1
|
Vidal E, Alexis F, Camiña JM, Garcia CD, Whitehead DC. Removal of metals and inorganics from rendered fat using polyamine-modified cellulose nanocrystals. RSC SUSTAINABILITY 2023; 1:1184-1191. [PMID: 38013677 PMCID: PMC10399612 DOI: 10.1039/d3su00116d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/09/2023] [Indexed: 11/29/2023]
Abstract
Meatpacking and poultry operations produce an enormous amount of co-products including offal, fat, blood, feathers etc. that are collected and processed by the rendering industry into value-added materials such as various protein meals and rendered fat products. Rendered fats (mainly composed of triglycerides from the adipose tissue of animals or used cooking oil from the restaurant industry) are sold for a variety of applications including animal feed formulations. Nonetheless, in the current context of energy scarcity, their use as feedstocks for the generation of renewable fuels including biodiesel and renewable diesel represents a growing market. The diverse composition of the source material can impose significant challenges in terms of compliance, requiring the control (and reduction) of the concentration of elements such as phosphorus, sulfur, calcium, magnesium, sodium, potassium, and other undesirable metals that can otherwise interfere with critical aspects of the refining process or contaminate the renewable fuel products. To address this critical need, we describe the application of poly(ethylenimine)-modified cellulose nanocrystals as a low-cost material for the removal of unwanted metal/inorganic cations from rendered fat. A total of 28 real samples including poultry, white pork grease, and beef tallow were analyzed. Test results showed that the approach can effectively decrease the concentration of the target elements by 95 ± 2%, suggesting that this treatment protocol could dramatically improve the application of rendered fat products for renewable fuel refining.
Collapse
Affiliation(s)
- Ezequiel Vidal
- Department of Chemistry, Clemson University 211 S. Palmetto Blvd, Hunter Hall Clemson SC 29634 USA +1 864 656 3128
| | - Frank Alexis
- School of Biological Sciences and Engineering, Yachay Tech San Miguel de Urcuquí Ecuador
| | - José M Camiña
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa La Pampa Argentina
| | - Carlos D Garcia
- Department of Chemistry, Clemson University 211 S. Palmetto Blvd, Hunter Hall Clemson SC 29634 USA +1 864 656 3128
| | - Daniel C Whitehead
- Department of Chemistry, Clemson University 211 S. Palmetto Blvd, Hunter Hall Clemson SC 29634 USA +1 864 656 3128
| |
Collapse
|
2
|
Boregowda N, Jogigowda SC, Bhavya G, Sunilkumar CR, Geetha N, Udikeri SS, Chowdappa S, Govarthanan M, Jogaiah S. Recent advances in nanoremediation: Carving sustainable solution to clean-up polluted agriculture soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 297:118728. [PMID: 34974084 DOI: 10.1016/j.envpol.2021.118728] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/05/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Agriculture is one of the foremost significant human activities, which symbolizes the key source for food, fuel and fibers. This activity results in a lot of ecological harms particularly with the excessive usage of chemical fertilizers and pesticides. Different agricultural practices have remained industrialized to advance food production, due to the growth in the world population and to meet the food demand through the routine use of more effective fertilizers and pesticides. Soil is intensely embellished by environmental contamination and it can be stated as "universal incline." Soil pollution usually occurs from sewage wastes, accidental discharges or as byproducts of chemical residues of unrestrained production of numerous materials. Soil pollution with hazardous materials alters the physical, chemical, and biological properties, causing undesirable changes in soil fertility and ecosystem. Engineered nanomaterials offer various solutions for remediation of contaminated soils. Engineered nanomaterial-enable technologies are able to prevent the uncontrolled release of harmful materials into the environment along with capabilities to combat soil and groundwater borne pollutants. Currently, nanobiotechnology signifies a hopeful attitude to advance agronomic production and remediate polluted soils. Studies have outlined the way of nanomaterial applications to restore the eminence of the environment and assist the detection of polluted sites, along with potential remedies. This review focuses on the latest developments in agricultural nanobiotechnology and the tools developed to combat soil or land and or terrestrial pollution, as well as the benefits of using these tools to increase soil fertility and reduce potential toxicity.
