1
|
Singh K, Kaur A, Goyal B, Goyal D. Harnessing the Therapeutic Potential of Peptides for Synergistic Treatment of Alzheimer's Disease by Targeting Aβ Aggregation, Metal-Mediated Aβ Aggregation, Cholinesterase, Tau Degradation, and Oxidative Stress. ACS Chem Neurosci 2024; 15:2545-2564. [PMID: 38979773 DOI: 10.1021/acschemneuro.4c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive multifaceted neurodegenerative disease and remains a formidable global health challenge. The current medication for AD gives symptomatic relief and, thus, urges us to look for alternative disease-modifying therapies based on a multitarget directed approach. Looking at the remarkable progress made in peptide drug development in the last decade and the benefits associated with peptides, they offer valuable chemotypes [multitarget directed ligands (MTDLs)] as AD therapeutics. This review recapitulates the current developments made in harnessing peptides as MTDLs in combating AD by targeting multiple key pathways involved in the disease's progression. The peptides hold immense potential and represent a convincing avenue in the pursuit of novel AD therapeutics. While hurdles remain, ongoing research offers hope that peptides may eventually provide a multifaceted approach to combat AD.
Collapse
Affiliation(s)
- Kamaljot Singh
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140406 Punjab, India
| | - Anupamjeet Kaur
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140406 Punjab, India
| | - Bhupesh Goyal
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala, 147004 Punjab, India
| | - Deepti Goyal
- Department of Chemistry, DAV College, Sector 10, Chandigarh 160011, India
| |
Collapse
|
2
|
Villari V, Gaeta M, D’Urso A, Micali N. Porphyrin/carbon nanodot supramolecular complexes and their optical properties. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Aβ and Tau Interact with Metal Ions, Lipid Membranes and Peptide-Based Amyloid Inhibitors: Are These Common Features Relevant in Alzheimer’s Disease? Molecules 2022; 27:molecules27165066. [PMID: 36014310 PMCID: PMC9414153 DOI: 10.3390/molecules27165066] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 12/13/2022] Open
Abstract
In the last two decades, the amyloid hypothesis, i.e., the abnormal accumulation of toxic Aβ assemblies in the brain, has been considered the mainstream concept sustaining research in Alzheimer’s Disease (AD). However, the course of cognitive decline and AD development better correlates with tau accumulation rather than amyloid peptide deposition. Moreover, all clinical trials of amyloid-targeting drug candidates have been unsuccessful, implicitly suggesting that the amyloid hypothesis needs significant amendments. Accumulating evidence supports the existence of a series of potentially dangerous relationships between Aβ oligomeric species and tau protein in AD. However, the molecular determinants underlying pathogenic Aβ/tau cross interactions are not fully understood. Here, we discuss the common features of Aβ and tau molecules, with special emphasis on: (i) the critical role played by metal dyshomeostasis in promoting both Aβ and tau aggregation and oxidative stress, in AD; (ii) the effects of lipid membranes on Aβ and tau (co)-aggregation at the membrane interface; (iii) the potential of small peptide-based inhibitors of Aβ and tau misfolding as therapeutic tools in AD. Although the molecular mechanism underlying the direct Aβ/tau interaction remains largely unknown, the arguments discussed in this review may help reinforcing the current view of a synergistic Aβ/tau molecular crosstalk in AD and stimulate further research to mechanism elucidation and next-generation AD therapeutics.
