1
|
Javahershenas R, Nikzat S. Recent developments using malononitrile in ultrasound-assisted multicomponent synthesis of heterocycles. ULTRASONICS SONOCHEMISTRY 2024; 102:106741. [PMID: 38176128 PMCID: PMC10793181 DOI: 10.1016/j.ultsonch.2023.106741] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
Ultrasonic irradiation serves as a vigorous and environmentally sustainable approach for augmenting multicomponent reactions (MCRs), offering benefits such as thermal enhancement, agitation, and activation, among others. Malononitrile emerges as a versatile reagent in this context, participating in a myriad of MCRs to produce structurally diverse heterocyclic frameworks. This review encapsulates the critical role of malononitrile in the sonochemical multicomponent synthesis of these heterocyclic structures. The paper further delves into the biochemical and pharmacological implications of these heterocycles, elucidating their reaction mechanisms as well as delineating the method's scope and limitations. We furnish an overview of the merits and challenges inherent to this synthetic approach and offer insights for potential avenues in future research.
Collapse
Affiliation(s)
- Ramin Javahershenas
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
| | - Sahand Nikzat
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.
| |
Collapse
|
2
|
Mardjan MID, Hariadi MF, Mustika CR, Saifurofi' HS, Kunarti ES, Purwono B, Commeiras L. Ultrasound-assisted-one-pot synthesis and antiplasmodium evaluation of 3-substituted-isoindolin-1-ones. RSC Adv 2023; 13:25959-25967. [PMID: 37664198 PMCID: PMC10472802 DOI: 10.1039/d3ra02829a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
As the attempts to control malaria through chemotherapy strategies are restricted, we have prepared a small library of 3-substituted-isoindolinones from (Z)-3-benzylideneisobenzofuran-1(3H)-ones in one-pot fashion under ultrasound irradiation. The one-pot reaction was scalable and efficiently produced the desired products (1a-m) in high yields in a short reaction time. Evaluation of their in vitro antiplasmodium assay against the 3D7 (chloroquine-sensitive) and FCR3 (chloroquine-resistant) strains of Plasmodium falciparum demonstrated that they displayed moderate to strong antiplasmodium activities (the IC50 values ranging from 4.21-34.80 μM) and low resistance indices. The in silico prediction of ADME and physicochemical properties showed that the synthesized compounds met the drug-likeliness requirements and featured low toxicity effects. Based on the evaluation of the antiplasmodium profiles, 3-substituted-isoindolinone derivatives of 1a, 1d, 1h, and 1l may become potential antiplasmodium candidates.
Collapse
Affiliation(s)
| | - Muhamad Fadhly Hariadi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada Yogyakarta 55281 Indonesia
| | - Chessy Rima Mustika
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada Yogyakarta 55281 Indonesia
| | - Hamzah Shiddiq Saifurofi'
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada Yogyakarta 55281 Indonesia
| | - Eko Sri Kunarti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada Yogyakarta 55281 Indonesia
| | - Bambang Purwono
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada Yogyakarta 55281 Indonesia
| | | |
Collapse
|
3
|
Kamimura A, Yanagisawa K, Kaneko N, Kawamoto T, Fujii K. Preparation and Hydrophilicity/Lipophilicity of Solubility-Switchable Ionic Liquids. ACS OMEGA 2022; 7:48540-48554. [PMID: 36591188 PMCID: PMC9798742 DOI: 10.1021/acsomega.2c06998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Various solubility-switchable ionic liquids were prepared. Their syntheses were readily achieved in a few steps from glyceraldehyde dimethylacetal or its derivatives. Pyridinium, imidazolium, and phosphonium derivatives also exhibited solubility-switchable properties; acetal-type ionic liquids were soluble in organic solvents, while diol-type ones exhibited a preference for being dissolved in the aqueous phase. The solubility of the ionic liquids prepared in this study also depended on the number of carbon atoms in the cationic parts of the ionic liquids. Interconversion between the diol-type and the acetal-type ionic liquids was readily achieved under the standard conditions for diol acetalization and acetal hydrolysis. One of the prepared ionic liquids was also examined as a solvent for an organic reaction.
Collapse
|
4
|
Ying S, Liu X, Guo T, Li X, Zhou M, Wang X, Zhu M, Jiang H, Gui QW. Ultrasound-assisted bromination of indazoles at the C3 position with dibromohydantoin. RSC Adv 2022; 13:581-585. [PMID: 36605629 PMCID: PMC9773018 DOI: 10.1039/d2ra06867b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Bromoaryl compounds have attracted great attention in organic chemistry, especially for the synthesis of pharmaceutical intermediates. Herein, we demonstrated a novel and efficient bromination protocol of indazoles via C-H bond cleavage to give site-specific 3-bromide products that could be further employed as synthetic blocks to prepare drugs. The reaction used DBDMH as a bromine source, tolerated a wide range of indazoles, and finished in 30 min under mild, ultrasound-assisted conditions. Besides, preliminary mechanistic studies revealed that this approach was not a radical process.
