1
|
Singh J, Patel RI, Sharma A. Visible‐Light‐Mediated C‐2 Functionalization and Deoxygenative Strategies in Heterocyclic
N
‐Oxides. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jitender Singh
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| | - Roshan I. Patel
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| | - Anuj Sharma
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| |
Collapse
|
2
|
Lecroq W, Schleinitz J, Billoue M, Perfetto A, Gaumont AC, Lalevée J, Ciofini I, Grimaud L, Lakhdar S. Metal-Free Deoxygenation of Amine N-Oxides: Synthetic and Mechanistic Studies. Chemphyschem 2021; 22:1237-1242. [PMID: 33971075 DOI: 10.1002/cphc.202100108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/20/2021] [Indexed: 12/14/2022]
Abstract
We report herein an unprecedented combination of light and P(III)/P(V) redox cycling for the efficient deoxygenation of aromatic amine N-oxides. Moreover, we discovered that a large variety of aliphatic amine N-oxides can easily be deoxygenated by using only phenylsilane. These practically simple approaches proceed well under metal-free conditions, tolerate many functionalities and are highly chemoselective. Combined experimental and computational studies enabled a deep understanding of factors controlling the reactivity of both aromatic and aliphatic amine N-oxides.
Collapse
Affiliation(s)
- William Lecroq
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6, Boulevard Maréchal Juin, Caen, 14000, France
| | - Jules Schleinitz
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Mallaury Billoue
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6, Boulevard Maréchal Juin, Caen, 14000, France
| | - Anna Perfetto
- Institute of Chemistry for Life and Health Sciences (i-CLeHS) Chimie ParisTech, PSL University, CNRS, 11 rue P. et M. Curie, 75005, Paris, France
| | - Annie-Claude Gaumont
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6, Boulevard Maréchal Juin, Caen, 14000, France
| | - Jacques Lalevée
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, 68100, Mulhouse, France
| | - Ilaria Ciofini
- Institute of Chemistry for Life and Health Sciences (i-CLeHS) Chimie ParisTech, PSL University, CNRS, 11 rue P. et M. Curie, 75005, Paris, France
| | - Laurence Grimaud
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Sami Lakhdar
- Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), 118 Route de Narbonne, 31062, Toulouse Cedex 09, France
| |
Collapse
|
3
|
Supranovich VI, Dmitriev IA, Dilman AD. Synthesis of tetrafluorinated piperidines from nitrones via a visible-light-promoted annelation reaction. Beilstein J Org Chem 2021; 16:3104-3108. [PMID: 33437323 PMCID: PMC7783028 DOI: 10.3762/bjoc.16.260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/09/2020] [Indexed: 11/23/2022] Open
Abstract
A method for the one-step construction of 3,3,4,4-tetrafluorinated piperidines from nitrones and readily accessible tetrafluorinated iodobromobutane is described. The reaction requires an excess amount of ascorbic acid as the terminal reductant and is performed in the presence of an iridium photocatalyst activated by blue light. The annelation is a result of a radical addition at the nitrone, intramolecular nucleophilic substitution, and reduction of the N–O bond.
Collapse
Affiliation(s)
- Vyacheslav I Supranovich
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russian Federation
| | - Igor A Dmitriev
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russian Federation.,Moscow State University, Department of Chemistry, 119991, Moscow, Leninskie Gory 1-3, Russian Federation
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russian Federation
| |
Collapse
|
4
|
An JH, Kim KD, Lee JH. Highly Chemoselective Deoxygenation of N-Heterocyclic N-Oxides Using Hantzsch Esters as Mild Reducing Agents. J Org Chem 2021; 86:2876-2894. [DOI: 10.1021/acs.joc.0c02805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ju Hyeon An
- Department of Advanced Materials Chemistry, Dongguk University, Gyeongju Campus, Gyeongju 38066, Republic of Korea
| | - Kyu Dong Kim
- Department of Advanced Materials Chemistry, Dongguk University, Gyeongju Campus, Gyeongju 38066, Republic of Korea
| | - Jun Hee Lee
- Department of Advanced Materials Chemistry, Dongguk University, Gyeongju Campus, Gyeongju 38066, Republic of Korea
| |
Collapse
|
5
|
Kim SH, An JH, Lee JH. Highly chemoselective deoxygenation of N-heterocyclic N-oxides under transition metal-free conditions. Org Biomol Chem 2021; 19:3735-3742. [PMID: 33908554 DOI: 10.1039/d1ob00260k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Because their site-selective C-H functionalizations are now considered one of the most useful tools for synthesizing various N-heterocyclic compounds, the highly chemoselective deoxygenation of densely functionalized N-heterocyclic N-oxides has received much attention from the synthetic chemistry community. Here, we provide a protocol for the highly chemoselective deoxygenation of various functionalized N-oxides under visible light-mediated photoredox conditions with Na2-eosin Y as an organophotocatalyst. Mechanistic studies imply that the excited state of the organophotocatalyst is reductively quenched by Hantzsch esters. This operationally simple technique tolerates a wide range of functional groups and allows high-yield, multigram-scale deoxygenation.