Collapse
|
4
|
Zhao W, Jiang L, Wang W, Sang J, Sun Q, Dong Q, Li L, Lu F, Liu F. Design of carboxylated single-walled carbon nanotubes as highly efficient inhibitors against Aβ40 fibrillation based on the HyBER mechanism. J Mater Chem B 2021; 9:6902-6914. [PMID: 34612337 DOI: 10.1039/d1tb00920f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Misfolding and the subsequent self-assembly of amyloid-β protein (Aβ) is very important in the occurrence of Alzheimer's disease (AD). Thus, inhibition of Aβ aggregation is currently an effective method to alleviate and treat AD. Herein, a carboxylated single-walled carbon nanotube (SWCNT-COOH) was rationally designed based on the hydrophobic binding-electrostatic repulsion (HyBER) mechanism. The inhibitory effect of SWCNT-COOH on Aβ fibrillogenesis was first studied. Based on the results of thioflavin T fluorescence and atomic force microscopy imaging assays, it was shown that SWCNT-COOH can not only effectively inhibit Aβ aggregation, but also depolymerize the mature fibrils of Aβ. In addition, its inhibitory action will be affected by the content of carboxyl groups. Moreover, the influence of SWCNT-COOH on cytotoxicity induced by Aβ was investigated by the MTT method. It was found that SWCNT-COOH can produce an anti-Aβ neuroprotective effect in vitro. Molecular dynamics simulations showed that SWCNT-COOH significantly destroyed the overall and internal structural stability of an Aβ40 trimer. Moreover, SWCNT-COOH interacted strongly with the N-terminal region, turn region and C-terminal region of the Aβ40 trimer via hydrogen bonds, salt bridges and π-π interactions, which triggered a large structural disturbance of the Aβ40 trimer, reduced the β-sheet content of the Aβ40 trimer and led to more disorder in these regions. All the above data not only reveal the suppressive effect of SWCNT-COOH on Aβ aggregation, but also reveal its inhibitory mechanism, which provides a useful clue to exploit anti-Aβ drugs in the future.
Collapse
Affiliation(s)
- Wenping Zhao
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Mendonça DA, Bakker M, Cruz-Oliveira C, Neves V, Jiménez MA, Defaus S, Cavaco M, Veiga AS, Cadima-Couto I, Castanho MARB, Andreu D, Todorovski T. Penetrating the Blood-Brain Barrier with New Peptide-Porphyrin Conjugates Having anti-HIV Activity. Bioconjug Chem 2021; 32:1067-1077. [PMID: 34033716 PMCID: PMC8485325 DOI: 10.1021/acs.bioconjchem.1c00123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
Passing
through the blood-brain barrier (BBB) to treat neurological
conditions is one of the main hurdles in modern medicine. Many drugs
with promising in vitro profiles become ineffective in vivo due to
BBB restrictive permeability. In particular, this includes drugs such
as antiviral porphyrins, with the ability to fight brain-resident
viruses causing diseases such as HIV-associated neurocognitive disorders
(HAND). In the last two decades, BBB shuttles, particularly peptide-based
ones, have shown promise in carrying various payloads across the BBB.
Thus, peptide–drug conjugates (PDCs) formed by covalent attachment
of a BBB peptide shuttle and an antiviral drug may become key therapeutic
tools in treating neurological disorders of viral origin. In this
study, we have used various approaches (guanidinium, phosphonium,
and carbodiimide-based couplings) for on-resin synthesis of new peptide–porphyrin
conjugates (PPCs) with BBB-crossing and potential antiviral activity.
After careful fine-tuning of the synthetic chemistry, DIC/oxyma has
emerged as a preferred method, by which 14 different PPCs have been
made and satisfactorily characterized. The PPCs are prepared by coupling
a porphyrin carboxyl group to an amino group (either N-terminal or a Lys side chain) of the peptide shuttle and show effective
in vitro BBB translocation ability, low cytotoxicity toward mouse
brain endothelial cells, and low hemolytic activity. Three of the
PPCs, MP-P5, P4-MP, and P4-L-MP, effectively inhibiting HIV infectivity
in vitro, stand out as most promising. Their efficacy against other
brain-targeting viruses (Dengue, Zika, and SARS-CoV-2) is currently
under evaluation, with preliminary results confirming that PPCs are
a promising strategy to treat viral brain infections.