Collapse
Affiliation(s)
- Shengneng Ying
- College of Chemistry and Materials Science, Hunan Agricultural UniversityChangsha 410082HunanP. R. China
| | - Xingru Liu
- College of Chemistry and Materials Science, Hunan Agricultural UniversityChangsha 410082HunanP. R. China
| | - Tao Guo
- College of Chemistry and Materials Science, Hunan Agricultural UniversityChangsha 410082HunanP. R. China
| | - Xuan Li
- College of Chemistry and Materials Science, Hunan Agricultural UniversityChangsha 410082HunanP. R. China
| | - Min Zhou
- College of Chemistry and Materials Science, Hunan Agricultural UniversityChangsha 410082HunanP. R. China
| | - Xia Wang
- College of Chemistry and Materials Science, Hunan Agricultural UniversityChangsha 410082HunanP. R. China
| | - Mengxue Zhu
- College of Chemistry and Materials Science, Hunan Agricultural UniversityChangsha 410082HunanP. R. China
| | - Hongmei Jiang
- College of Chemistry and Materials Science, Hunan Agricultural UniversityChangsha 410082HunanP. R. China
| | - Qing-Wen Gui
- College of Chemistry and Materials Science, Hunan Agricultural UniversityChangsha 410082HunanP. R. China
| |
Collapse
|
5
|
Ultrasound-Assisted Wittig Reaction for the Synthesis of 3-Substituted 4-Chloroquinolines and Quinolin-4(1H)-ones with Extended π-Conjugated Systems. J CHEM-NY 2022. [DOI: 10.1155/2022/4807767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
3-(Vinyl-/buta-1,3-dien-1-yl/4-phenylbuta-1,3-dien-1-yl)-4-chloro quinolines and quinolin-4(1H)-ones were synthesized by ultrasound-assisted Wittig reaction of the corresponding 4-chloro-3-formylquinoline and 3-formylquinolin-4(1H)-ones with nonstabilized ylides. Ease execution, mild conditions, and high yields make this method exploitable for the generation of libraries of 3-substituted 4-chloroquinolines and quinolin-4(1H)-ones with extended π-conjugated systems. To demonstrate the usefulness of these compounds as precursors for the synthesis of more complex structures, 3-vinylquinolin-4(1H)-ones were used as dienes in the Diels–Alder reaction with N-methylmaleimide to produce novel acridone derivatives. The attempted Diels–Alder reaction with 3-(buta-1,3-dien-1-yl)quinolin-4(1H)-one did not afford the expected cycloadduct; instead, 2-methyl-2H-pyrano[3,2-c]quinoline was obtained. The structures and stereochemistry of the new compounds were established by NMR studies.
Collapse
|
6
|
Anjirwala SN, Parmar PS, Patel SK. Synthetic protocols for non-fused pyrimidines. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2137682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
| | - Parnas S. Parmar
- Department of Chemistry, Veer Narmad South Gujarat University, Surat, India
| | - Saurabh K. Patel
- Department of Chemistry, Veer Narmad South Gujarat University, Surat, India
| |
Collapse
|
7
|
A Copper‐catalysed Facile Synthesis of Highly Functionalized Aryl Sulphones in Guanidinium IL(GIL) aided with Ultrasound. ChemistrySelect 2022. [DOI: 10.1002/slct.202202033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Borah B, Chowhan LR. Ultrasound-assisted transition-metal-free catalysis: a sustainable route towards the synthesis of bioactive heterocycles. RSC Adv 2022; 12:14022-14051. [PMID: 35558846 PMCID: PMC9092113 DOI: 10.1039/d2ra02063g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/27/2022] [Indexed: 12/13/2022] Open
Abstract
Heterocycles of synthetic and natural origin are a well-established class of compounds representing a broad range of organic molecules that constitute over 60% of drugs and agrochemicals in the market or research pipeline. Considering the vast abundance of these structural motifs, the development of chemical processes providing easy access to novel complex target molecules by introducing environmentally benign conditions with the main focus on improving the cost-effectiveness of the chemical transformation is highly demanding and challenging. Accordingly, sonochemistry appears to be an excellent alternative and a highly feasible environmentally benign energy input that has recently received considerable and steadily increasing interest in organic synthesis. However, the involvement of transition-metal-catalyst(s) in a chemical process often triggers an unintended impact on the greenness or sustainability of the transformation. Consequently, enormous efforts have been devoted to developing metal-free routes for assembling various heterocycles of medicinal interest, particularly under ultrasound irradiation. The present review article aims to demonstrate a brief overview of the current progress accomplished in the ultrasound-assisted synthesis of pharmaceutically relevant diverse heterocycles using transition-metal-free catalysis.