Collapse
Affiliation(s)
- Nandini Boregowda
- Nanobiotechnology Laboratory, DOS in Biotechnology, Manasagangotri, University of Mysore, Mysuru, 570 006, India
| | - Sanjay C Jogigowda
- Department of Oral Medicine & Radiology, JSS Dental College & Hospital, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015, India
| | - Gurulingaiah Bhavya
- Nanobiotechnology Laboratory, DOS in Biotechnology, Manasagangotri, University of Mysore, Mysuru, 570 006, India
| | - Channarayapatna Ramesh Sunilkumar
- Nanobiotechnology Laboratory, DOS in Biotechnology, Manasagangotri, University of Mysore, Mysuru, 570 006, India; Global Association of Scientific Young Minds, GASYM, Mysuru, India
| | - Nagaraja Geetha
- Nanobiotechnology Laboratory, DOS in Biotechnology, Manasagangotri, University of Mysore, Mysuru, 570 006, India
| | - Shashikant Shiddappa Udikeri
- Agricultural Research Station, Dharwad Farm, University of Agricultural Sciences, Dharwad, 580005, Karnataka, India
| | - Srinivas Chowdappa
- Department of Microbiology and Biotechnology, Jnana Bharathi Campus, Bangalore University, Bengaluru, 560 056, Karnataka, India
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, South Korea
| | - Sudisha Jogaiah
- Laboratory of Plant Healthcare and Diagnostics, PG Department of Biotechnology and Microbiology, Karnatak University, Dharwad, 580 003, India.
| |
Collapse
|
3
|
A review of emerging PFAS contaminants: sources, fate, health risks, and a comprehensive assortment of recent sorbents for PFAS treatment by evaluating their mechanism. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04603-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Brummel BR, Narangoda CJ, Attia MF, Swasy MI, Smith, Jr. GD, Alexis F, Whitehead DC. Scaled Synthesis of Polyamine-Modified Cellulose Nanocrystals from Bulk Cotton and Their Use for Capturing Volatile Organic Compounds. Polymers (Basel) 2021; 13:3060. [PMID: 34577961 PMCID: PMC8470832 DOI: 10.3390/polym13183060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
We have previously demonstrated that cellulose nanocrystals modified with poly(ethylenimine) (PEI-f-CNC) are capable of capturing volatile organic compounds (VOCs) associated with malodors. In this manuscript, we describe our efforts to develop a scalable synthesis of these materials from bulk cotton. This work culminated in a reliable protocol for the synthesis of unmodified cellulose nanocrystals (CNCs) from bulk cotton on a 0.5 kg scale. Additionally, we developed a protocol for the modification of the CNCs by means of sequential 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) oxidation and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) coupling to modify their surface with poly(ethylenimine) on a 100 g scale. Subsequently, we evaluated the performance of the PEI-f-CNC materials that were prepared in a series of VOC capture experiments. First, we demonstrated their efficacy in capturing volatile fatty acids emitted at a rendering plant when formulated as packed-bed filter cartridges. Secondly, we evaluated the potential to use aqueous PEI-f-CNC suspensions as a spray-based delivery method for VOC remediation. In both cases, the PEI-f-CNC formulations reduced detectable malodor VOCs by greater than 90%. The facile scaled synthesis of these materials and their excellent performance at VOC remediation suggest that they may emerge as a useful strategy for the remediation of VOCs associated with odor.
Collapse
Affiliation(s)
- Beau R. Brummel
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA; (B.R.B.); (C.J.N.); (M.F.A.); (M.I.S.)
| | - Chandima J. Narangoda
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA; (B.R.B.); (C.J.N.); (M.F.A.); (M.I.S.)
| | - Mohamed F. Attia
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA; (B.R.B.); (C.J.N.); (M.F.A.); (M.I.S.)
| | - Maria I. Swasy
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA; (B.R.B.); (C.J.N.); (M.F.A.); (M.I.S.)
| | | | - Frank Alexis
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuqui 1000650, Ecuador
| | - Daniel C. Whitehead
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA; (B.R.B.); (C.J.N.); (M.F.A.); (M.I.S.)