Collapse
Affiliation(s)
- Diogo A Mendonça
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Mariët Bakker
- Avans University of Applied Sciences, 5223 DE Breda, Netherlands
| | - Christine Cruz-Oliveira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Vera Neves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Maria Angeles Jiménez
- Department of Biological Physical Chemistry, Institute of Physical Chemistry Rocasolano (IQFR-CSIC), 28006 Madrid, Spain
| | - Sira Defaus
- Department of Experimental and Health Sciences, Pompeu Fabra University, 08003 Barcelona, Spain
| | - Marco Cavaco
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Ana Salomé Veiga
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Iris Cadima-Couto
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Miguel A R B Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - David Andreu
- Department of Experimental and Health Sciences, Pompeu Fabra University, 08003 Barcelona, Spain
| | - Toni Todorovski
- Department of Experimental and Health Sciences, Pompeu Fabra University, 08003 Barcelona, Spain
| |
Collapse
|
6
|
Tau/Aβ chimera peptides: A Thioflavin-T and MALDI-TOF study of Aβ amyloidosis in the presence of Cu(II) or Zn(II) ions and total lipid brain extract (TLBE) vesicles. Chem Phys Lipids 2021; 237:105085. [PMID: 33895131 DOI: 10.1016/j.chemphyslip.2021.105085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 02/08/2023]
Abstract
Currently, Alzheimer's Disease (AD) is a complex neurodegenerative condition, with limited therapeutic options. Several factors, like Amyloid β (Aβ) aggregation, tau protein hyperphosphorylation, bio-metals dyshomeostasis and oxidative stress contribute to AD pathogenesis. These pathogenic processes might occur in the aqueous phase but also on neuronal membranes. Thus, investigating the connection between Aβ and biomembranes, becomes important for unveiling the molecular mechanism underlying Aβ amyloidosis as a critical event in AD pathology. In this work, the interaction of two peptides, made up with hybrid sequences from Tau protein 9-16 (EVMEDHAG) or 26-33 (QGGYTMHQ) N-terminal domain and Aβ16-20 (KLVFF) hydrophobic region, with full length Aβ40 or Aβ42 peptides is reported. The studied "chimera" peptides Ac-EVMEDHAGKLVFF-NH2 (τ9-16-KL) and Ac-QGGYTMHQKLVFF-NH2 (τ26-33-KL) are endowed with Aβ recognition and metal ion interaction capabilities provided by the tau or Aβ sequences, respectively. These peptides were characterized in previous study along with their metal dependent interaction and amyloidogenesis, either in the presence or absence of metal ion and artificial membranes made up with Total Lipid Brain Extract (TLBE) components, (Sciacca et al., 2020). In the present paper, the ability of the two peptides to inhibit Aβ aggregation is studied using composite experimental conditions including aqueous solution, the presence of metal ions (Cu or Zn), the presence of lipid vesicles mimicking neuronal membranes as well as the co-presence of metals and TLBE artificial membranes. We used Thioflavine-T (ThT) fluorescence or MALDI-TOF spectrometry analysis of Aβ limited proteolysis to respectively monitor the Aβ aggregation kinetic or validation of the Aβ interacting regions. We demonstrate that τ9-16-KL and τ26-33-KL peptides differently affect Aβ aggregation kinetics, with the tau sequence playing a crucial role. The results are discussed in terms of chimera's peptides hydrophobicity and electrostatic driven interactions at the aqueous/membrane interface.
Collapse
|
7
|
Consoli GML, Tosto R, Baglieri A, Petralia S, Campagna T, Di Natale G, Zimbone S, Giuffrida ML, Pappalardo G. Novel Peptide-Calix[4]arene Conjugate Inhibits Aβ Aggregation and Rescues Neurons from Aβ's Oligomers Cytotoxicity In Vitro. ACS Chem Neurosci 2021; 12:1449-1462. [PMID: 33844495 PMCID: PMC9535895 DOI: 10.1021/acschemneuro.1c00117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
![]()
Alzheimer’s
disease (AD) is a progressive neurodegenerative
condition affecting people in the elderly. Targeting aggregation of
β-amyloid peptides (Aβ) is considered a promising approach
for the therapeutic treatment of the disease. Peptide based inhibitors
of β-amyloid fibrillation are emerging as safe drug candidates
as well as interesting compounds for early diagnosis of AD. Peptide
conjugation via covalent bond with functional moieties enables the
resultant hybrid system to acquire desired functions. Here we report
the synthesis, the structural characterization, and the Aβ42 interaction of a p-amino-calix[4]arene
derivative bearing a GPGKLVFF peptide pendant at the lower rim. We
demonstrate that the p-amino-calix[4]arene–GPGKLVFF
conjugate alters the Aβ42 aggregation pathways by
preventing Aβ42’s conformational transition
from random coil to β-sheet with concomitant changes of the
aggregation kinetic profile as evidenced by circular dichroism (CD),
thioflavin T (ThT), and dynamic light scattering (DLS) measurements,
respectively. High resolution mass spectrometry (HR-MS) confirmed
a direct interaction of the p-amino-calix[4]arene–GPGKLVFF
conjugate with Aβ42 monomer which provided insight
into a possible working mechanism, whereas the alteration of the Aβ42’s fibrillary architecture, by the calix-peptide conjugate,
was further validated by atomic force microscopy (AFM) imaging. Finally,
the herein proposed compound was shown to be effective against Aβ42 oligomers’ toxicity in differentiated neuroblastoma
cells, SH-SY5Y.