Collapse
Affiliation(s)
- Biplob Borah
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Gandhinagar-382030 India
| | - L Raju Chowhan
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Gandhinagar-382030 India
| |
Collapse
|
9
|
Zhang JY, Yang BB, Yang YD, Wang R, Li L. Specific chiroptical sensing of cysteine via ultrasound-assisted formation of disulfide bonds in aqueous solution. ULTRASONICS SONOCHEMISTRY 2022; 86:106007. [PMID: 35436673 PMCID: PMC9036132 DOI: 10.1016/j.ultsonch.2022.106007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/04/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Cysteine (Cys) can serve as a biomarker to indicate diseases or disorders, and its chiral sensing has attracted increasing attention. Herein, we established an ultrasound-facilitated chiral sensing method for Cys using 4-chloro-7-nitro-1,2,3-benzoxadiazole (NBD-Cl) and electronic circular dichroism (ECD) spectroscopy. The formation of chiral disulfide bonds induced degenerate exciton coupling between two NBD chromophores, resulting in intense Cotton effects (CEs) of the sensing product. The anisotropy factor (g) was linearly correlated with the enantiomeric excess of Cys across the visible region (400-500 nm), and other natural amino acids or biothiols did not interfere with the detection. This ultrasound-promoted efficient and specific chiral sensing method of Cys has potential for application in the diagnosis of related diseases.
Collapse
Affiliation(s)
- Jun-Yao Zhang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Bei-Bei Yang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ya-Dong Yang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ru Wang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Li Li
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
10
|
Devi M, Singh R, Sindhu J, Kumar A, Lal S, Kumar R, Hussain K, Sachdeva M, Singh D, Kumar P. Sonochemical Protocols for Heterocyclic Synthesis: A Representative Review. Top Curr Chem (Cham) 2022; 380:14. [PMID: 35149908 DOI: 10.1007/s41061-022-00369-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 01/23/2022] [Indexed: 11/30/2022]
Abstract
In the present era of the industrial revolution, we all are familiar with ever-increasing environmental pollution released from various chemical processes. Chemical production has had a severe impact on the environment and human health. For the betterment of our environment, the chemical community has turned their interest to developing green, harmless and sustainable synthetic processes. To accomplish these goals of green chemistry, the extraordinary properties of sonication play an important role. It is well known that sonochemistry can make decisive contributions to creating high pressures of almost 1000 atm and very high temperatures in the range of 4500-5000 °C. The implementation of ultrasound in chemical transformations somehow fulfils the measures of green chemistry, as it reduces energy consumption, enhances product selectivity, and uses lesser amounts of hazardous chemicals and solvents. Furthermore, heterocyclic synthesis under ultrasonication offers several environmental and process-related advantages compared with conventional methods. The remarkable contribution of ultrasonics to the development of green and sustainable synthetic routes inspired us to write this article. Herein, we have discussed only some of the various synthetic methodologies developed for the construction of heterocyclic cores under ultrasonic irradiation, accompanied by mechanistic insights. In some cases, a comparison between sonochemical conditions and conventional conditions has also been investigated. We emphasized principally 'up to date' developments on various sono-accelerated chemical transformations comprising aza-Michael, aldol reactions, C-C couplings, oxidation, cycloadditions, multi-component reactions, etc. for the synthesis of heterocycles.
Collapse
Affiliation(s)
- Meena Devi
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Rahul Singh
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Jayant Sindhu
- Department of Chemistry, COBS & H, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Ashwani Kumar
- Guru Jambheshwar University of Science and Technology, Department of Pharmaceutical Sciences, Hisar, 125001, India
| | - Sohan Lal
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Ramesh Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Khalid Hussain
- Department of Applied Sciences and Humanities, Mewat Engineering College, Nuh, 122107, India
| | - Megha Sachdeva
- Department of Chemistry, Center of Advanced Study in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Devender Singh
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India.
