1
|
Yan C, Shao X, Wang Y, Ma Y, Bai J, Fan Y, Zhang X, Li L, Liu H, Li S, Wang C, Shi J. Multiexcitation Peaks and Multicolor Emission Nanoassemblies for Transmembrane Cell Imaging and Photoresponsivity Antibacterial. ACS APPLIED BIO MATERIALS 2024; 7:5771-5779. [PMID: 39110771 DOI: 10.1021/acsabm.4c00855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Nanomaterials with photoresponsivity have garnered attention due to their fluorescence imaging, photodynamic, and photothermal therapeutic properties. In this study, a photoresponsivity nanoassembly was developed by using photosensitizers and carbon dots (CDs). Due to their multiple excitation peaks and multicolor fluorescence emission, especially their membrane-permeating properties, these nanoassemblies can label cells with multiple colors and track cell imaging in real time. Additionally, the incorporation of photosensitizers and CDs provides the nanoassemblies with the potential for photodynamic therapy (PDT) and photothermal therapy (PTT). The nanoassemblies effectively suppressed the activity of Escherichia coli and Staphylococcus aureus through PDT and PTT. Moreover, the nanoassemblies exhibited a high affinity for E. coli and S. aureus. These distinct features confer broad-spectrum antibacterial properties to the nanoassemblies. As a photoresponsivity nanoplatform, these nanoassemblies have demonstrated potential applications in the fields of bioimaging and antimicrobial.
Collapse
Affiliation(s)
- Chaoren Yan
- School of Medicine, Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| | - Xu Shao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yixuan Wang
- School of Medicine, Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| | - Yandong Ma
- School of Medicine, Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| | - Jielin Bai
- School of Medicine, Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| | - Yuchen Fan
- School of Medicine, Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| | - Xiaochen Zhang
- School of Medicine, Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| | - Liangyu Li
- School of Medicine, Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| | - Hang Liu
- School of Medicine, Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| | - Sitao Li
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Chaoli Wang
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University, Xi'an 710032, China
| | - Jingming Shi
- School of Medicine, Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| |
Collapse
|
2
|
Shi L, Liu J, Gao B, Sillanpää M. Photoelectrocatalytic mechanism of PEDOT modified filtration membrane. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152397. [PMID: 34923007 DOI: 10.1016/j.scitotenv.2021.152397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
The generation of free radicals is the key to the photocatalytic efficiency. In this study, the degradation mechanism of photoelectrocatalysis (PEC) membrane could be adequately explained by exploring the generation pathway of different free radicals. The PEC membrane was prepared by gas phase polymerization of poly (3, 4-ethylene dioxythiophene) (PEDOT) on non-woven fabric, industrial filter cloth, ceramic membrane and polyvinylidene fluoride (PVDF) membrane, respectively. Three-dimensional fluorescence test showed that the optimal degradation of mixed or monomer contamination (bovine serum protein, sodium humate, and sodium alginate) was achieved by modified ceramic membrane under PEC condition. As for self-cleaning experiment, the membrane resistance decreased 65.7% when the reaction conditions changed from dark to PEC for 30 min. Combined with the characterization results, PEDOT as photocapacitance extended electron lifetime and promoted free radical generation. This system was mainly dependent on superoxide free radicals (0.01 mmol/L) and singlet oxygen (0.10 mmol/L), which came from energy and electron transfer. Oxygen vacancy could adsorb oxygen to produce superoxide radicals, which was further oxidized to singlet oxygen. In addition, the π-electron conjugated system of PEDOT accelerated the hole transfer and the separation of electrons and holes. Also, this study provided a new view of reactive oxygen species generation mechanism from PEDOT modified membrane.
Collapse
Affiliation(s)
- Liu Shi
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiadong Liu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Bo Gao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa; Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Aculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India
| |
Collapse
|
3
|
Ha BN, Pham DM, Kasai T, Awata T, Katayama A. Effect of Humin and Chemical Factors on CO 2-Fixing Acetogenesis and Methanogenesis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052546. [PMID: 35270239 PMCID: PMC8909181 DOI: 10.3390/ijerph19052546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/04/2023]
Abstract
Acetogenesis and methanogenesis have attracted attention as CO2-fixing reactions. Humin, a humic substance insoluble at any pH, has been found to assist CO2-fixing acetogenesis as the sole electron donor. Here, using two CO2-fixing consortia with acetogenic and methanogenic activities, the effect of various parameters on these activities was examined. One consortium utilized humin and hydrogen (H2) as electron donors for acetogenesis, either separately or simultaneously, but with a preference for the electron use from humin. The acetogenic activity was accelerated 14 times by FeS at 0.2 g/L as the optimal concentration, while being inhibited by MgSO4 at concentration above 0.02 g/L and by NaCl at concentrations higher than 6 g/L. Another consortium did not utilize humin but H2 as electron donor, suggesting that humin was not a universal electron donor for acetogenesis. For methanogenesis, both consortia did not utilize extracellular electrons from humin unless H2 was present. The methanogenesis was promoted by FeS at 0.2 g/L or higher concentrations, especially without humin, and with NaCl at 2 g/L or higher concentrations regardless of the presence of humin, while no significant effect was observed with MgSO4. Comparative sequence analysis of partial 16S rRNA genes suggested that minor groups were the humin-utilizing acetogens in the consortium dominated by Clostridia, while Methanobacterium was the methanogen utilizing humin with H2.