Collapse
Affiliation(s)
| | - Rita Tosto
- International PhD School of Chemical Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
- CNR-Institute of Crystallography, Via P. Gaifami 18, 95126 Catania, Italy
| | - Ausilia Baglieri
- CNR-Institute of Biomolecular Chemistry, Via P. Gaifami 18, 95126 Catania, Italy
| | - Salvatore Petralia
- Department of Drug Sciences and Health, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Tiziana Campagna
- CNR-Institute of Crystallography, Via P. Gaifami 18, 95126 Catania, Italy
| | - Giuseppe Di Natale
- CNR-Institute of Crystallography, Via P. Gaifami 18, 95126 Catania, Italy
| | - Stefania Zimbone
- CNR-Institute of Crystallography, Via P. Gaifami 18, 95126 Catania, Italy
| | | | | |
Collapse
|
8
|
García-Viñuales S, Sciacca MFM, Lanza V, Santoro AM, Grasso G, Tundo GR, Sbardella D, Coletta M, Grasso G, La Rosa C, Milardi D. The interplay between lipid and Aβ amyloid homeostasis in Alzheimer's Disease: risk factors and therapeutic opportunities. Chem Phys Lipids 2021; 236:105072. [PMID: 33675779 DOI: 10.1016/j.chemphyslip.2021.105072] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/15/2021] [Accepted: 03/01/2021] [Indexed: 12/19/2022]
Abstract
Alzheimer's Diseases (AD) is characterized by the accumulation of amyloid deposits of Aβ peptide in the brain. Besides genetic background, the presence of other diseases and an unhealthy lifestyle are known risk factors for AD development. Albeit accumulating clinical evidence suggests that an impaired lipid metabolism is related to Aβ deposition, mechanistic insights on the link between amyloid fibril formation/clearance and aberrant lipid interactions are still unavailable. Recently, many studies have described the key role played by membrane bound Aβ assemblies in neurotoxicity. Moreover, it has been suggested that a derangement of the ubiquitin proteasome pathway and autophagy is significantly correlated with toxic Aβ aggregation and dysregulation of lipid levels. Thus, studies focusing on the role played by lipids in Aβ aggregation and proteostasis could represent a promising area of investigation for the design of valuable treatments. In this review we examine current knowledge concerning the effects of lipids in Aβ aggregation and degradation processes, focusing on the therapeutic opportunities that a comprehensive understanding of all biophysical, biochemical, and biological processes involved may disclose.
Collapse
Affiliation(s)
| | - Michele F M Sciacca
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy
| | - Valeria Lanza
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy
| | - Anna Maria Santoro
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy
| | - Giulia Grasso
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy
| | - Grazia R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Massimiliano Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Grasso
- Department of Chemistry, University of Catania, Catania, Italy
| | - Carmelo La Rosa
- Department of Chemistry, University of Catania, Catania, Italy
| | - Danilo Milardi
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy.
| |
Collapse
|
9
|
Xu W, Gao C, Sun X, Tai WCS, Lung HL, Law GL. Design, synthesis and comparison of water-soluble phthalocyanine/porphyrin analogues and their inhibition effects on Aβ 42 fibrillization. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00237f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of ZnPorp and ZnPc conjugates were synthesized and compared by their inhibitory effects on Aβ42 fibrillization. We show that ZnPc conjugates designed with a good hydrophilic–hydrophobic balance are deemed as better inhibitors.