| |
Collapse
|
11
|
Dhameliya TM, Nagar PR, Bhakhar KA, Jivani HR, Shah BJ, Patel KM, Patel VS, Soni AH, Joshi LP, Gajjar ND. Recent advancements in applications of ionic liquids in synthetic construction of heterocyclic scaffolds: A spotlight. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118329] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Badiger KB, Khatavi S, Kamanna K. Expedite Greener Method Synthesis of Pyrano[2,3-d]Pyrimidine-2,4,7-Triones Accelerated by Ultrasound Irradiation. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2027790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Krishnappa B. Badiger
- Peptide and Medicinal Chemistry Research Laboratory, Department of Chemistry, Rani Channamma University, Belagavi, India
| | - Santosh Khatavi
- Peptide and Medicinal Chemistry Research Laboratory, Department of Chemistry, Rani Channamma University, Belagavi, India
| | - Kantharaju Kamanna
- Peptide and Medicinal Chemistry Research Laboratory, Department of Chemistry, Rani Channamma University, Belagavi, India
| |
Collapse
|
13
|
Mittersteiner M, Farias FFS, Bonacorso HG, Martins MAP, Zanatta N. Ultrasound-assisted synthesis of pyrimidines and their fused derivatives: A review. ULTRASONICS SONOCHEMISTRY 2021; 79:105683. [PMID: 34562732 PMCID: PMC8473776 DOI: 10.1016/j.ultsonch.2021.105683] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 06/09/2023]
Abstract
The pyrimidine scaffold is present in many bioactive drugs; therefore, efficient synthetic routes that provide shorter reaction times, higher yields, and site-selective reactions are constantly being sought. Ultrasound (US) irradiation has emerged as an alternative energy source in the synthesis of these heterocyclic scaffolds, and over the last ten years there has been a significant increase in the number of publications mentioning US in either the construction or derivatization of the pyrimidine core. This review presents a detailed summary (with 140 references) of the effects of US (synergic or not) on the construction and derivatization of the pyrimidine core through classical reactions (e.g., multicomponent, cyclocondensation, cycloaddition, and alkylation reactions). The main points that were taken into consideration are as follows: chemo- and regioselectivity issues, and the results of conventional heating methods compared to US and mechanistic insights that are also presented and discussed for key reactions.
Collapse
Affiliation(s)
- Mateus Mittersteiner
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil.
| | - Fellipe F S Farias
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Helio G Bonacorso
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Marcos A P Martins
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Nilo Zanatta
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil.
| |
Collapse
|
14
|
Magina S, Barros-Timmons A, Ventura SPM, Evtuguin DV. Evaluating the hazardous impact of ionic liquids - Challenges and opportunities. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125215. [PMID: 33951860 DOI: 10.1016/j.jhazmat.2021.125215] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Ionic liquids (ILs), being related to the design of new environmentally friendly solvents, are widely considered for applications within the "green chemistry" concept. Due to their unique properties and wide diversity, ILs allow tailoring new separation procedures and producing new materials for advanced applications. However, despite the promising technical performance, environmental concerns highlighted in recent studies focused on the toxicity and biodegradability of ILs and their metabolites have revealed that ILs safety labels are not as benign as previously claimed. This review refers to the fundamentals about the properties and applications of ILs also in the context of their potential environmental effect. Toxicological issues and harmful effects related to the use of ILs are discussed, including the evaluation of their biodegradability and ecological impact on diverse organisms and ecosystems, also with respect to bacteria, fungi, and cell cultures. In addition, this review covers the tools used to assess the toxicity of ILs, including the predictive computational models and the results of studies involving cell membrane models and molecular simulations. Summing up the knowledge available so far, there are still no reliable criteria for unequivocal attribution of toxicity and environmental impact credentials for ILs, which is a challenging research task.
Collapse
Affiliation(s)
- Sandra Magina
- CICECO-Institute of Materials and Chemistry Department, University of Aveiro, Campus de Santiago, Aveiro P-3810-193, Portugal
| | - Ana Barros-Timmons
- CICECO-Institute of Materials and Chemistry Department, University of Aveiro, Campus de Santiago, Aveiro P-3810-193, Portugal
| | - Sónia P M Ventura
- CICECO-Institute of Materials and Chemistry Department, University of Aveiro, Campus de Santiago, Aveiro P-3810-193, Portugal
| | - Dmitry V Evtuguin
- CICECO-Institute of Materials and Chemistry Department, University of Aveiro, Campus de Santiago, Aveiro P-3810-193, Portugal.
