1
|
Yang Y, Zhou J, Rao AM, Lu B. Bio-inspired carbon electrodes for metal-ion batteries. NANOSCALE 2024; 16:5893-5902. [PMID: 38389495 DOI: 10.1039/d4nr00226a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Carbon has been widely used as an electrode material in commercial metal-ion batteries (MIBs) because of its desirable electrical, mechanical, and physical properties. Still, traditional carbon electrodes suffer from limited mechanical stability and electrochemical performance in MIBs. Drawing inspiration from biological species, the carbon allotropes, such as fullerenes, carbon nanotubes, and graphene, can be engineered into mechanically robust, highly conductive frameworks with enhanced ion storage and transport capabilities for MIBs. Here, we present an assortment of bio-inspired carbon electrodes that have enhanced the cycling stability, capacity retention, and overall performance of MIBs. In addition, mimicking the structure and functionality of biological systems has led to the development of flexible MIBs whose performance does not degrade even when stretched, bent, or twisted. Finite element analysis (FEA) is a useful guide in identifying such bio-inspired carbon frameworks because it can simulate and analyze potential failure scenarios, such as stress build-up or structural collapse in MIBs. This review highlights through several examples that there is much scope for improving carbon-based electrode materials through bio-inspired designs for practical high-performance MIBs.
Collapse
Affiliation(s)
- Yihan Yang
- School of Physics and Electronics, Hunan University, Changsha 410083, P. R. China.
| | - Jiang Zhou
- School of Materials Science and Engineering, Central South University, Changsha 410083, P. R. China
| | - Apparao M Rao
- Department of Physics and Astronomy, Clemson Nanomaterials Institute, Clemson University, Clemson, SC 29634, USA.
| | - Bingan Lu
- School of Physics and Electronics, Hunan University, Changsha 410083, P. R. China.
| |
Collapse
|
2
|
Chen S, Chen S, Han D, Bielawski CW, Geng J. Carbon‐Based Materials as Lithium Hosts for Lithium Batteries. Chemistry 2022; 28:e202201580. [DOI: 10.1002/chem.202201580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Shang Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology 15 North Third Ring East Road, Chaoyang District Beijing 100029 P. R. China
| | - Shuiyin Chen
- State Key Laboratory of Separation Membranes and Membrane Processes Tianjin Key Laboratory of Advanced Fibers and Energy Storage School of Material Science and Engineering Tiangong University No. 399 BinShuiXi Road, XiQing District Tianjin 300387 P. R. China
| | - Dengji Han
- State Key Laboratory of Separation Membranes and Membrane Processes Tianjin Key Laboratory of Advanced Fibers and Energy Storage School of Material Science and Engineering Tiangong University No. 399 BinShuiXi Road, XiQing District Tianjin 300387 P. R. China
| | - Christopher W. Bielawski
- Center for Multidimensional Carbon Materials (CMCM) Institute for Basic Science (IBS) Ulsan 44919 Republic of Korea
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Jianxin Geng
- State Key Laboratory of Separation Membranes and Membrane Processes Tianjin Key Laboratory of Advanced Fibers and Energy Storage School of Material Science and Engineering Tiangong University No. 399 BinShuiXi Road, XiQing District Tianjin 300387 P. R. China
| |
Collapse
|
3
|
Peng T, Zhang N, Yang Y, Zhang M, Luo R, Chen C, Lu Y, Luo Y. Crystal Facet Engineering of MXene-Derived TiN Nanoflakes as Efficient Bidirectional Electrocatalyst for Advanced Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202917. [PMID: 35988139 DOI: 10.1002/smll.202202917] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/24/2022] [Indexed: 06/15/2023]
Abstract
The design of nanomaterials with grain orientation structure by crystal facet engineering is of great significance for boosting the catalytic ability and electrochemical properties, but the controllable synthesis is still a challenge. Here, TiN nanoflakes with exposed (001) facets are prepared using 2D Ti3 C2 MXene as the initial reactant and applied as a bidirectional electrocatalyst for the reduction and oxidation process in lithium-sulfur batteries (LSBs). The (001) facet-dominated TiN nanoflakes have a strong adsorption capacity for soluble lithium polysulfides (LiPSs). More importantly, theoretical calculations and experiment results confirm the (001) facet-dominated TiN nanoflakes catalyze the conversion of soluble LiPSs to Li2 S2 /Li2 S to induce the Li2 S uniform deposition in the discharge process and decrease the delithiation barrier of Li2 S in the charge process. Therefore, the excellent electrochemical properties of LSBs are achieved, which demonstrates a high discharge capacity of 949 mAh g-1 at 1 C and maintains high capacity reversibility with a decay rate of 0.033% per cycle after 800 cycles.
