1
|
Dubovichenko MV, Nedorezova DD, Patra C, Drozd VS, Andrianov VS, Ashmarova AI, Nnanyereugo VO, Eldeeb AA, Kolpashchikov DM. Marker-Dependent Cleavage of RNA by Binary (split) DNAzyme (BiDz) and Binary DNA Machines (BiDM). Chembiochem 2024; 25:e202400665. [PMID: 39471339 DOI: 10.1002/cbic.202400665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/05/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
Oligonucleotide gene therapy (OGT) can be used to suppress specific RNA in cells and thus has been explored for gene therapy. Despite extensive effort, there is no clinically significant OGT for treating cancer. Low efficiency of OGT is one of the problems. Earlier, we proposed to address this problem by suppressing the most vital genes in cancer cells e. g. housekeeping genes. To achieve specific activation of the OGT agents in cancer but not in normal cells, we designed a binary (split) DNAzyme (BiDz) activated by cancer-related nucleic acid sequences. This work is devoted to BiDz optimization for efficient cleavage of structured RNA targets upon activation with a cancer marker-related sequence. To achieve efficient binding of folded RNA, the BiDz was equipped with RNA binding/unwinding arms to produce 'Binary DNA-nanomachines' (BiDM). It was demonstrated that BiDM can improve both the rate and selectivity of RNA cleavage in comparison with BiDz. For the best selectivity, single-nucleotide variations should be recognized by the strand detached from the common DNA scaffold of BiDM. Further development of DNA nanotechnology-inspired agents can advance OGT in treating cancer, viral infections, and genetic disorders.
Collapse
Affiliation(s)
- Mikhail V Dubovichenko
- Laboratory of Nucleic Acid Nanotechnology, SCAMT Institute, ITMO University, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation
| | - Daria D Nedorezova
- Laboratory of Nucleic Acid Nanotechnology, SCAMT Institute, ITMO University, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation
| | - Christina Patra
- Laboratory of Nucleic Acid Nanotechnology, SCAMT Institute, ITMO University, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation
| | - Valeria S Drozd
- Laboratory of Nucleic Acid Nanotechnology, SCAMT Institute, ITMO University, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation
| | - Vladimir S Andrianov
- Laboratory of Nucleic Acid Nanotechnology, SCAMT Institute, ITMO University, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation
| | - Anna I Ashmarova
- Laboratory of Nucleic Acid Nanotechnology, SCAMT Institute, ITMO University, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation
| | - Vivian O Nnanyereugo
- Laboratory of Nucleic Acid Nanotechnology, SCAMT Institute, ITMO University, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation
| | - Ahmed A Eldeeb
- Laboratory of Nucleic Acid Nanotechnology, SCAMT Institute, ITMO University, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation
| | - Dmitry M Kolpashchikov
- Chemistry Department, University of Central Florida, Orlando, FL, 32816-2366, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32816, USA
| |
Collapse
|
2
|
Liu Y, Zhao Z, Zeng Y, He M, Lyu Y, Yuan Q. Thermodynamics and Kinetics-Directed Regulation of Nucleic Acid-Based Molecular Recognition. SMALL METHODS 2024:e2401102. [PMID: 39392199 DOI: 10.1002/smtd.202401102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/28/2024] [Indexed: 10/12/2024]
Abstract
Nucleic acid-based molecular recognition plays crucial roles in various fields like biosensing and disease diagnostics. To achieve optimal detection and analysis, it is essential to regulate the response performance of nucleic acid probes or switches to match specific application requirements by regulating thermodynamics and kinetics properties. However, the impacts of thermodynamics and kinetics theories on recognition performance are sometimes obscure and the relative conclusions are not intuitive. To promote the thorough understanding and rational utilization of thermodynamics and kinetics theories, this review focuses on the landmarks and recent advances of nucleic acid thermodynamics and kinetics and summarizes the nucleic acid thermodynamics and kinetics-based strategies for regulation of nucleic acid-based molecular recognition. This work hopes such a review can provide reference and guidance for the development and optimization of nucleic acid probes and switches in the future, as well as for advancements in other nucleic acid-related fields.
Collapse
Affiliation(s)
- Yihao Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Zihan Zhao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yuqi Zeng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Minze He
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yifan Lyu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
- Furong Laboratory, Changsha, 410082, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
- Institute of Chemical Biology and Nanomedicine, College of Biology, Hunan University, Changsha, 410082, China
| |
Collapse
|
3
|
Hussein Z, Golovina LA, Alaji M, Nour MAY, Kolpashchikov DM, Komissarov AB, El-Deeb AA. Enhancing Sensitivity in Nucleic Acid Detection via Collaborative Multiple Catalytic Cores in DNAzyme Nanomachines. Chembiochem 2024:e202400572. [PMID: 39235158 DOI: 10.1002/cbic.202400572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
We introduce a multicore DNA nanomachine (MDNM), utilizing four binary DNAzymes for nucleic acid detection without the need for a preamplification step. This innovation remarkably yields a reduction in limit of detection (LOD), over 5-fold, as compared to single-core systems. This reduces the required test time thus highlighting the potential of MDNM in advancing nucleic acid detection.