Collapse
Affiliation(s)
- Biec Nhu Ha
- Department of Civil Engineering, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan; (B.N.H.); (T.K.)
| | - Duyen Minh Pham
- Institute of Materials and Systems for Sustainability, Nagoya University, Chikusa, Nagoya 464-8603, Japan;
| | - Takuya Kasai
- Department of Civil Engineering, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan; (B.N.H.); (T.K.)
- Institute of Materials and Systems for Sustainability, Nagoya University, Chikusa, Nagoya 464-8603, Japan;
| | - Takanori Awata
- Graduate School of Engineering, Osaka Institute of Technology, Osaka 535-8585, Japan;
| | - Arata Katayama
- Department of Civil Engineering, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan; (B.N.H.); (T.K.)
- Institute of Materials and Systems for Sustainability, Nagoya University, Chikusa, Nagoya 464-8603, Japan;
- Correspondence: ; Tel.: +81-52-789-5856
| |
Collapse
|
4
|
Pham DM, Dey S, Katayama A. Activation of extracellular electron network in non-electroactive bacteria by Bombyx mori silk. Int J Biol Macromol 2022; 195:1-11. [PMID: 34871655 DOI: 10.1016/j.ijbiomac.2021.11.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/18/2021] [Accepted: 11/27/2021] [Indexed: 11/05/2022]
Abstract
Extracellular electron transfer material (EETM) has increasingly attracted attentions for the enhancing effect on multiple microbial reactions. Especially, EETM is known to be essential to activate the energy network in non-electroactive bacteria. It is motivated to find out an EETM which is natural-based, environmentally friendly, and easily produced at large-scale. In this study, Bombyx mori silk is found, for the first time, to function as an EETM by using an EETM-dependent pentachlorophenol (PCP) dechlorinating anaerobic microbial culture. Subsequently, by dividing fibroin fiber into different soluble/insoluble fractions and correlating their EET functions with their structural properties based on various spectroscopic analyses, the β-sheet configuration is suggested as an essential structure supporting the EET function of silk materials. The analyses also suggested the involvement of sulfur-containing amino acids in this function. The EET function is not degraded by boiling or acid/alkaline treatments and the material can be utilized multiple times, although it is susceptible to UV irradiation. Bombyx mori silk also enhance other microbial reactions, including Fe(III)OOH reduction, CO2 reduction to acetate, and nitrogen fixation. This discovery provides a basis for developing biotechnology for environmental remediation, global warming reduction, and biofertilizer production using Bombyx mori silk and its wastes.
Collapse
Affiliation(s)
- Duyen M Pham
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8603, Japan.
| | - Sujan Dey
- Department of Civil Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Arata Katayama
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8603, Japan; Department of Civil Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan.
| |
Collapse
|
5
|
Pham DM, Kasai T, Yamaura M, Katayama A. Humin: No longer inactive natural organic matter. CHEMOSPHERE 2021; 269:128697. [PMID: 33139048 DOI: 10.1016/j.chemosphere.2020.128697] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
The discovery of the function of humin (HM), an insoluble fraction of humic substances (HSs), as an extracellular electron mediator (EEM) in 2012 has provided insight into the role of HM in nature and its potential for in situ bioremediation of pollutants. The EEM function is thought to enable the energy network of various microorganisms using HM. Recently, a number of studies on the application of HM as EEM in anaerobic microbial cultures have been conducted. Even so, there is a need for developing a holistic view of HM EEM function. In this paper, we summarize all the available information on the properties of HM EEM function, its applications, possible redox-active structures, and the interaction between HM and microbial cells. We also suggest scopes for future HM research.
Collapse
Affiliation(s)
- Duyen Minh Pham
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya, 464-8603, Japan
| | - Takuya Kasai
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya, 464-8603, Japan; Department of Civil Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Mirai Yamaura
- Department of Civil Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Arata Katayama
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya, 464-8603, Japan; Department of Civil Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan.
| |
Collapse
|
6
|
Pham DM, Katayama A. Humin as an External Electron Mediator for Microbial Pentachlorophenol Dechlorination: Exploration of Redox Active Structures Influenced by Isolation Methods. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15122753. [PMID: 30563164 PMCID: PMC6313380 DOI: 10.3390/ijerph15122753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/13/2018] [Accepted: 12/02/2018] [Indexed: 01/26/2023]
Abstract
Humin (HM) has been reported to function as an external electron mediator (EEM) in various microbial reducing reactions. In this study, the effect of isolation methods on EEM functionality and the chemical/electrochemical structures of HM were examined based on the correlation between dechlorination rates in the anaerobic HM-dependent pentachlorophenol (PCP)-dechlorinating consortium and the chemical/electrochemical structures of HM. A lack of PCP dechlorination activity suggested no EEM function in the HM samples prepared as a soluble fraction in dimethyl sulfoxide and sulfuric acid (which did not contain any electric capacitance). Other HM samples exhibited EEM functionality as shown by the dechlorination activity ranging from 0.55 to 3.48 (µmol Cl−) L−1d−1. The comparison of dechlorination activity with chemical structural characteristics suggested that HM with EEM functionalities had predominantly aliphatic and carbohydrate carbons with the partial structures C=O, O=C–N, and O=C–O. EEM functionality positively correlated with the proportion of O=C–N and O=C–O, suggesting an association between peptidoglycan structure and EEM functionality. The lack of detection of a quinone structure in one HM sample with EEM functionality and a negative correlation with aromatic or C=C carbon suggested that the mechanism containing quinone structures is a minor component for the functionality of EEM.
Collapse
Affiliation(s)
- Duyen Minh Pham
- Department of Civil Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan.
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8603, Japan.
| | - Arata Katayama
- Department of Civil Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan.
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8603, Japan.
| |
Collapse
|