| |
Collapse
|
15
|
Saranya S, Radhika S, Afsina Abdulla CM, Anilkumar G. Ultrasound irradiation in heterocycle synthesis: An overview. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Salim Saranya
- School of Chemical Sciences Mahatma Gandhi University Kottayam Kerala India
| | - Sankaran Radhika
- School of Chemical Sciences Mahatma Gandhi University Kottayam Kerala India
| | | | - Gopinathan Anilkumar
- School of Chemical Sciences Mahatma Gandhi University Kottayam Kerala India
- Advanced Molecular Materials Research Centre (AMMRC) Mahatma Gandhi University Kottayam Kerala India
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS) Mahatma Gandhi University Kottayam Kerala India
| |
Collapse
|
16
|
Hennemann BL, Moleta GS, Fuchs AL, Villetti MA, Kuhn BL, Rampelotto CR, Paz AV, de Bona da Silva C, Frizzo CP. Synergic effects of ultrasound and ionic liquids on fluconazole emulsion. ULTRASONICS SONOCHEMISTRY 2021; 72:105446. [PMID: 33422736 PMCID: PMC7803931 DOI: 10.1016/j.ultsonch.2020.105446] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 05/16/2023]
Abstract
The aim of this work was to evaluate the influence of US on the properties of the fluconazole emulsions prepared using imidazolium-based ILs ([Cn C1im]Br). The effects of the preparation method (mechanical stirring or US), US amplitude, alkyl chain length (of [C12C1im]Br or [C16C1im]Br), and IL concentration on the physicochemical properties were evaluated. Properties such as droplet size, span index, morphology, viscosity encapsulation efficiency, and drug release profile were determined. The results showed that US-prepared emulsions had a smaller droplet size and smaller polydispersity (Span) than those prepared by mechanical stirring. Additionally, the results showed that emulsions prepared with [C16C1im]Br and US had spherical shapes and increased stability compared to emulsions prepared by MS, and also depended on the IL concentration. The emulsion prepared by US at 40% amplitude had increased encapsulation efficiency. US provided a decrease in the viscosity of emulsions containing [C12C1im]Br; however, in general, all emulsions had viscosity close to that of water. Emulsions containing [C16C1im]Br had the lowest viscosities of all the emulsions. The emulsions containing the IL [C16C1im]Br had more controlled release and a lower cumulative percentage of drug release. The IL concentration required to prepare these emulsions was lower than the amount of conventional surfactant required, which highlights the potential synergic effects of ILs and US in preparing emulsions of hydrophobic drugs.
Collapse
Affiliation(s)
- Bruno L Hennemann
- Department of Chemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Guilherme S Moleta
- Department of Chemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Ana L Fuchs
- Department of Chemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Marcos A Villetti
- Department of Physics, Federal University of Santa Maria, Santa Maria, Brazil
| | - Bruna L Kuhn
- Department of Chemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Camila R Rampelotto
- Department of Pharmacy, Federal University of Santa Maria, Santa Maria, Brazil
| | - Alisson V Paz
- Department of Chemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | | | - Clarissa P Frizzo
- Department of Chemistry, Federal University of Santa Maria, Santa Maria, Brazil.
| |
Collapse
|
17
|
Banerjee B. Carbon-carbon and Carbon-heteroatom Bond Forming Reactions Under Greener Conditions - Part 2. CURR ORG CHEM 2021. [DOI: 10.2174/138527282501210101161748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Bubun Banerjee
- Department of Chemistry Indus International University V.P.O. Bathu, Distt. Una Himachal Pradesh-174301, India
| |
Collapse
|
18
|
Banerjee B, Kaur G, Kaur N. p-Sulfonic Acid Calix[n]arene Catalyzed Synthesis of Bioactive Heterocycles: A Review. CURR ORG CHEM 2021. [DOI: 10.2174/1385272824999201019162655] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metal-free organocatalysts are becoming an important tool for the sustainable development
of various bioactive heterocycles. On the other hand, during the last two decades,
calix[n]arenes have been gaining considerable attention due to their wide range of applicability
in the field of supramolecular chemistry. Recently, sulfonic acid functionalized calix[n]
arenes are being employed as an efficient alternative catalyst for the synthesis of various bioactive
scaffolds. In this review, we have summarized the catalytic efficiency of p-sulfonic
acid calix[n]arenes for the synthesis of diverse, biologically promising scaffolds under various
reaction conditions. There is no such review available in the literature showing the catalytic
applicability of p-sulfonic acid calix[n]arenes. Therefore, it is strongly believed that this
review will surely attract those researchers who are interested in this fascinating organocatalyst.