Collapse
Affiliation(s)
- Zain Hussein
- Laboratory of Nucleic Acid Nanotechnology, SCAMT Institute, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation
| | - Lidia A Golovina
- Laboratory of Nucleic Acid Nanotechnology, SCAMT Institute, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation
| | - Meera Alaji
- Laboratory of Nucleic Acid Nanotechnology, SCAMT Institute, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation
| | - Moustapha A Y Nour
- Laboratory of Nucleic Acid Nanotechnology, SCAMT Institute, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation
| | - Dmitry M Kolpashchikov
- Chemistry Department, University of Central Florida, Orlando, FL, 32816-2366, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32816, USA
| | - Andrey B Komissarov
- Smorodintsev Research Institute of Influenza, 197376, Saint Petersburg, Russia
| | - Ahmed A El-Deeb
- Laboratory of Nucleic Acid Nanotechnology, SCAMT Institute, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation
| |
Collapse
|
4
|
Hussein Z, Nour MAY, Kozlova AV, Kolpashchikov DM, Komissarov AB, El-Deeb AA. DNAzyme Nanomachine with Fluorogenic Substrate Delivery Function: Advancing Sensitivity in Nucleic Acid Detection. Anal Chem 2023; 95:18667-18672. [PMID: 38079240 DOI: 10.1021/acs.analchem.3c04420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
We have developed a hook-equipped DNA nanomachine (HDNM) for the rapid detection of specific nucleic acid sequences without a preamplification step. HDNM efficiently unwinds RNA structures and improves the detection sensitivity. Compared to the hookless system, HDNM offers an 80-fold and 13-fold enhancement in DNA and RNA detection, respectively, reducing incubation time from 3 to 1 h.
Collapse
Affiliation(s)
- Zain Hussein
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova 9, Saint Petersburg, 191002, Russian Federation
- Advanced Engineering School, 423450 Almetyevsk, Russian Federation
| | - Moustapha A Y Nour
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova 9, Saint Petersburg, 191002, Russian Federation
- Advanced Engineering School, 423450 Almetyevsk, Russian Federation
| | - Anastasia V Kozlova
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova 9, Saint Petersburg, 191002, Russian Federation
- Advanced Engineering School, 423450 Almetyevsk, Russian Federation
| | - Dmitry M Kolpashchikov
- Chemistry Department, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816, United States
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32816, United States
- National Center for Forensic Science, University of Central Florida, Orlando, Florida 32816, United States
| | - Andrey B Komissarov
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russian Federation
| | - Ahmed A El-Deeb
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova 9, Saint Petersburg, 191002, Russian Federation
- Advanced Engineering School, 423450 Almetyevsk, Russian Federation
| |
Collapse
|
5
|
Ateiah M, Gandalipov ER, Rubel AA, Rubel MS, Kolpashchikov DM. DNA Nanomachine (DNM) Biplex Assay for Differentiating Bacillus cereus Species. Int J Mol Sci 2023; 24:ijms24054473. [PMID: 36901903 PMCID: PMC10003685 DOI: 10.3390/ijms24054473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Conventional methods for the detection and differentiation of Bacillus cereus group species have drawbacks mostly due to the complexity of genetic discrimination between the Bacillus cereus species. Here, we describe a simple and straightforward assay based on the detected unamplified bacterial 16S rRNA by DNA nanomachine (DNM). The assay uses a universal fluorescent reporter and four all-DNA binding fragments, three of which are responsible for "opening up" the folded rRNA while the fourth stand is responsible for detecting single nucleotide variation (SNV) with high selectivity. Binding of the DNM to 16S rRNA results in the formation of the 10-23 deoxyribozyme catalytic core that cleaves the fluorescent reporter and produces a signal, which is amplified over time due to catalytic turnover. This developed biplex assay enables the detection of B. thuringiensis 16S rRNA at fluorescein and B. mycoides at Cy5 channels with a limit of detection of 30 × 103 and 35 × 103 CFU/mL, respectively, after 1.5 h with a hands-on time of ~10 min. The new assay may simplify the analysis of biological RNA samples and might be useful for environmental monitoring as a simple and inexpensive alternative to amplification-based nucleic acid analysis. The DNM proposed here may become an advantageous tool for detecting SNV in clinically significant DNA or RNA samples and can easily differentiate SNV under broadly variable experimental conditions and without prior amplification.