| |
Collapse
|
5
|
Li Z, Li Y, Zhan L, Meng L, Huang X, Wang T, Li Y, Nie Z. Point-of-Care Test Paper for Exhaled Breath Aldehyde Analysis via Mass Spectrometry. Anal Chem 2021; 93:9158-9165. [PMID: 34162204 DOI: 10.1021/acs.analchem.1c01011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Volatile organic compounds (VOCs) from exhaled breath (EB) are considered to be promising biomarkers for lung diseases. A convenient and sensitive point-of-care (POC) testing method for EB VOCs is essential. Here, we developed a POC test paper for the analysis of EB aldehydes, which are potential biomarkers for lung cancer. A probe molecule, 4-aminothiophenol (4-ATP), was anchored on a paper substrate to specifically capture gas-phase aldehydes through the Schiff base reaction. Meanwhile, thin-film reaction acceleration was utilized to increase capture efficiency. By directly coupling the test paper to a mass spectrometer through paper spray, high sensitivity (0.1 ppt) and a wide quantification linear range (from 10 ppt to 1 ppm) were obtained. Analysis of EB from lung cancer patients with the test paper showed a significant increase in several reported aldehyde markers compared to EB from healthy volunteers, indicating the potential of this method for sensitive, low-cost, and convenient lung cancer screening and diagnosis.
Collapse
Affiliation(s)
- Zhengzhou Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuze Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingpeng Zhan
- Institute of Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Lingwei Meng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Tie Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yafeng Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
|
7
|
Krishnamurthy A, Adebayo B, Gelles T, Rownaghi A, Rezaei F. Abatement of gaseous volatile organic compounds: A process perspective. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.05.069] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Abstract
The widespread industrialization, urbanization, and technological development have triggered the daily release of considerable amounts of pollutants, specifically in aquatic environments. Previous research and work-studies indicate the existence of defined properties, such as low cost, non-toxicity, biodegradability, reusability, and easy synthesis, preparation or extraction, which make a material an ideal agent for the remediation of water or the environment. Therefore, the scientific community has focused on the development and study of several novels, environmentally friendly, and cost-effective materials. Cellulose is the most abundant natural polymer encountered worldwide. Thereby, due to the unique biological properties that this biopolymer possesses, it has emerged as a potential candidate to replace synthetic materials for practical bioremediation of contaminated water. Furthermore, the presence of hydroxyl groups on its surface makes this biopolymer highly malleable, thus significantly enhancing its physicochemical properties by using a wide variety of functional groups and modification methods. The present review describes the different biopolymers useful for remediation of environmental pollution, explores in more detail the characteristics of cellulose and its promising applications in the decontamination of water pollution, and pays special attention to the removal of heavy metal ions, dyes, and hydrophobic organic compounds.
Collapse
Affiliation(s)
- Bryan Aldaz
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí, Ecuador, EC100650
| | - Freddy Figueroa
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí, Ecuador, EC100650
| | - Isaac Bravo
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí, Ecuador, EC100650
| |
Collapse
|
9
|
Attia MF, Swasy MI, Ateia M, Alexis F, Whitehead DC. Periodic mesoporous organosilica nanomaterials for rapid capture of VOCs. Chem Commun (Camb) 2020; 56:607-610. [PMID: 31830163 DOI: 10.1039/c9cc09024j] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Periodic mesoporous organosilica nanoparticles (PMO SiNPs) were developed for the targeted capture of specific volatile organic compounds (VOCs). The removal kinetics for adsorbing VOCs were fast and the maximum removal could be achieved within less than 30 min. PMO SiNPs removed >99% of VOCs at a low sorbent dose (i.e. >0.5 mL analyte per g PMO SiNPs). They also showed good recyclability and maintained reasonable removal efficiencies after five cycles (i.e. 77% and 65% for hexanal and butyric acid vapors, respectively).