Collapse
Affiliation(s)
- Se Hyun Kim
- Department of Advanced Materials Chemistry, Dongguk University Gyeongju Campus, Gyeongju 38066, Republic of Korea.
| | - Ju Hyeon An
- Department of Advanced Materials Chemistry, Dongguk University Gyeongju Campus, Gyeongju 38066, Republic of Korea.
| | - Jun Hee Lee
- Department of Advanced Materials Chemistry, Dongguk University Gyeongju Campus, Gyeongju 38066, Republic of Korea.
| |
Collapse
|
6
|
Konev MO, Cardinale L, Jacobi von Wangelin A. Catalyst-Free N-Deoxygenation by Photoexcitation of Hantzsch Ester. Org Lett 2020; 22:1316-1320. [DOI: 10.1021/acs.orglett.9b04632] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mikhail O. Konev
- Department of Chemistry, University of Hamburg, Martin Luther King Pl 6, 20146 Hamburg, Germany
| | - Luana Cardinale
- Department of Chemistry, University of Hamburg, Martin Luther King Pl 6, 20146 Hamburg, Germany
| | | |
Collapse
|
7
|
Suzuki K, Minato T, Tominaga N, Okumo I, Yonesato K, Mizuno N, Yamaguchi K. Hexavacant γ-Dawson-type phosphotungstates supporting an edge-sharing bis(square-pyramidal) {O 2M(μ 3-O) 2(μ-OAc)MO 2} core (M = Mn 2+, Co 2+, Ni 2+, Cu 2+, or Zn 2+). Dalton Trans 2019; 48:7281-7289. [PMID: 30778456 DOI: 10.1039/c8dt04850a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In aqueous media, the introduction of additional metal species into polyoxometalates (POMs) with multiple vacant sites, such as a hexavacant Dawson-type phosphotungstate, which is of interest for the synthesis of novel metal oxide clusters, is generally difficult because they easily undergo self-condensation and/or structural decomposition. In this study, we succeeded in developing a novel synthetic method to obtain metal-substituted γ-Dawson-type phosphotungstate monomers by introducing metal species into an organic solvent-soluble lacunary phosphotungstate, TBA4H10[α-P2W12O48] (I) (TBA = tetra-n-butylammonium), in organic media. The reaction of I, which possessed two types of vacant sites, i.e. middle and edge sites, with divalent metal species such as Mn2+, Co2+, Ni2+, Cu2+, or Zn2+ in acetonitrile afforded a series of isostructural POMs M2 (TBA5[γ-P2W12O44M2(OAc)(CH3CONH)2]·nH2O·mCH3CN; M = Mn2+, Co2+, Ni2+, Cu2+, or Zn2+; OAc = acetate) with an edge-sharing bis(square-pyramidal) {O2M(μ3-O)2(μ-OAc)MO2} core. The bis(square-pyramidal) core was selectively placed at the middle site of the hexavacant lacunary phosphotungstate, and the two metals in the core were bridged by two phosphate units and one acetate species. Meanwhile, the edge sites were capped by acetimidate ligands, which protect the reactive lacunary POM from self-condensation. To the best of our knowledge, this is the first report describing the synthesis and characterization of metal-substituted hexavacant γ-Dawson-type POM monomers.
Collapse
Affiliation(s)
- Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | | | | | | | | | | | | |
Collapse
|
8
|
Kim KD, Lee JH. Visible-Light Photocatalyzed Deoxygenation of N-Heterocyclic N-Oxides. Org Lett 2018; 20:7712-7716. [DOI: 10.1021/acs.orglett.8b03446] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kyu Dong Kim
- Department of Advanced Materials Chemistry, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Jun Hee Lee
- Department of Advanced Materials Chemistry, Dongguk University, Gyeongju 38066, Republic of Korea
| |
Collapse
|
9
|
Suzuki K, Mizuno N, Yamaguchi K. Polyoxometalate Photocatalysis for Liquid-Phase Selective Organic Functional Group Transformations. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03498] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Precursory Research
for Embryonic Science and Technology (PRESTO), Japan Science and Technology
Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Noritaka Mizuno
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
10
|
Li C, Suzuki K, Mizuno N, Yamaguchi K. Polyoxometalate LUMO engineering: a strategy for visible-light-responsive aerobic oxygenation photocatalysts. Chem Commun (Camb) 2018; 54:7127-7130. [DOI: 10.1039/c8cc03519a] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report efficient visible-light-responsive oxygenation photocatalysis via the strategy of LUMO engineering of polyoxometalates.
Collapse
Affiliation(s)
- Chifeng Li
- Department of Applied Chemistry
- School of Engineering
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry
- School of Engineering
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Noritaka Mizuno
- Department of Applied Chemistry
- School of Engineering
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry
- School of Engineering
- The University of Tokyo
- Bunkyo-ku
- Japan
| |
Collapse
|
11
|
Suzuki K, Yamaguchi K, Mizuno N. Photoredox Catalysis of Visible-light-responsive Divacant Lacunary Silicotungstate for Selective Reduction of Aldehydes. CHEM LETT 2017. [DOI: 10.1246/cl.170577] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656
| | - Noritaka Mizuno
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656
| |
Collapse
|
12
|
Jeong J, Suzuki K, Yamaguchi K, Mizuno N. Visible-light-responsive catalysis of a zinc-introduced lacunary disilicoicosatungstate for the deoxygenation of pyridine N-oxides. NEW J CHEM 2017. [DOI: 10.1039/c7nj03057f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mononuclear zinc-introduced lacunary disilicoicosatungstate showed efficient photocatalytic activity in the selective deoxygenation of pyridine N-oxides under visible light irradiation.
Collapse
Affiliation(s)
- Jinu Jeong
- Department of Applied Chemistry
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Noritaka Mizuno
- Department of Applied Chemistry
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| |
Collapse
|