Collapse
Affiliation(s)
- Muhannad Ateiah
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova St. 9, St. Petersburg 191002, Russia; (M.A.); (E.R.G.); (M.S.R.)
| | - Erik R. Gandalipov
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova St. 9, St. Petersburg 191002, Russia; (M.A.); (E.R.G.); (M.S.R.)
| | - Aleksandr A. Rubel
- Laboratory of Amyloid Biology, St. Petersburg State University, Universitetskaya enb. 7-9, St. Petersburg 199034, Russia;
| | - Maria S. Rubel
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova St. 9, St. Petersburg 191002, Russia; (M.A.); (E.R.G.); (M.S.R.)
| | - Dmitry M. Kolpashchikov
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova St. 9, St. Petersburg 191002, Russia; (M.A.); (E.R.G.); (M.S.R.)
- Chemistry Department, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816-2366, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
- Correspondence:
| |
Collapse
|
6
|
R O'Steen M, M Kolpashchikov D. A self-assembling split aptamer multiplex assay for SARS-COVID19 and miniaturization of a malachite green DNA-based aptamer. SENSORS AND ACTUATORS REPORTS 2022; 4:100125. [PMID: 36373144 PMCID: PMC9635949 DOI: 10.1016/j.snr.2022.100125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/30/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Multiplex assays often rely on expensive sensors incorporating covalently linked fluorescent dyes. Herein, we developed a self-assembling aptamer-based multiplex assay. This multiplex approach utilizes a previously established split aptamer sensor in conjugation with a novel split aptamer sensor based upon a malachite green DNA aptamer. This system was capable of simultaneous fluorescent detection of two SARS COVID-19-related sequences in one sample with individual sensors that possesses a limit of detection (LOD) in the low nM range. Optimization of the Split Malachite Green (SMG) sensor yielded a minimized aptamer construct, Mini-MG, capable of inducing fluorescence of malachite green in both a DNA hairpin and sensor format.
Collapse
Affiliation(s)
- Martin R O'Steen
- Chemistry Department, University of Central Florida, Orlando, FL, USA
| | - Dmitry M Kolpashchikov
- Chemistry Department, University of Central Florida, Orlando, FL, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
- National Center for Forensic Science, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
7
|
El‐Deeb AA, Zablotskaya SS, Rubel MS, Nour MAY, Kozlovskaya LI, Shtro AA, Komissarov AB, Kolpashchikov DM. Toward a Home Test for COVID-19 Diagnosis: DNA Machine for Amplification-Free SARS-CoV-2 Detection in Clinical Samples. ChemMedChem 2022; 17:e202200382. [PMID: 36031581 PMCID: PMC9538286 DOI: 10.1002/cmdc.202200382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/26/2022] [Indexed: 11/08/2022]
Abstract
Nucleic acid-based detection of RNA viruses requires an annealing procedure to obtain RNA/probe or RNA/primer complexes for unwinding stable structures of folded viral RNA. In this study, we designed a protein-enzyme-free nano-construction, named four-armed DNA machine (4DNM), that requires neither an amplification stage nor a high-temperature annealing step for SARS-CoV-2 detection. It uses a binary deoxyribozyme (BiDz) sensor incorporated in a DNA nanostructure equipped with a total of four RNA-binding arms. Additional arms were found to improve the limit of detection at least 10-fold. The sensor distinguished SARS-CoV-2 from other respiratory viruses and correctly identified five positive and six negative clinical samples verified by quantitative polymerase chain reaction (RT-qPCR). The strategy reported here can be used for the detection of long natural RNA and can become a basis for a point-of-care or home diagnostic test.
Collapse
Affiliation(s)
- Ahmed A. El‐Deeb
- Laboratory of Molecular Robotics and Biosensor MaterialsSCAMT InstituteITMO University191002Saint PetersburgRussia
| | - Sofia S. Zablotskaya
- Laboratory of Molecular Robotics and Biosensor MaterialsSCAMT InstituteITMO University191002Saint PetersburgRussia
| | - Maria S. Rubel
- Laboratory of Molecular Robotics and Biosensor MaterialsSCAMT InstituteITMO University191002Saint PetersburgRussia
| | - Moustapha A. Y. Nour
- Laboratory of Molecular Robotics and Biosensor MaterialsSCAMT InstituteITMO University191002Saint PetersburgRussia
| | - Liubov I. Kozlovskaya
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological ProductsRussian Academy of SciencesInstitute of PoliomyelitisMoscowRussia
| | - Anna A. Shtro
- Smorodintsev Research Institute of Influenza197376Saint PetersburgRussia
| | | | - Dmitry M. Kolpashchikov
- Laboratory of Molecular Robotics and Biosensor MaterialsSCAMT InstituteITMO University191002Saint PetersburgRussia
- Chemistry DepartmentUniversity of Central FloridaOrlandoFL 32816USA
- Burnett School of Biomedical SciencesUniversity of Central FloridaOrlandoFL 32827USA
| |
Collapse
|
8
|
Loukanov A, Kuribara A, Filipov C, Nikolova S. Theranostic nanomachines for cancer treatment. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e80595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Multifunctional programmed nanomachines with theranostic functions demonstrated great potential in the clinical practice of oncology, as well as the personalized nanomedicine. The reason is because such nanoagents with combined diagnostic and therapeutic functions were found to be highly effective for cancer treatment. The appropriate design of nanomachines allows them to overcome the biological barriers of proliferative tumors and to distinguish the cancer cells from their normal counterparts. Moreover, the use of biocompatible and biodegradable precursors for construction of nanomachines minimize significantly the caused adverse effects to the normal tissue cells, which is a main problem of the chemotherapy. In addition, the utilization of theranostic nanomachines also enables an improved selectivity to the cancer in respect to its intrinsic complexity, heterogeneity, and dynamic evolution. Here we present the programmable functions and performance of the microenvironment-responsive nanomachines at a molecular level for cancer imaging and therapy.