Collapse
Affiliation(s)
- Weiyuan Xu
- State Key Laboratory of Chemical Biology and Drug Discovery
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Kowloon
- PR China
| | - Chao Gao
- State Key Laboratory of Chemical Biology and Drug Discovery
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Kowloon
- PR China
| | - Xinyang Sun
- State Key Laboratory of Chemical Biology and Drug Discovery
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Kowloon
- PR China
| | - William Chi-Shing Tai
- State Key Laboratory of Chemical Biology and Drug Discovery
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Kowloon
- PR China
| | - Hong Lok Lung
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon
- P.R China
| | - Ga-Lai Law
- State Key Laboratory of Chemical Biology and Drug Discovery
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Kowloon
- PR China
| |
Collapse
|
10
|
Liu F, Zhao W, Zhao F, Dong Q, Wang Y, Wei W, Jia L, Li L, Lu F. Dual Effect of the Acidic Polysaccharose Ulvan on the Inhibition of Amyloid-β Protein Fibrillation and Disintegration of Mature Fibrils. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41167-41176. [PMID: 32818379 DOI: 10.1021/acsami.0c14292] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The abnormal folding and aggregation of amyloid-β protein (Aβ) is the main reason for the occurrence and development of Alzheimer's disease (AD). The discovery of novel inhibitors against Aβ aggregation is still the current research focus. Herein, we report the inhibitory effect of ulvan, an acidic polysaccharide from green algae of the genus Ulva, against Aβ fibrillation using thioflavin T (ThT) fluorescence and atomic force microscopy (AFM) assays. It is shown that ulvan effectively inhibits Aβ fibrillogenesis in a concentration-dependent manner and actively inhibits the formation of A11-reactive Aβ oligomers, the most toxic Aβ species. The circular dichroism spectrum reveals that ulvan blocks the conformational transition of Aβ40 from the initial random coil to a β-sheet structure, but it only delays the conformational transition of Aβ42. It is also found that ulvan greatly reduces Aβ-induced cytotoxicity by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In addition, ulvan effectively downregulates intracellular reactive oxygen species production and protects PC12 cells from the damage caused by Aβ fibrillation. Moreover, ulvan disaggregates preformed mature fibrils into off-pathway oligomers and greatly decreases their associated cytotoxicity, as revealed using ThT fluorescence, AFM, MTT, and dot-blotting assays. The above results not only fully describe the inhibitory effect of ulvan on Aβ fibrillation and its related cytotoxicity but also provide novel ideas for the development of functional food ingredients from seaweed to treat AD.
Collapse
Affiliation(s)
- Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P.R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P.R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Wenping Zhao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Fang Zhao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Qinchen Dong
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Ying Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Wei Wei
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Longgang Jia
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Li Li
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P.R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P.R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| |
Collapse
|
11
|
Jokar S, Khazaei S, Behnammanesh H, Shamloo A, Erfani M, Beiki D, Bavi O. Recent advances in the design and applications of amyloid-β peptide aggregation inhibitors for Alzheimer's disease therapy. Biophys Rev 2019; 11:10.1007/s12551-019-00606-2. [PMID: 31713720 DOI: 10.1007/s12551-019-00606-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 10/31/2019] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease (AD) is an irreversible neurological disorder that progresses gradually and can cause severe cognitive and behavioral impairments. This disease is currently considered a social and economic incurable issue due to its complicated and multifactorial characteristics. Despite decades of extensive research, we still lack definitive AD diagnostic and effective therapeutic tools. Consequently, one of the most challenging subjects in modern medicine is the need for the development of new strategies for the treatment of AD. A large body of evidence indicates that amyloid-β (Aβ) peptide fibrillation plays a key role in the onset and progression of AD. Recent studies have reported that amyloid hypothesis-based treatments can be developed as a new approach to overcome the limitations and challenges associated with conventional AD therapeutics. In this review, we will provide a comprehensive view of the challenges in AD therapy and pathophysiology. We also discuss currently known compounds that can inhibit amyloid-β (Aβ) aggregation and their potential role in advancing current AD treatments. We have specifically focused on Aβ aggregation inhibitors including metal chelators, nanostructures, organic molecules, peptides (or peptide mimics), and antibodies. To date, these molecules have been the subject of numerous in vitro and in vivo assays as well as molecular dynamics simulations to explore their mechanism of action and the fundamental structural groups involved in Aβ aggregation. Ultimately, the aim of these studies (and current review) is to achieve a rational design for effective therapeutic agents for AD treatment and diagnostics.