Collapse
Affiliation(s)
- Bubun Banerjee
- Department of Chemistry, Indus International University, V.P.O. Bathu, Distt. Una, Himachal Pradesh-174301, India
| | - Gurpreet Kaur
- Department of Chemistry, Indus International University, V.P.O. Bathu, Distt. Una, Himachal Pradesh-174301, India
| | - Navdeep Kaur
- Department of Chemistry, Indus International University, V.P.O. Bathu, Distt. Una, Himachal Pradesh-174301, India
| |
Collapse
|
19
|
Kashin A, Degtyareva ES, Ananikov VP. Visualization of the Mechanical Wave Effect on Liquid Microphases and Its Application for the Tuning of Dissipative Soft Microreactors. JACS AU 2021; 1:87-97. [PMID: 34467272 PMCID: PMC8395697 DOI: 10.1021/jacsau.0c00024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Indexed: 05/08/2023]
Abstract
The development of approaches for creation of adaptive and stimuli-responsive chemical systems is particularly important for chemistry, materials science, and biotechnology. The understanding of response mechanisms for various external forces is highly demanded for the rational design of task-specific systems. Here, we report direct liquid-phase scanning electron microscopy (SEM) observations of the high frequency sound-wave-driven restructuring of liquid media on the microlevel, leading to switching of its chemical behavior. We show that under the action of ultrasound, the microstructured ionic liquid/water mixture undergoes rearrangement resulting in formation of separated phases with specific compositions and reactivities. The observed effect was successfully utilized for creation of dissipative soft microreactors formed in ionic liquid/water media during the sonication-driven water transfer. The performance of the microreactors was demonstrated using the example of controlled synthesis of small and uniform gold and palladium nanoparticles. The microsonication stage, designed and used in the present study, opened unique opportunities for direct sonochemical studies with the use of electron microscopy.
Collapse
|
20
|
Gal E, Gaina L, Petkes H, Pop A, Cristea C, Barta G, Vodnar DC, Silaghi-Dumitrescu L. Ultrasound-assisted Strecker synthesis of novel 2-(hetero)aryl-2-(arylamino)acetonitrile derivatives. Beilstein J Org Chem 2020; 16:2929-2936. [PMID: 33335600 PMCID: PMC7722623 DOI: 10.3762/bjoc.16.242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/20/2020] [Indexed: 11/23/2022] Open
Abstract
This work describes an efficient, simple, and ecofriendly sonochemical procedure for the preparation of new α-(arylamino)acetonitrile derivatives C-substituted with phenothiazine or ferrocene units. The synthetic protocol is based on the Strecker reaction of a (hetero)aryl aldimine substrate with trimethylsilyl cyanide (TMSCN) in poly(ethylene glycol) (PEG) solution. The advantages of the sonochemical versus the conventional α-(arylamino)acetonitrile synthesis are the significantly shorter reaction time (30 min instead of 72 hours), the higher purity and the easier separation of the product that precipitated from the reaction mixture in crystalline form as depicted by scanning electron microscopy (SEM) analysis. The single crystal X-ray diffraction analysis disclosed the arrangement of the α-(arylamino)acetonitrile molecules in the aggregated crystalline state as a racemic mixture. The mutagenic/antimutagenic potential for three representative derivatives containing phenothiazinyl, ferrocenyl, and phenyl units, respectively, was evaluated by the Ames Salmonella/microsome test using S. typhimurium TA98 and TA100 strains with and without metabolic activation. The preliminary screening results pointed out that the C-(hetero)aryl-α-(arylamino)acetonitrile derivatives can be considered genotoxically safe and possibly antimutagenic.