Collapse
|
9
|
Kolpashchikov DM, Spelkov AA. Binary (Split) Light‐up Aptameric Sensors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.201914919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dmitry M. Kolpashchikov
- Chemistry Department University of Central Florida Orlando FL 32816-2366 USA
- Burnett School of Biomedical Sciences University of Central Florida Orlando FL 32816 USA
| | - Alexander A. Spelkov
- Laboratory of Solution Chemistry of Advanced Materials and Technologies ITMO University 9 Lomonosova Str. St. Petersburg 191002 Russian Federation
| |
Collapse
|
10
|
Gomes de Oliveira AG, Dubovichenko MV, ElDeeb AA, Wanjohi J, Zablotskaya S, Kolpashchikov DM. RNA-Cleaving DNA Thresholder Controlled by Concentrations of miRNA Cancer Marker. Chembiochem 2021; 22:1750-1754. [PMID: 33433948 DOI: 10.1002/cbic.202000769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/30/2020] [Indexed: 11/10/2022]
Abstract
Oligonucleotide gene therapy (OGT) agents suppress specific mRNAs in cells and thus reduce the expression of targeted genes. The ability to unambiguously distinguish cancer from healthy cells can solve the low selectivity problem of OGT agents. Cancer RNA markers are expressed in both healthy and cancer cells with a higher expression level in cancer cells. We have designed a DNA-based construct, named DNA thresholder (DTh) that cleaves targeted RNA only at high concentrations of cancer marker RNA and demonstrates low cleavage activity at low marker concentrations. The RNA-cleaving activity can be adjusted within one order of magnitude of the cancer marker RNA concentration by simply redesigning DTh. Importantly, DTh recognizes cancer marker RNA, while cleaving targeted RNA; this offers a possibility to suppress vital genes exclusively in cancer cells, thus triggering their death. DTh is a prototype of computation-inspired molecular device for controlling gene expression and cancer treatment.
Collapse
Affiliation(s)
- Andrey Giovanni Gomes de Oliveira
- SCAMT institute, Laboratory of Molecular Robotics and Biosensor Materials, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation
| | - Mikhail V Dubovichenko
- SCAMT institute, Laboratory of Molecular Robotics and Biosensor Materials, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation
| | - Ahmed A ElDeeb
- SCAMT institute, Laboratory of Molecular Robotics and Biosensor Materials, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation
| | - Joseph Wanjohi
- SCAMT institute, Laboratory of Molecular Robotics and Biosensor Materials, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation
| | - Sofia Zablotskaya
- SCAMT institute, Laboratory of Molecular Robotics and Biosensor Materials, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation
| | - Dmitry M Kolpashchikov
- SCAMT institute, Laboratory of Molecular Robotics and Biosensor Materials, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation.,Chemistry Department, University of Central Florida, 32816-2366, Orlando, FL, USA.,Burnett School of Biomedical Sciences, University of Central Florida, 32816, Orlando, FL, USA
| |
Collapse
|
11
|
Molden TA, Grillo MC, Kolpashchikov DM. Manufacturing Reusable NAND Logic Gates and Their Initial Circuits for DNA Nanoprocessors. Chemistry 2020; 27:2421-2426. [DOI: 10.1002/chem.202003959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/30/2020] [Indexed: 01/27/2023]
Affiliation(s)
- Tatiana A. Molden
- Chemistry Department University of Central Florida 4111 Libra Drive, Physical Sciences 255 Orlando FL 32816-2366 USA
| | - Marcella C. Grillo
- Chemistry Department University of Central Florida 4111 Libra Drive, Physical Sciences 255 Orlando FL 32816-2366 USA
| | - Dmitry M. Kolpashchikov
- Chemistry Department University of Central Florida 4111 Libra Drive, Physical Sciences 255 Orlando FL 32816-2366 USA
| |
Collapse
|
12
|
Molden TA, Niccum CT, Kolpashchikov DM. Cut and Paste for Cancer Treatment: A DNA Nanodevice that Cuts Out an RNA Marker Sequence to Activate a Therapeutic Function. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tatiana A. Molden
- Chemistry Department University of Central Florida Orlando FL 32816 USA
| | - Caitlyn T. Niccum
- Chemistry Department University of Central Florida Orlando FL 32816 USA
| | | |
Collapse
|
13
|
Wang X, Tao Z. Expanding the analytical applications of nucleic acid hybridization using junction probes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4931-4938. [PMID: 33043948 DOI: 10.1039/d0ay01605e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nucleic acid hybridization is crucial in target recognition with respect to in vitro and in vivo nucleic acid biosensing. Conventional linear probes and molecular beacons encounter challenges in multiplexing and specific recognition of intractable nucleic acids. Advances in nucleic acid nanotechnologies have resulted in a set of novel structural probes: junction probes (JPs), which make full use of the advantages of specificity, stability, programmability and predictability of Watson-Crick base pairing. In recent years, junction probes have been regularly implemented in constructing systems related to biosensing, synthetic biology and gene regulation. Herein, we summarize the latest advances in JP designs as potential nucleic acid biosensing systems and their expansive applications, and provide some general guidelines for developing JP based sensing strategies for implementation of such systems.