Collapse
Affiliation(s)
- Mohamed F Attia
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA.
| | - Maria I Swasy
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA.
| | - Mohamed Ateia
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Frank Alexis
- School of Biological Sciences and Engineering, Yachay Tech, San Miguel de Urcuquí, Imbabura 100650, Ecuador
| | | |
Collapse
|
10
|
Bravo I, Figueroa F, Swasy MI, Attia MF, Ateia M, Encalada D, Vizuete K, Galeas S, Guerrero VH, Debut A, Whitehead DC, Alexis F. Cellulose particles capture aldehyde VOC pollutants. RSC Adv 2020; 10:7967-7975. [PMID: 35492153 PMCID: PMC9049895 DOI: 10.1039/d0ra00414f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/13/2020] [Indexed: 11/21/2022] Open
Abstract
Aldehydes are commonly encountered Volatile Organic Compounds (VOCs) released to the atmosphere from a variety of anthropogenic sources. Based on the increasing interest in developing sustainable and environmentally friendly materials for the decontamination of VOCs, cellulose particles have emerged as one possible candidate, but there is a lack of understanding of the physicochemical properties affecting the adsorption of VOCs, and the effect of the extraction source on these intrinsic features. The present study was focused on the evaluation of unmodified cellulose particles extracted from biodiverse sources in Ecuador as potential VOC decontaminants. Modifications of the natural fibers with polyethylenimine (PEI) coating were performed to enhance the adsorption effectiveness. Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), Brunauer–Emmett–Teller (BET) measurements, and scanning electron microscopy (SEM) methods were used to characterize the physicochemical properties of the isolates. Gas chromatography assays demonstrated that unmodified cellulose can adsorb an aldehyde VOC, hexanal, reaching up to a 56.42 ± 7.30% reduction. Electrostatic coating of the cellulose particles with small quantities of PEI enhanced the VOC remediation capacities (i.e. 98.12 ± 1.18%). Results demonstrated that the biodiverse plant source of the cellulose isolate can affect the gas capturing properties, and that these particles can be an environmentally friendly solution for effective adsorption of VOC pollutants. Cellulose particles isolated from biodiverse sources are capable of capturing aldehyde VOCs.![]()
Collapse
Affiliation(s)
- Isaac Bravo
- School of Biological Sciences and Engineering
- Yachay Tech University
- Urcuquí
- Ecuador
| | - Freddy Figueroa
- School of Biological Sciences and Engineering
- Yachay Tech University
- Urcuquí
- Ecuador
| | | | | | - Mohamed Ateia
- Department of Environmental Engineering and Earth Sciences
- Clemson University
- Clemson
- USA
| | - Domenica Encalada
- School of Biological Sciences and Engineering
- Yachay Tech University
- Urcuquí
- Ecuador
| | - Karla Vizuete
- Center of Nanosciences and Nanotechnology
- Universidad de Las Fuerzas Armadas ESPE
- Sangolquí
- Ecuador
| | - Salome Galeas
- Mechanical Engineering Faculty
- Escuela Polytecnica Nacional
- Quito
- Ecuador
| | | | - Alexis Debut
- Center of Nanosciences and Nanotechnology
- Universidad de Las Fuerzas Armadas ESPE
- Sangolquí
- Ecuador
| | | | - Frank Alexis
- School of Biological Sciences and Engineering
- Yachay Tech University
- Urcuquí
- Ecuador
| |
Collapse
|
11
|
Tang P, Nguyen NTH, Lo JG, Sun G. Colorimetric Detection of Carcinogenic Alkylating Fumigants on a Nylon 6 Nanofibrous Membrane. Part II: Self-Catalysis of 2-Diethylaminoethyl-Modified Sensor Matrix for Improvement of Sensitivity. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13632-13641. [PMID: 30892867 DOI: 10.1021/acsami.9b03147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A nylon 6 nanofibrous membrane (N6NFM) was covalently modified with 2-diethylaminoethylchloride (DEAE-Cl) to provide self-catalytic functions to facilitate the formation of color compounds in reactions of 4-( p-nitrobenzyl)pyridine with alkylating fumigants. The 2-diethylaminoethyl group on the DEAE-Cl-modified N6NFM (DEAE@N6NFM) enables effective elimination of hydrohalogenic acids from intermediates that were formed from reactions between the alkylating fumigants and NBP and consequently improve their detection sensitivities, especially for 1,3-dichloropropene at room temperature. Moreover, DEAE@N6NFM can be recycled and reused multiple times without obvious loss in the sensing functions or any noticeable material damage. The naked-eye detection limits of the sensor to 1,3-dichloropropene, methyl iodide, and methyl bromide on DEAE@N6NFM are improved to 0.2, 0.1, and 0.1 ppm, respectively, which are much lower than their occupational exposure limits. The reaction mechanism is demonstrated through a computational method by analyzing the thermodynamics of the reaction. The modification of DEAE@N6NFM also provides an insight into the development of functionalized materials with improved reactivities for versatile sensing applications.