Collapse
Affiliation(s)
- Emese Gal
- Faculty of Chemistry and Chemical Engineering, Research Center on Fundamental and Applied Heterochemistry, Babes-Bolyai University, 11 Arany Janos street, RO-400028, Cluj-Napoca, Romania
| | - Luiza Gaina
- Faculty of Chemistry and Chemical Engineering, Research Center on Fundamental and Applied Heterochemistry, Babes-Bolyai University, 11 Arany Janos street, RO-400028, Cluj-Napoca, Romania
| | - Hermina Petkes
- Faculty of Chemistry and Chemical Engineering, Research Center on Fundamental and Applied Heterochemistry, Babes-Bolyai University, 11 Arany Janos street, RO-400028, Cluj-Napoca, Romania
| | - Alexandra Pop
- Department of Chemistry, Babes-Bolyai University, 11 Arany Janos street, RO-400028, Cluj-Napoca, Romania
| | - Castelia Cristea
- Faculty of Chemistry and Chemical Engineering, Research Center on Fundamental and Applied Heterochemistry, Babes-Bolyai University, 11 Arany Janos street, RO-400028, Cluj-Napoca, Romania
| | - Gabriel Barta
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine 3-5 Mănăștur Street, RO-400372 Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine 3-5 Mănăștur Street, RO-400372 Cluj-Napoca, Romania
| | - Luminiţa Silaghi-Dumitrescu
- Faculty of Chemistry and Chemical Engineering, Research Center on Fundamental and Applied Heterochemistry, Babes-Bolyai University, 11 Arany Janos street, RO-400028, Cluj-Napoca, Romania
| |
Collapse
|
21
|
Moayyed M, Saberi D. Iodine-catalyzed synthesis of β-uramino crotonic esters as well as oxidative esterification of carboxylic acids in choline chloride/urea: a desirable alternative to organic solvents. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-02039-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Yankin AN, Dmitriev MV. Nickel complexes as efficient catalysts in multicomponent synthesis of tetrahydropyridine derivatives. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1803357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Andrei N. Yankin
- Department of Physics and Engineering, ITMO University, St. Petersburg, Russia
| | - Maksim V. Dmitriev
- Departament of Organic Chemistry, Perm State National Research University, Perm, Russia
| |
Collapse
|
23
|
Tan J, Wang L, Hu YL. Multifunctional Periodic Mesoporous Organosilica Supported Benzotriazolium Ionic Liquid as an Efficient Nanocatalyst for Synergistic Transformation of CO
2
to Cyclic Carbonates. ChemistrySelect 2020. [DOI: 10.1002/slct.202000813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jin Tan
- College of Materials and Chemical Engineering, Key laboratory of inorganic nonmetallic crystalline and energy conversion materialsChina Three Gorges University Yichang 443002, Hubei province P. R. China
| | - Long Wang
- College of Materials and Chemical Engineering, Key laboratory of inorganic nonmetallic crystalline and energy conversion materialsChina Three Gorges University Yichang 443002, Hubei province P. R. China
| | - Yu Lin Hu
- College of Materials and Chemical Engineering, Key laboratory of inorganic nonmetallic crystalline and energy conversion materialsChina Three Gorges University Yichang 443002, Hubei province P. R. China
| |
Collapse
|
24
|
Banerjee B. Carbon-Carbon and Carbon-Heteroatom Bond-forming Reactions under Greener Conditions-Part 1B. CURR ORG CHEM 2020. [DOI: 10.2174/138527282401200305142223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Bubun Banerjee
- Department of Chemistry, Indus International University, V.P.O. Bathu, Distt. Una, Himachal Pradesh-174301, India
| |
Collapse
|
25
|
WO3 and Ionic Liquids: A Synergic Pair for Pollutant Gas Sensing and Desulfurization. METALS 2020. [DOI: 10.3390/met10040475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This review deals with the notable results obtained by the synergy between ionic liquids (ILs) and WO3 in the field of pollutant gas sensing and sulfur removal pretreatment of fuels. Starting from the known characteristics of tungsten trioxide as catalytic material, many authors have proposed the use of ionic liquids in order to both direct WO3 production towards controllable nanostructures (nanorods, nanospheres, etc.) and to modify the metal oxide structure (incorporating ILs) in order to increase the gas adsorption ability and, thus, the catalytic efficiency. Moreover, ionic liquids are able to highly disperse WO3 in composites, thus enhancing the contact surface and the catalytic ability of WO3 in both hydrodesulfurization (HDS) and oxidative desulfurization (ODS) of liquid fuels. In particular, the use of ILs in composite synthesis can direct the hydrogenation process (HDS) towards sulfur compounds rather than towards olefins, thus preserving the octane number of the fuel while highly reducing the sulfur content and, thus, the possibility of air pollution with sulfur oxides. A similar performance enhancement was obtained in ODS, where the high dispersion of WO3 (due to the use of ILs during the synthesis) allows for noteworthy results at very low temperatures (50 °C).
Collapse
|
26
|
Banerjee B. Carbon-Carbon and Carbon-Heteroatom Bond-forming Reactions under Greener Conditions-Part 1A. CURR ORG CHEM 2020. [DOI: 10.2174/138527282328200117095904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Bubun Banerjee
- Department of Chemistry, Indus International University, V.P.O. Bathu, Distt. Una, Himachal Pradesh-174301, India
| |
Collapse
|
27
|
Dolatkhah Z, Mohammadkhani A, Javanshir S, Bazgir A. Peanut shell as a green biomolecule support for anchoring Cu 2O: a biocatalyst for green synthesis of 1,2,3-triazoles under ultrasonic irradiation. BMC Chem 2019; 13:97. [PMID: 31355370 PMCID: PMC6659571 DOI: 10.1186/s13065-019-0612-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 07/15/2019] [Indexed: 12/15/2022] Open
Abstract
Cu2O supported on peanut shell (Cu2O@PS) was prepared by the reaction of copper acetate and peanut shell powder as a naturally available biopolymer support. The prepared catalyst was used as an efficient and reusable heterogeneous catalyst in the click reaction of benzyl halide or phenacyl bromides, acetylenes and sodium azide for the synthesis of potentially biologically active 1,2,3-triazoles under ultrasonic irradiation in EtOH-H2O as green solvent.