Collapse
Affiliation(s)
- Xuchu Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China.
| | | |
Collapse
|
14
|
Kolpashchikov DM, Spelkov AA. Binary (Split) Light-up Aptameric Sensors. Angew Chem Int Ed Engl 2020; 60:4988-4999. [PMID: 32208549 DOI: 10.1002/anie.201914919] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Indexed: 12/12/2022]
Abstract
This Minireview discusses the design and applications of binary (also known as split) light-up aptameric sensors (BLAS). BLAS consist of two RNA or DNA strands and a fluorogenic organic dye added as a buffer component. When associated, the two strands form a dye-binding site, followed by an increase in fluorescence of the aptamer-bound dye. The design is cost-efficient because it uses short oligonucleotides and does not require conjugation of organic dyes with nucleic acids. In some applications, BLAS design is preferable over monolithic sensors because of simpler assay optimization and improved selectivity. RNA-based BLAS can be expressed in cells and used for the intracellular monitoring of biological molecules. BLAS have been used as reporters of nucleic acid association events in RNA nanotechnology and nucleic-acid-based molecular computation. Other applications of BLAS include the detection of nucleic acids, proteins, and cancer cells, and potentially they can be tailored to report a broad range of biological analytes.
Collapse
Affiliation(s)
- Dmitry M Kolpashchikov
- Chemistry Department, University of Central Florida, Orlando, FL, 32816-2366, USA.,Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32816, USA
| | - Alexander A Spelkov
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation
| |
Collapse
|
15
|
Molden TA, Niccum CT, Kolpashchikov DM. Cut and Paste for Cancer Treatment: A DNA Nanodevice that Cuts Out an RNA Marker Sequence to Activate a Therapeutic Function. Angew Chem Int Ed Engl 2020; 59:21190-21194. [DOI: 10.1002/anie.202006384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/21/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Tatiana A. Molden
- Chemistry Department University of Central Florida Orlando FL 32816 USA
| | - Caitlyn T. Niccum
- Chemistry Department University of Central Florida Orlando FL 32816 USA
| | | |
Collapse
|
16
|
Ang YS, Lai PS, Yung LYL. Design of Split Proximity Circuit as a Plug-and-Play Translator for Point Mutation Discrimination. Anal Chem 2020; 92:11164-11170. [PMID: 32605366 DOI: 10.1021/acs.analchem.0c01379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Point mutations are a common form of genetic variation and have been identified as important disease biomarkers. Conventional methods for analyzing point mutations, e.g., polymerase chain reaction (PCR), are based on differences in thermal stability of the DNA duplex, which require extensive optimization of the reaction condition and nontrivial design of sequence-selective primers. This motivated the design of molecular translators to convert molecular inputs into generic output sequences, which allows for the target recognition and signal generation regions to be designed independently. In this work, we propose a translator design based on the concept of split proximity circuit (SPC) to achieve both high sequence selectivity and assay robustness using a universal reaction condition, i.e., room temperature and constant ionic concentration. We discussed the design aspects of the SPC recognition regions and demonstrated its plug-and-play capability to discriminate different point mutations for both DNA (seven G6PD mutations) and RNA (let-7 microRNA family members) targets while retaining the same signal generation region. Despite its simple design and nonstringent assay condition requirements, the SPC retained good analytical performance to detect subnanomolar target concentration within a reasonable time of an hour.