Collapse
|
12
|
Swasy MI, Campbell ML, Brummel BR, Guerra FD, Attia MF, Smith GD, Alexis F, Whitehead DC. Poly(amine) modified kaolinite clay for VOC capture. CHEMOSPHERE 2018; 213:19-24. [PMID: 30205272 DOI: 10.1016/j.chemosphere.2018.08.156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 05/26/2023]
Abstract
Polyethylenimine (PEI) functionalized kaolinite clay was successfully prepared, characterized, and assessed for the remediation of volatile organic compounds (VOCs) comprising the aldehyde, carboxylic acid, and disulfide functional group classes. A gas chromatographic vapor capture assay evaluated the capability of unmodified and modified clay material to capture representative aldehyde, carboxylic acid, and disulfide VOCs in a laboratory setting. Unmodified kaolinite (Kao) clay was moderately or poorly effective at remediating these VOCs, while the poly(amine) functionalized Kao was capable of capturing VOCs in the vapor phase with reductions up to 100%. Sample cartridge tubes were packed with PEI-functionalized clay in order to assess their ability to reduce the detectable volatile fatty acid load at an open-air rendering plant in a relevant field test for applying these materials in a packed-bed scrubber application. The PEI-Kao packed cartridges were capable of significantly reducing the detectable concentration of volatile fatty acid effluent from the rendering operation. These volatile fatty acids are major contributors to nuisance odors associated with rendering.
Collapse
Affiliation(s)
- Maria I Swasy
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA
| | | | - Beau R Brummel
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA
| | - Fernanda D Guerra
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Mohamed F Attia
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA
| | | | - Frank Alexis
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; School of Biological Sciences and Engineering, Yachay Tech, San Miguel de Urcuquí, Ecuador.
| | | |
Collapse
|
13
|
Guerra FD, Attia MF, Whitehead DC, Alexis F. Nanotechnology for Environmental Remediation: Materials and Applications. Molecules 2018; 23:E1760. [PMID: 30021974 PMCID: PMC6100491 DOI: 10.3390/molecules23071760] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/04/2018] [Accepted: 07/11/2018] [Indexed: 01/16/2023] Open
Abstract
Environmental remediation relies mainly on using various technologies (e.g., adsorption, absorption, chemical reactions, photocatalysis, and filtration) for the removal of contaminants from different environmental media (e.g., soil, water, and air). The enhanced properties and effectiveness of nanotechnology-based materials makes them particularly suitable for such processes given that they have a high surface area-to-volume ratio, which often results in higher reactivity. This review provides an overview of three main categories of nanomaterials (inorganic, carbon-based, and polymeric-based materials) used for environmental remediation. The use of these nanomaterials for the remediation of different environmental contaminants-such as heavy metals, dyes, chlorinated organic compounds, organophosphorus compounds, volatile organic compounds, and halogenated herbicides-is reviewed. Various recent examples are extensively highlighted focusing on the materials and their applications.
Collapse
Affiliation(s)
- Fernanda D Guerra
- Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC 29634, USA.
| | - Mohamed F Attia
- Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC 29634, USA.
- Department of Chemistry, Clemson University, 467 Hunter Laboratories, Clemson, SC 29634, USA.
| | - Daniel C Whitehead
- Department of Chemistry, Clemson University, 467 Hunter Laboratories, Clemson, SC 29634, USA.
| | - Frank Alexis
- Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC 29634, USA.
- School of Biological Sciences and Engineering, Yachay Tech, San Miguel de Urcuquí, Ibarra EC 100150, Ecuador.
| |
Collapse
|