Collapse
Affiliation(s)
- Zahra Dolatkhah
- Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114 Iran
| | | | - Shahrzad Javanshir
- Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114 Iran
| | - Ayoob Bazgir
- Department of Chemistry, Shahid Beheshti University, G.C, Tehran, 1983963113 Iran
| |
Collapse
|
28
|
Hooshmand SE, Ghadari R, Mohammadian R, Shaabani A, Khavasi HR. Rhodanine‐Furan Bis‐Heterocyclic Frameworks Synthesis via Green One‐Pot Sequential Six‐Component Reactions: A Synthetic and Computational Study. ChemistrySelect 2019. [DOI: 10.1002/slct.201903361] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Seyyed Emad Hooshmand
- Faculty of ChemistryShahid Beheshti University, G. C. P.O. Box 19396–4716 Tehran Iran
| | - Rahim Ghadari
- Department of Organic and BiochemistryFaculty of ChemistryUniversity of Tabriz, Tabriz Iran
| | - Reza Mohammadian
- Faculty of ChemistryShahid Beheshti University, G. C. P.O. Box 19396–4716 Tehran Iran
| | - Ahmad Shaabani
- Faculty of ChemistryShahid Beheshti University, G. C. P.O. Box 19396–4716 Tehran Iran
| | - Hamid Reza Khavasi
- Faculty of ChemistryShahid Beheshti University, G. C. P.O. Box 19396–4716 Tehran Iran
| |
Collapse
|
29
|
Banerjee B. Ultrasound and Nano-Catalysts: An Ideal and Sustainable Combination to Carry out Diverse Organic Transformations. ChemistrySelect 2019. [DOI: 10.1002/slct.201803081] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Bubun Banerjee
- Department of Chemistry; Indus International University; V.P.O. Bathu, Distt. Una Himachal Pradesh- 174301 India
| |
Collapse
|
30
|
Kaur G, Thakur S, Kaundal P, Chandel K, Banerjee B. p
‐Dodecylbenzenesulfonic Acid: An Efficient Brønsted Acid‐Surfactant‐Combined Catalyst to Carry out Diverse Organic Transformations in Aqueous Medium. ChemistrySelect 2018. [DOI: 10.1002/slct.201802824] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Gurpreet Kaur
- Department of ChemistryIndus International University, V.P.O. Bathu, Distt. Una Himachal Pradesh- 174301 India
| | - Shivani Thakur
- Department of ChemistryIndus International University, V.P.O. Bathu, Distt. Una Himachal Pradesh- 174301 India
| | - Priyanka Kaundal
- Department of ChemistryIndus International University, V.P.O. Bathu, Distt. Una Himachal Pradesh- 174301 India
| | - Kusum Chandel
- Department of ChemistryIndus International University, V.P.O. Bathu, Distt. Una Himachal Pradesh- 174301 India
| | - Bubun Banerjee
- Department of ChemistryIndus International University, V.P.O. Bathu, Distt. Una Himachal Pradesh- 174301 India
| |
Collapse
|
31
|
Kaur G, Devi M, Kumari A, Devi R, Banerjee B. One-Pot Pseudo Five Component Synthesis of Biologically Relevant 1,2,6-Triaryl-4-arylamino-piperidine-3-ene-3- carboxylates: A Decade Update. ChemistrySelect 2018. [DOI: 10.1002/slct.201801887] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Gurpreet Kaur
- Department of Chemistry; Indus International University V.P.O. Bathu, Distt. Una, Himachal Pradesh -; 174301 India
| | - Mamta Devi
- Department of Chemistry; Indus International University V.P.O. Bathu, Distt. Una, Himachal Pradesh -; 174301 India
| | - Anjana Kumari
- Department of Chemistry; Indus International University V.P.O. Bathu, Distt. Una, Himachal Pradesh -; 174301 India
| | - Rekha Devi
- Department of Chemistry; Indus International University V.P.O. Bathu, Distt. Una, Himachal Pradesh -; 174301 India
| | - Bubun Banerjee
- Department of Chemistry; Indus International University V.P.O. Bathu, Distt. Una, Himachal Pradesh -; 174301 India
| |
Collapse
|