Collapse
Affiliation(s)
- Yan Shan Ang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Poh San Lai
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Lin-Yue Lanry Yung
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|
17
|
Debiais M, Lelievre A, Smietana M, Müller S. Splitting aptamers and nucleic acid enzymes for the development of advanced biosensors. Nucleic Acids Res 2020; 48:3400-3422. [PMID: 32112111 PMCID: PMC7144939 DOI: 10.1093/nar/gkaa132] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
In analogy to split-protein systems, which rely on the appropriate fragmentation of protein domains, split aptamers made of two or more short nucleic acid strands have emerged as novel tools in biosensor set-ups. The concept relies on dissecting an aptamer into a series of two or more independent fragments, able to assemble in the presence of a specific target. The stability of the assembled structure can further be enhanced by functionalities that upon folding would lead to covalent end-joining of the fragments. To date, only a few aptamers have been split successfully, and application of split aptamers in biosensing approaches remains as promising as it is challenging. Further improving the stability of split aptamer target complexes and with that the sensitivity as well as efficient working modes are important tasks. Here we review functional nucleic acid assemblies that are derived from aptamers and ribozymes/DNAzymes. We focus on the thrombin, the adenosine/ATP and the cocaine split aptamers as the three most studied DNA split systems and on split DNAzyme assemblies. Furthermore, we extend the subject into split light up RNA aptamers used as mimics of the green fluorescent protein (GFP), and split ribozymes.
Collapse
Affiliation(s)
- Mégane Debiais
- Institut des Biomolécules Max Mousseron, University of Montpellier, CNRS, ENCSM, Montpellier, France
| | - Amandine Lelievre
- University Greifswald, Institute for Biochemistry, Greifswald, Germany
| | - Michael Smietana
- Institut des Biomolécules Max Mousseron, University of Montpellier, CNRS, ENCSM, Montpellier, France
| | - Sabine Müller
- University Greifswald, Institute for Biochemistry, Greifswald, Germany
| |
Collapse
|
18
|
Spelkov AA, Goncharova EA, Savin AM, Kolpashchikov DM. Bifunctional RNA-Targeting Deoxyribozyme Nanodevice as a Potential Theranostic Agent. Chemistry 2020; 26:3489-3493. [PMID: 31943434 DOI: 10.1002/chem.201905528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/09/2020] [Indexed: 01/14/2023]
Abstract
Theranostic approaches rely on simultaneous diagnostic of a disease and its therapy. Here, we designed a DNA nanodevice, which can simultaneously report the presence of a specific RNA target through an increase in fluorescence and cleave it. High selectivity of RNA target recognition under near physiological conditions was achieved. The proposed approach can become a basis for the design of DNA nanomachines and robots for diagnostics and therapy of viral infections, cancer, and genetic disorders.
Collapse
Affiliation(s)
- Aleksandr A Spelkov
- Laboratory of Solution Chemistry of Advanced Materials, and Technologies, ITMO University, Lomonosova St. 9, 191002, St. Petersburg, Russian Federation
| | - Ekaterina A Goncharova
- Laboratory of Solution Chemistry of Advanced Materials, and Technologies, ITMO University, Lomonosova St. 9, 191002, St. Petersburg, Russian Federation
| | - Artemii M Savin
- Laboratory of Solution Chemistry of Advanced Materials, and Technologies, ITMO University, Lomonosova St. 9, 191002, St. Petersburg, Russian Federation
| | - Dmitry M Kolpashchikov
- Laboratory of Solution Chemistry of Advanced Materials, and Technologies, ITMO University, Lomonosova St. 9, 191002, St. Petersburg, Russian Federation.,Chemistry Department, University of Central Florida, Orlando, 32816, Florida, USA.,Burnett School of Biomedical Sciences, University of Central Florida, Orlando, 32816, Florida, USA
| |
Collapse
|
19
|
Nedorezova DD, Fakhardo AF, Molden TA, Kolpashchikov DM. Deoxyribozyme‐Based DNA Machines for Cancer Therapy. Chembiochem 2019; 21:607-611. [DOI: 10.1002/cbic.201900525] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Daria D. Nedorezova
- Laboratory of Solution Chemistry of Advanced Materials and TechnologiesITMO University 9 Lomonosova Str. St. Petersburg 191002 Russian Federation
| | - Anna F. Fakhardo
- Laboratory of Solution Chemistry of Advanced Materials and TechnologiesITMO University 9 Lomonosova Str. St. Petersburg 191002 Russian Federation
| | - Tatiana A. Molden
- Chemistry DepartmentUniversity of Central Florida Orlando FL 32816-2366 USA
| | - Dmitry M. Kolpashchikov
- Chemistry DepartmentUniversity of Central Florida Orlando FL 32816-2366 USA
- Burnett School of Biomedical SciencesUniversity of Central Florida Orlando FL 32816 USA
| |
Collapse
|
20
|
Abstract