Collapse
Affiliation(s)
- Safura Jokar
- Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. BOX: 14155-6559, Tehran, Iran
| | - Saeedeh Khazaei
- Department of Pharmaceutical Biomaterials , Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. BOX: 14155-6559, Tehran, Iran
| | - Hossein Behnammanesh
- Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. BOX: 14155-6559, Tehran, Iran
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, P.O. Box: 11365-11155, Tehran, Iran
| | - Mostafa Erfani
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), P.O. Box: 14155-1339, Tehran, Iran
| | - Davood Beiki
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, P.O. BOX: 14155-6559, Tehran, Iran
| | - Omid Bavi
- Department of Mechanical and Aerospace Engineering, Shiraz University of Technology, P.O. Box: 71555-313, Shiraz, Iran.
| |
Collapse
|
12
|
Yang GJ, Liu H, Ma DL, Leung CH. Rebalancing metal dyshomeostasis for Alzheimer's disease therapy. J Biol Inorg Chem 2019; 24:1159-1170. [PMID: 31486954 DOI: 10.1007/s00775-019-01712-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/29/2019] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease (AD) is a type of neurodegenerative malady that is associated with the accumulation of amyloid plaques. Metal ions are critical for the development and upkeep of brain activity, but metal dyshomeostasis can contribute to the development of neurodegenerative diseases, including AD. This review highlights the association between metal dyshomeostasis and AD pathology, the feasibility of rebalancing metal homeostasis as a therapeutic strategy for AD, and a survey of current drugs that action via rebalancing metal homeostasis. Finally, we discuss the challenges that should be overcome by researchers in the future to enable the practical use of metal homeostasis rebalancing agents for clinical application.
Collapse
Affiliation(s)
- Guan-Jun Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macau SAR, China
| | - Hao Liu
- Department of Chemistry, Hong Kong Baptist University, Kowloon, 999077, Hong Kong SAR, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon, 999077, Hong Kong SAR, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macau SAR, China.
| |
Collapse
|
13
|
Oliveri V, Zimbone S, Giuffrida ML, Bellia F, Tomasello MF, Vecchio G. Porphyrin Cyclodextrin Conjugates Modulate Amyloid Beta Peptide Aggregation and Cytotoxicity. Chemistry 2018; 24:6349-6353. [PMID: 29624764 DOI: 10.1002/chem.201800807] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/08/2018] [Indexed: 11/09/2022]
Abstract
Although fibrillar amyloid beta peptide (Aβ) aggregates are one of the major hallmarks of Alzheimer's disease, increasing evidence suggests that soluble Aβ oligomers are the primary toxic species. Targeting the oligomeric species could represent an effective strategy to interfere with Aβ toxicity. In this work, the biological properties of 5[4-(6-O-β-cyclodextrin)-phenyl],10,15,20-tri(4-hydroxyphenyl)-porphyrin and its zinc complex were tested, as new molecules that interact with Aβ and effectively prevent its cytotoxicity. We found that these systems can cross the cell membrane to deliver Aβ intracellularly and promote its clearance. Our results provide evidence for the use of cyclodextrin-porphyrin derivatives as a promising strategy to target amyloid aggregation.
Collapse
Affiliation(s)
- Valentina Oliveri
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Stefania Zimbone
- Istituto di Biostrutture e Bioimmagini, CNR, Via Paolo Gaifami 18, 95126, Catania, Italy
| | - Maria Laura Giuffrida
- Istituto di Biostrutture e Bioimmagini, CNR, Via Paolo Gaifami 18, 95126, Catania, Italy
| | - Francesco Bellia
- Istituto di Biostrutture e Bioimmagini, CNR, Via Paolo Gaifami 18, 95126, Catania, Italy
| | | | - Graziella Vecchio
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125, Catania, Italy
| |
Collapse
|
14
|
Affiliation(s)
| | - Marina Gobbo
- Department of Chemical SciencesUniversity of PadovaPadova35131 Italy
- Institute of Biomolecular Chemistry of CNR, Padova UnitPadova35131 Italy
| |
Collapse
|