Collapse
Affiliation(s)
- Tao Peng
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, 464000, P. R. China
| | - Ning Zhang
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, 464000, P. R. China
| | - Ya Yang
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, 464000, P. R. China
| | - Mengjie Zhang
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, 464000, P. R. China
| | - Rongjie Luo
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, 464000, P. R. China
| | - Chen Chen
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, 464000, P. R. China
| | - Yang Lu
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, 464000, P. R. China
| | - Yongsong Luo
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, 464000, P. R. China
- College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang, 473061, P. R. China
| |
Collapse
|
4
|
Lu Y, Zhao M, Yang Y, Zhang M, Zhang N, Yan H, Peng T, Liu X, Luo Y. A conductive framework embedded with cobalt-doped vanadium nitride as an efficient polysulfide adsorber and convertor for advanced lithium-sulfur batteries. NANOSCALE HORIZONS 2022; 7:543-553. [PMID: 35293915 DOI: 10.1039/d1nh00512j] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The industrialization and commercialization of Li-S batteries are greatly hindered by several defects such as the sluggish reaction kinetics, polysulfide shuttling and large volume expansion. Herein, we propose a heteroatom doping method to optimize the electronic structure for enhancing the adsorption and catalytic activity of VN that is in situ embedded into a spongy N-doped conductive framework, thus obtaining a Co-VN/NC multifunctional catalyst as an ideal sulfur host. The synthesized composite has both the unique structural advantages and the synergistic effect of cobalt, VN, and nitrogen-doped carbon (NC), which not only improve the polysulfide anchoring of the sulfur cathode but also boost the kinetics of polysulfide conversion. The density functional theory (DFT) calculations revealed that Co doping could enrich the d orbit electrons of VN for elevating the d band center, which improves its interaction with lithium polysulfides (LiPSs) and accelerates the interfacial electron transfer, simultaneously. As a result, the batteries present a high initial discharge capacity of 1521 mA h g-1 at 0.1 C, good rate performance, and excellent cycling performances (∼876 mA h g-1 at 0.5 C after 300 cycles and ∼490 mA h g-1 at 2 C after 1000 cycles, respectively), even with a high areal sulfur loading of 4.83 mg cm-2 (∼4.70 mA h cm-2 at 0.2 C after 100 cycles). This well-designed work provides a good strategy to develop effective polysulfide catalysis and further obtain high-performance host materials for Li-S batteries.
Collapse
Affiliation(s)
- Yang Lu
- Henan Joint International Research Laboratory of New Energy Storage Technology, Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Menglong Zhao
- Henan Joint International Research Laboratory of New Energy Storage Technology, Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Ya Yang
- Henan Joint International Research Laboratory of New Energy Storage Technology, Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Mengjie Zhang
- Henan Joint International Research Laboratory of New Energy Storage Technology, Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Ning Zhang
- Henan Joint International Research Laboratory of New Energy Storage Technology, Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Hailong Yan
- Henan Joint International Research Laboratory of New Energy Storage Technology, Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Tao Peng
- Henan Joint International Research Laboratory of New Energy Storage Technology, Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Xianming Liu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Yongsong Luo
- Henan Joint International Research Laboratory of New Energy Storage Technology, Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.
- College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, P. R. China
| |
Collapse
|
5
|
Dong S, Guo L, Chen Y, Zhang Z, Yang Z, Xiang M. Three-dimensional loofah sponge derived amorphous carbon−graphene aerogel via one-pot synthesis for high-performance electrochemical sensor for hydrogen peroxide and dopamine. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Ehsani A, Parsimehr H. Electrochemical energy storage electrodes from fruit biochar. Adv Colloid Interface Sci 2020; 284:102263. [PMID: 32966966 DOI: 10.1016/j.cis.2020.102263] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 01/12/2023]
Abstract
This review investigates the electrochemical energy storage electrode (EESE) as the most important part of the electrochemical energy storage devices (EES) prepared from fruit-derived carbon. The EES devices include batteries, supercapacitors, and hybrid devices that have various regular and advanced applications. The preparation of EESE from fruit wastes not only reduce the price of the electrode but also lead to enhance the electrochemical properties of the electrode. The astonishing results of fruits biochar at electrochemical analyses guarantee the performance of these electrodes as EESE. Also, using fruit waste as the precursor of the EESE due to protect the environment and reduce environmental pollutions.
Collapse
|
7
|
Vertically aligned ultrathin MoS2 nanosheets grown on graphene-wrapped hollow carbon microtubes derived from loofah sponge as advanced anodes for highly reversible lithium storage. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.148] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Qi D, Chu H, Wang K, Li X, Huang J. A Cellulose Derived Nanotubular MoO3
/SnO2
Composite with Superior Lithium Storage Properties. ChemistrySelect 2018. [DOI: 10.1002/slct.201803127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dongmei Qi
- Department of Chemistry; Zhejiang University, Hangzhou; Zhejiang 310027 P. R. China
| | - Huiya Chu
- Department of Chemistry; Zhejiang University, Hangzhou; Zhejiang 310027 P. R. China
| | - Kun Wang
- Department of Chemistry; Zhejiang University, Hangzhou; Zhejiang 310027 P. R. China
| | - Xue Li
- Department of Chemistry; Zhejiang University, Hangzhou; Zhejiang 310027 P. R. China
| | - Jianguo Huang
- Department of Chemistry; Zhejiang University, Hangzhou; Zhejiang 310027 P. R. China
| |
Collapse
|