Hybridization probes are RNA or DNA oligonucleotides or their analogs that bind to specific nucleotide sequences in targeted nucleic acids (analytes) via Watson-Crick base pairs to form probe-analyte hybrids. Formation of a stable hybrid would indicate the presence of a DNA or RNA fragment complementary to the known probe sequence. Some of the well-known technologies that rely on nucleic acid hybridization are TaqMan and molecular beacon (MB) probes, fluorescent in situ hybridization (FISH), polymerase chain reaction (PCR), antisense, siRNA, and CRISPR/cas9, among others. Although invaluable tools for DNA and RNA recognition, hybridization probes suffer from several common disadvantages including low selectivity under physiological conditions, low affinity to folded single-stranded RNA and double-stranded DNA, and high cost of dye-labeled and chemically modified probes. Hybridization probes are evolving into multifunctional molecular devices (dubbed here "multicomponent probes", "DNA machines", and "DNA robots") to satisfy complex and often contradictory requirements of modern biomedical applications. In the definition used here, "multicomponent probes" are DNA probes that use more than one oligonucleotide complementary to an analyzed sequence. A "DNA machine" is an association of a discrete number of DNA strands that undergoes structural rearrangements in response to the presence of a specific analyte. Unlike multicomponent probes, DNA machines unify several functional components in a single association even in the absence of a target. DNA robots are DNA machines equipped with computational (analytic) capabilities. This Account is devoted to an overview of the ongoing evolution of hybridization probes to DNA machines and robots. The Account starts with a brief excursion to historically significant and currently used instantaneous probes. The majority of the text is devoted to the design of (i) multicomponent probes and (ii) DNA machines for nucleic acid recognition and analysis. The fundamental advantage of both designs is their ability to simultaneously address multiple problems of RNA/DNA analysis. This is achieved by modular design, in which several specialized functional components are used simultaneously for recognition of RNA or DNA analytes. The Account is concluded with the analysis of perspectives for further evolution of DNA machines into DNA robots.
Collapse
Affiliation(s)
- Dmitry M. Kolpashchikov
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Physical Sciences
255, Orlando, Florida 32816-2366, United States
| |
Collapse
|
21
|
Abstract
Advances in nucleic acid sequencing and genotyping technologies have facilitated the discovery of an increasing number of single-nucleotide variations (SNVs) associated with disease onset, progression, and response to therapy. The reliable detection of such disease-specific SNVs can ensure timely and effective therapeutic action, enabling precision medicine. This has driven extensive efforts in recent years to develop novel methods for the fast and cost-effective analysis of targeted SNVs. In this Review, we highlight the most recent and significant advances made toward the development of such methodologies.
Collapse
Affiliation(s)
- Alireza Abi
- Department of Chemistry, Faculty of Sciences, Shiraz University, Shiraz 7194684795, Iran
| | - Afsaneh Safavi
- Department of Chemistry, Faculty of Sciences, Shiraz University, Shiraz 7194684795, Iran
| |
Collapse
|
22
|
Towards Nanomaterials for Cancer Theranostics: A System of DNA-Modified Magnetic Nanoparticles for Detection and Suppression of RNA Marker in Cancer Cells. MAGNETOCHEMISTRY 2019. [DOI: 10.3390/magnetochemistry5020024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Theranostics of cancer using smart biocompatible materials can enable early cancer diagnostics and treatment. Here, we report on a DNA-nanoparticle functional material, which can simultaneously report the presence of an mRNA cancer biomarker and trigger its degradation in cultured cells. The nanodevice consists of two species of magnetic beads, each of which is conjugated with different components of a multicomponent deoxyribozyme (DZ) sensor. The system is activated only under two conditions: (i) in the presence of a specific target mRNA and (ii) when a magnetic field is applied. We demonstrate that delivery of such a system is markedly enhanced by the application of a magnetic field. The system not only fluorescently detects target mRNA in cultured MCF-7 cancer cells, but also induces its downregulation. Thus, the two-component magnetic nanoparticle system has characteristics of a material that can be used for cancer theranostics.
Collapse
|
23
|
Nedorezova DD, Fakhardo AF, Nemirich DV, Bryushkova EA, Kolpashchikov DM. Towards DNA Nanomachines for Cancer Treatment: Achieving Selective and Efficient Cleavage of Folded RNA. Angew Chem Int Ed Engl 2019; 58:4654-4658. [PMID: 30693619 DOI: 10.1002/anie.201900829] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Indexed: 11/10/2022]
Abstract
Despite decades of effort, gene therapy (GT) has failed to deliver clinically significant anticancer treatment, owing in part to low selectivity, low efficiency, and poor accessibility of folded RNA targets. Herein, we propose to solve these common problems of GT agents by using a DNA nanotechnology approach. We designed a deoxyribozyme-based DNA machine that can i) recognize the sequence of a cancer biomarker with high selectivity, ii) tightly bind a structured fragment of a housekeeping gene mRNA, and iii) cleave it with efficiency greater than that of a traditional DZ-based cleaving agent. An important advantage of the DNA nanomachine over other gene therapy approaches (antisense, siRNA, and CRISPR/cas) is its ability to cleave a housekeeping gene mRNA after being activated by a cancer marker RNA, which can potentially increase the efficiency of anticancer gene therapy. The DNA machine could become a prototype platform for a new type of anticancer GT agent.
