2 to CH4. Simultaneous CO2 removal with renewable biofuel production can be achieved by methanogens through conversion of CO2 and H2 into CH4. However, the low gas–liquid mass transfer (kLa) of H2 limits the commercial application of this bioconversion.![]()
Collapse
Affiliation(s)
- Ye Liu
- Graduate School of Life and Environmental Sciences
- University of Tsukuba
- Tsukuba
- Japan
| | - Ying Wang
- Graduate School of Life and Environmental Sciences
- University of Tsukuba
- Tsukuba
- Japan
| | - Xinlei Wen
- Graduate School of Life and Environmental Sciences
- University of Tsukuba
- Tsukuba
- Japan
| | - Kazuya Shimizu
- Graduate School of Life and Environmental Sciences
- University of Tsukuba
- Tsukuba
- Japan
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences
- University of Tsukuba
- Tsukuba
- Japan
| | - Motoyoshi Kobayashi
- Graduate School of Life and Environmental Sciences
- University of Tsukuba
- Tsukuba
- Japan
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences
- University of Tsukuba
- Tsukuba
- Japan
| | | | | | | |
Collapse
|
6
|
Bryant JJ, Lippert C, Qi G, Liu K, Mannel DS, Liu K. Enhanced Carbon Capture through Incorporation of Surfactant Additives. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.5b04906] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jonathan J. Bryant
- Center
for Applied Energy Research, University of Kentucky, 2540 Research
Park Drive, Lexington, Kentucky 40511, United States
| | - Cameron Lippert
- Center
for Applied Energy Research, University of Kentucky, 2540 Research
Park Drive, Lexington, Kentucky 40511, United States
| | - Guojie Qi
- Center
for Applied Energy Research, University of Kentucky, 2540 Research
Park Drive, Lexington, Kentucky 40511, United States
| | - Kun Liu
- Center
for Applied Energy Research, University of Kentucky, 2540 Research
Park Drive, Lexington, Kentucky 40511, United States
| | - David S. Mannel
- Center
for Applied Energy Research, University of Kentucky, 2540 Research
Park Drive, Lexington, Kentucky 40511, United States
| | - Kunlei Liu
- Center
for Applied Energy Research, University of Kentucky, 2540 Research
Park Drive, Lexington, Kentucky 40511, United States
- College
of Engineering, Mechanical Engineering, University of Kentucky, 151 Ralph G. Anderson Building, Lexington, Kentucky 40506-0503, United States
| |
Collapse
|