Collapse
Affiliation(s)
- Daria D Nedorezova
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation
| | - Anna F Fakhardo
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation
| | - Daria V Nemirich
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation
| | - Ekaterina A Bryushkova
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation
| | - Dmitry M Kolpashchikov
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation.,Chemistry Department, University of Central Florida, Orlando, FL, 32816-2366, USA.,Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32816, USA
| |
Collapse
|
24
|
Nedorezova DD, Fakhardo AF, Nemirich DV, Bryushkova EA, Kolpashchikov DM. Towards DNA Nanomachines for Cancer Treatment: Achieving Selective and Efficient Cleavage of Folded RNA. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900829] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Daria D. Nedorezova
- Laboratory of Solution Chemistry of Advanced Materials and Technologies ITMO University 9 Lomonosova Str. St. Petersburg 191002 Russian Federation
| | - Anna F. Fakhardo
- Laboratory of Solution Chemistry of Advanced Materials and Technologies ITMO University 9 Lomonosova Str. St. Petersburg 191002 Russian Federation
| | - Daria V. Nemirich
- Laboratory of Solution Chemistry of Advanced Materials and Technologies ITMO University 9 Lomonosova Str. St. Petersburg 191002 Russian Federation
| | - Ekaterina A. Bryushkova
- Laboratory of Solution Chemistry of Advanced Materials and Technologies ITMO University 9 Lomonosova Str. St. Petersburg 191002 Russian Federation
| | - Dmitry M. Kolpashchikov
- Laboratory of Solution Chemistry of Advanced Materials and Technologies ITMO University 9 Lomonosova Str. St. Petersburg 191002 Russian Federation
- Chemistry Department University of Central Florida Orlando FL 32816-2366 USA
- Burnett School of Biomedical Sciences University of Central Florida Orlando FL 32816 USA
| |
Collapse
|
25
|
Lyalina TA, Goncharova EA, Prokofeva NY, Voroshilina ES, Kolpashchikov DM. A DNA minimachine for selective and sensitive detection of DNA. Analyst 2019; 144:416-420. [DOI: 10.1039/c8an02274g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthetic molecular machines have been explored to manipulate matter at the molecular level.
Collapse
Affiliation(s)
- Tatiana A. Lyalina
- ITMO University
- Laboratory of Solution Chemistry of Advanced Materials and Technologies
- St. Petersburg
- Russian Federation
| | - Ekaterina A. Goncharova
- ITMO University
- Laboratory of Solution Chemistry of Advanced Materials and Technologies
- St. Petersburg
- Russian Federation
| | - Nadezhda Y. Prokofeva
- ITMO University
- Laboratory of Solution Chemistry of Advanced Materials and Technologies
- St. Petersburg
- Russian Federation
| | - Ekaterina S. Voroshilina
- Ural State Medical University
- Department of Microbiology
- Virology and immunology
- Ekaterinburg
- Russian Federation
| | - Dmitry M. Kolpashchikov
- ITMO University
- Laboratory of Solution Chemistry of Advanced Materials and Technologies
- St. Petersburg
- Russian Federation
- Chemistry Department
| |
Collapse
|
26
|
Evangelista BA, Kim YS, Kolpashchikov DM. FaptaSyme: A Strategy for Converting a Monomer/Oligomer-Nonselective Aptameric Sensor into an Oligomer-Selective One. Chembiochem 2018; 19:10.1002/cbic.201800017. [PMID: 29700982 PMCID: PMC6422747 DOI: 10.1002/cbic.201800017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Indexed: 12/26/2022]
Abstract
Aptameric sensors can bind molecular targets and produce output signals, a phenomenon that is used in bioassays. In some cases, it is important to distinguish between monomeric and oligomeric forms of a target. Here, we propose a strategy to convert a monomer/oligomer-nonselective sensor into an oligomer-selective sensor. We designed an aptazyme that produced a high fluorescent output in the presence of oligomeric α-synuclein (a molecular marker of Parkinson's disease) but not its monomeric form. The strategy is potentially useful in the design of point-of-care tests for the diagnosis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Baggio A. Evangelista
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, 32816, Florida, USA
| | - Yoon-Seong Kim
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, 32816, Florida, USA
| | - Dmitry M. Kolpashchikov
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, 32816, Florida, USA
- Chemistry Department, University of Central Florida, Orlando, 32816, Florida, USA,
- ITMO University, Laboratory of Solution Chemistry of Advanced Materials and Technologies, Lomonosova St. 9, 191002, St. Petersburg, Russian Federation
| |
Collapse
|